1
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden;
| | | | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden;
| |
Collapse
|
2
|
Avenhaus A, Velimirović M, Bulkescher J, Scheffner M, Hoppe-Seyler F, Hoppe-Seyler K. E6AP is essential for the proliferation of HPV-positive cancer cells by preventing senescence. PLoS Pathog 2025; 21:e1012914. [PMID: 39919145 PMCID: PMC11805377 DOI: 10.1371/journal.ppat.1012914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Oncogenic types of human papillomaviruses (HPVs) are major human carcinogens. The formation of a trimeric complex between the HPV E6 oncoprotein, the cellular ubiquitin ligase E6AP and the p53 tumor suppressor protein leads to proteolytic p53 degradation and plays a central role for HPV-induced cell transformation. We here uncover that E6AP silencing in HPV-positive cancer cells ultimately leads to efficient induction of cellular senescence, revealing that E6AP acts as a potent anti-senescent factor in these cells. Thus, although the downregulation of either E6 or E6AP expression also acts partially pro-apoptotic, HPV-positive cancer cells surviving E6 repression proliferate further, whereas they become irreversibly growth-arrested upon E6AP repression. We moreover show that the senescence induction following E6AP downregulation is mechanistically highly dependent on induction of the p53/p21 axis, other than the known pro-senescent response of HPV-positive cancer cells following combined downregulation of the viral E6 and E7 oncoproteins. Of further note, repression of E6AP allows senescence induction in the presence of the anti-senescent HPV E7 protein. Yet, despite these mechanistic differences, the pathways underlying the pro-senescent effects of E6AP or E6/E7 repression ultimately converge by being both dependent on the cellular pocket proteins pRb and p130. Taken together, our results uncover a hitherto unrecognized and potent anti-senescent function of the E6AP protein in HPV-positive cancer cells, which is essential for their sustained proliferation. Our results further indicate that interfering with E6AP expression or function could result in therapeutically desired effects in HPV-positive cancer cells by efficiently inducing an irreversible growth arrest. Since the critical role of the E6/E6AP/p53 complex for viral transformation is conserved between different oncogenic HPV types, this approach could provide a therapeutic strategy, which is not HPV type-specific.
Collapse
Affiliation(s)
- Alicia Avenhaus
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Milica Velimirović
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Bulkescher
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Felix Hoppe-Seyler
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
| | - Karin Hoppe-Seyler
- German Cancer Research Center (DKFZ), Molecular Therapy of Virus-Associated Cancers, Heidelberg, Germany
| |
Collapse
|
3
|
Sun YD, Li GH, Zhang F, Cheng T, Zhang JP, Zhang XB. A p21 reporter iPSC line for evaluating CRISPR-Cas9 and vector-induced stress responses. Stem Cells 2024; 42:992-1005. [PMID: 39283950 PMCID: PMC11541227 DOI: 10.1093/stmcls/sxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors. Highlights Established a p21-mNeonGreen reporter iPSC line to track activation of the TP53-p21 pathway. Found a direct correlation between p21-mNeonGreen expression and indel frequencies, aiding in gRNA screening. Showed that LVs are preferable over AAVs for certain cells due to lower p21 activation, with viral promoter choice impacting p21 response.
Collapse
Affiliation(s)
- Yi-Dan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, People’s Republic of China
- Tianjin Institutes of Health Science, Tianjin 301600, People’s Republic of China
| |
Collapse
|
4
|
Ni X, Zhai X, Yu W, Ye M, Yang F, Zhou YJ, Gao J. Dynamically Regulating Homologous Recombination Enables Precise Genome Editing in Ogataea polymorpha. ACS Synth Biol 2024; 13:2938-2947. [PMID: 39230514 DOI: 10.1021/acssynbio.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Methylotrophic yeast Ogataea polymorpha has become a promising cell factory due to its efficient utilization of methanol to produce high value-added chemicals. However, the low homologous recombination (HR) efficiency in O. polymorpha greatly hinders extensive metabolic engineering for industrial applications. Overexpression of HR-related genes successfully improved HR efficiency, which however brought cellular stress and reduced chemical production due to constitutive expression of the HR-related gene. Here, we engineered an HR repair pathway using the dynamically regulated gene ScRAD51 under the control of the l-rhamnose-induced promoter PLRA3 based on the previously constructed CRISPR-Cas9 system in O. polymorpha. Under the optimal inducible conditions, the appropriate expression level of ScRAD51 achieved up to 60% of HR rates without any detectable influence on cell growth in methanol, which was 10-fold higher than that of the wild-type strain. While adopting as the chassis strain for bioproductions, the dynamically regulated recombination system had 50% higher titers of fatty alcohols than that static regulation system. Therefore, this study provided a feasible platform in O. polymorpha for convenient genetic manipulation without perturbing cellular fitness.
Collapse
Affiliation(s)
- Xin Ni
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
5
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
6
|
Bártová E. Epigenetic and gene therapy in human and veterinary medicine. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae006. [PMID: 38751572 PMCID: PMC11095531 DOI: 10.1093/eep/dvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Gene therapy is a focus of interest in both human and veterinary medicine, especially in recent years due to the potential applications of CRISPR/Cas9 technology. Another relatively new approach is that of epigenetic therapy, which involves an intervention based on epigenetic marks, including DNA methylation, histone post-translational modifications, and post-transcription modifications of distinct RNAs. The epigenome results from enzymatic reactions, which regulate gene expression without altering DNA sequences. In contrast to conventional CRISP/Cas9 techniques, the recently established methodology of epigenetic editing mediated by the CRISPR/dCas9 system is designed to target specific genes without causing DNA breaks. Both natural epigenetic processes and epigenetic editing regulate gene expression and thereby contribute to maintaining the balance between physiological functions and pathophysiological states. From this perspective, knowledge of specific epigenetic marks has immense potential in both human and veterinary medicine. For instance, the use of epigenetic drugs (chemical compounds with therapeutic potential affecting the epigenome) seems to be promising for the treatment of cancer, metabolic, and infectious diseases. Also, there is evidence that an epigenetic diet (nutrition-like factors affecting epigenome) should be considered as part of a healthy lifestyle and could contribute to the prevention of pathophysiological processes. In summary, epigenetic-based approaches in human and veterinary medicine have increasing significance in targeting aberrant gene expression associated with various diseases. In this case, CRISPR/dCas9, epigenetic targeting, and some epigenetic nutrition factors could contribute to reversing an abnormal epigenetic landscape to a healthy physiological state.
Collapse
Affiliation(s)
- Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 612 00, the Czech Republic
| |
Collapse
|
7
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Zhao Y, Li X, Liu C, Jiang C, Guo X, Xu Q, Yin Z, Liu Z, Mu Y. Improving the Efficiency of CRISPR Ribonucleoprotein-Mediated Precise Gene Editing by Small Molecules in Porcine Fibroblasts. Animals (Basel) 2024; 14:719. [PMID: 38473105 DOI: 10.3390/ani14050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to verify whether small molecules can improve the efficiency of precision gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) ribonucleoprotein (RNP) in porcine cells. CRISPR associated 9 (Cas9) protein, small guide RNA (sgRNA), phosphorothioate-modified single-stranded oligonucleotides (ssODN), and different small molecules were used to generate precise nucleotide substitutions at the insulin (INS) gene by homology-directed repair (HDR) in porcine fetal fibroblasts (PFFs). These components were introduced into PFFs via electroporation, followed by polymerase chain reaction (PCR) for the target site. All samples were sequenced and analyzed, and the efficiencies of different small molecules at the target site were compared. The results showed that the optimal concentrations of the small molecules, including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A, for in vitro-cultured PFFs' viability were determined. Compared with the control group, the single small molecules including L-189, NU7441, SCR7, L755507, RS-1, and Brefeldin A increased the efficiency of HDR-mediated precise gene editing from 1.71-fold to 2.28-fold, respectively. There are no benefits in using the combination of two small molecules, since none of the combinations improved the precise gene editing efficiency compared to single small molecules. In conclusion, these results suggested that a single small molecule can increase the efficiency of CRISPR RNP-mediated precise gene editing in porcine cells.
Collapse
Affiliation(s)
- Yunjing Zhao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhi Yin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a Mutagenic Factor. Int J Mol Sci 2024; 25:823. [PMID: 38255897 PMCID: PMC10815272 DOI: 10.3390/ijms25020823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9.
Collapse
Affiliation(s)
- Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Sergey G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
10
|
Kuhns S, Juhl AD, Anvarian Z, Wüstner D, Pedersen LB, Andersen JS. Endogenous Tagging of Ciliary Genes in Human RPE1 Cells for Live-Cell Imaging. Methods Mol Biol 2024; 2725:147-166. [PMID: 37856023 DOI: 10.1007/978-1-0716-3507-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
CRISPR-mediated endogenous tagging of genes provides unique possibilities to explore the function and dynamic subcellular localization of proteins in living cells. Here, we describe experimental strategies for endogenous PCR-tagging of ciliary genes in human RPE1 cells and how image acquisition and analysis of the expressed fluorescently tagged proteins can be utilized to study the dynamic ciliary processes of intraflagellar transport and vesicular trafficking.
Collapse
Affiliation(s)
- Stefanie Kuhns
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
11
|
Kumari N, Antil H, Kumari S, Raghavan SC. Deficiency of ligase IV leads to reduced NHEJ, accumulation of DNA damage, and can sensitize cells to cancer therapeutics. Genomics 2023; 115:110731. [PMID: 37871849 DOI: 10.1016/j.ygeno.2023.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Himanshu Antil
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
12
|
Rollins JL, Hall RM, Lemus CJ, Leisten LA, Johnston JM. The enhancement of CRISPR/Cas9 gene editing using metformin. Biochem Biophys Rep 2023; 35:101539. [PMID: 37720314 PMCID: PMC10500454 DOI: 10.1016/j.bbrep.2023.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The CRISPR/Cas9 technology is a revolutionary tool that can be used to edit the genome. Specifically, the genome of hematopoietic stem cells (HSCs) could be edited to correct monogenic blood disorders as well as produce immunotherapies. However, the efficiency of editing HSCs remains low. To overcome this hurdle, we set out to investigate the use of metformin, an FDA-approved drug, to enhance gene modification. We assessed the effect of metformin on the growth of two hematopoietic cell lines: a myeloid-erythroid leukemic cell line (K562 cells) representative of the myeloid population and an immortalized T lymphocyte cell line (Jurkat cells) representative of the lymphoid population. No significant difference in growth patterns was observed in concentrations up to 10 mM metformin in both cell lines. We then assessed the ability of two different concentrations of metformin (0.001 mM or 1 mM), based on our observations, to enhance both (1) the cutting efficiency of Cas9 and (2) the targeting efficiency with the use of a donor DNA repair template. The cutting efficiency of Cas9 was significantly enhanced in a total of five guide RNAs (four specific to a platelet locus and one specific to an erythroid locus) following treatment. In addition, an enhancement in targeting was observed with the use of a GFP-containing donor DNA repair template with both concentrations. Overall, a greater than two-fold increase in GFP expression was noted in cells treated with metformin. This suggests that metformin, an FDA-approved drug, could be added to existing protocols to enhance CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Jaedyn L. Rollins
- Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| | - Raquel M. Hall
- Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| | - Clara J. Lemus
- Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| | - Lauren A. Leisten
- Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| | - Jennifer M. Johnston
- Washington Square, Department of Biological Sciences, San José State University, San José, CA, 95112, USA
| |
Collapse
|
13
|
Cuevas-Ocaña S, Yang JY, Aushev M, Schlossmacher G, Bear CE, Hannan NRF, Perkins ND, Rossant J, Wong AP, Gray MA. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:10266. [PMID: 37373413 PMCID: PMC10299534 DOI: 10.3390/ijms241210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.
Collapse
Affiliation(s)
- Sara Cuevas-Ocaña
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Jin Ye Yang
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Magomet Aushev
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Biomedicine West Wing, Centre for Life, Times Square, Newcastle upon Tyne NE1 3BZ, UK;
| | - George Schlossmacher
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Christine E. Bear
- Programme in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Nicholas R. F. Hannan
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Neil D. Perkins
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| | - Janet Rossant
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Amy P. Wong
- Programme in Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.Y.); (J.R.); (A.P.W.)
| | - Michael A. Gray
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (G.S.); (N.D.P.); (M.A.G.)
| |
Collapse
|
14
|
Fichter KM, Setayesh T, Malik P. Strategies for precise gene edits in mammalian cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:536-552. [PMID: 37215153 PMCID: PMC10192336 DOI: 10.1016/j.omtn.2023.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR-Cas technologies have the potential to revolutionize genetic medicine. However, work is still needed to make this technology clinically efficient for gene correction. A barrier to making precise genetic edits in the human genome is controlling how CRISPR-Cas-induced DNA breaks are repaired by the cell. Since error-prone non-homologous end-joining is often the preferred cellular repair pathway, CRISPR-Cas-induced breaks often result in gene disruption. Homology-directed repair (HDR) makes precise genetic changes and is the clinically desired pathway, but this repair pathway requires a homology donor template and cycling cells. Newer editing strategies, such as base and prime editing, can affect precise repair for relatively small edits without requiring HDR and circumvent cell cycle dependence. However, these technologies have limitations in the extent of genetic editing and require the delivery of bulky cargo. Here, we discuss the pros and cons of precise gene correction using CRISPR-Cas-induced HDR, as well as base and prime editing for repairing small mutations. Finally, we consider emerging new technologies, such as recombination and transposases, which can circumvent both cell cycle and cellular DNA repair dependence for editing the genome.
Collapse
Affiliation(s)
- Katye M. Fichter
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tahereh Setayesh
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Hematology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Richardson C, Kelsh RN, J. Richardson R. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis Model Mech 2023; 16:dmm049874. [PMID: 36847161 PMCID: PMC10003097 DOI: 10.1242/dmm.049874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Over the past decade, CRISPR/Cas-based gene editing has become a powerful tool for generating mutations in a variety of model organisms, from Escherichia coli to zebrafish, rodents and large mammals. CRISPR/Cas-based gene editing effectively generates insertions or deletions (indels), which allow for rapid gene disruption. However, a large proportion of human genetic diseases are caused by single-base-pair substitutions, which result in more subtle alterations to protein function, and which require more complex and precise editing to recreate in model systems. Precise genome editing (PGE) methods, however, typically have efficiencies of less than a tenth of those that generate less-specific indels, and so there has been a great deal of effort to improve PGE efficiency. Such optimisations include optimal guide RNA and mutation-bearing donor DNA template design, modulation of DNA repair pathways that underpin how edits result from Cas-induced cuts, and the development of Cas9 fusion proteins that introduce edits via alternative mechanisms. In this Review, we provide an overview of the recent progress in optimising PGE methods and their potential for generating models of human genetic disease.
Collapse
Affiliation(s)
- Chris Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Rebecca J. Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
16
|
Movahedi A, Wei H, Kadkhodaei S, Sun W, Zhuge Q, Yang L, Xu C. CRISPR-mediated genome editing in poplar issued by efficient transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1159615. [PMID: 37139106 PMCID: PMC10149819 DOI: 10.3389/fpls.2023.1159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Background CRISPR has been increasingly used for plant genetic improvements because of its high efficiency and precision. Recently, the authors have reported the possibility of homology-directed repair (HDR) using CRISPR/Cas9 through woody plants such as poplar. HDR often replaces nucleotides with one donor DNA template (DDT), including homologous sequences. Methods CRISPR-Cas9 was recruited, and three variables, Agrobacteria inoculator concentration, pDDT/pgRNA ratio, and homologous arm length, were designed to integrate nptII and 2XCamV 35S into the MKK2 promoter zone. Results Here, we showed that recovered poplars on kanamycin-supplemented media exhibited enhanced expression of MKK2 affected by the precise integration of 2XcamV 35S and nptII, improving biochemical and phenotypic properties. Our findings confirmed that Agrobacterium inoculator OD600 = 2.5, increased DDT numbers during cell division to 4:1 pDDT/pgRNA, and optimized homologous arms 700 bp caused efficient HDR and increased MKK2 expression. Conclusion Efficient transformations resulted from optimized variables, directly affecting the HDR efficiency through woody plants such as poplar.
Collapse
Affiliation(s)
- Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, United States
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran, Isfahan Branch, Agricultural Research, Education and Extension Organization, Isfahan, Iran
| | - Weibo Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and Safety of Agricultural Product, Nanjing Xiaozhuang University, Nanjing, China
- *Correspondence: Chen Xu,
| |
Collapse
|
17
|
Singh S, Chaudhary R, Deshmukh R, Tiwari S. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. PLANT MOLECULAR BIOLOGY 2023; 111:1-20. [PMID: 36315306 DOI: 10.1007/s11103-022-01321-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
We summarise recent advancements to achieve higher homologous recombination based gene targeting efficiency in different animals and plants. The genome editing has revolutionized the agriculture and human therapeutic sectors by its ability to create precise, stable and predictable mutations in the genome. It depends upon targeted double-strand breaks induction by the engineered endonucleases, which then gets repaired by highly conserved endogenous DNA repair mechanisms. The repairing could be done either through non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The HDR-based editing can be applied for precise gene targeting such as insertion of a new gene, gene replacement and altering of the regulatory sequence of a gene to control the existing protein expression. However, HDR-mediated editing is considered challenging because of lower efficiency in higher eukaryotes, thus, preventing its widespread application. This article reviews the recent progress of HDR-mediated editing and discusses novel strategies such as cell cycle synchronization, modulation of DNA damage repair factors, engineering of Cas protein favoring HDR and CRISPR-Cas reagents delivery methods to improve efficiency for generating knock-in events in both plants and animals. Further, multiplexing of described methods may be promising towards achieving higher donor template-assisted homologous recombination efficiency at the target locus.
Collapse
Affiliation(s)
- Surender Singh
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Roni Chaudhary
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, 121001, India
| | | | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
18
|
Sampadi B, Vermeulen S, Mišovic B, Boei JJ, Batth TS, Chang JG, Paulsen MT, Magnuson B, Schimmel J, Kool H, Olie CS, Everts B, Vertegaal ACO, Olsen JV, Ljungman M, Jeggo PA, Mullenders LHF, Vrieling H. Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation. Cells 2022; 11:cells11233794. [PMID: 36497055 PMCID: PMC9739411 DOI: 10.3390/cells11233794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).
Collapse
Affiliation(s)
- Bharath Sampadi
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Branislav Mišovic
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jan J. Boei
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Tanveer S. Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jer-Gung Chang
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Cyriel S. Olie
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Jesper V. Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Penny A. Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Leon H. F. Mullenders
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya 464-8601, Japan
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
- Correspondence: (B.S.); (H.V.)
| |
Collapse
|
19
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
20
|
Novel CRISPR/Cas9-mediated knockout of LIG4 increases efficiency of site-specific integration in Chinese hamster ovary cell line. Biotechnol Lett 2022; 44:1063-1072. [PMID: 35918621 DOI: 10.1007/s10529-022-03282-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
Abstract
AIM To investigate the impact of deficiency of LIG4 gene on site-specific integration in CHO cells. RESULTS CHO cells are considered the most valuable mammalian cells in the manufacture of biological medicines, and genetic engineering of CHO cells can improve product yield and stability. The traditional method of inserting foreign genes by random integration (RI) requires multiple rounds of screening and selection, which may lead to location effects and gene silencing, making it difficult to obtain stable, high-yielding cell lines. Although site-specific integration (SSI) techniques may overcome the challenges with RI, its feasibility is limited by the very low efficiency of the technique. Recently, SSI efficiency has been enhanced in other mammalian cell types by inhibiting DNA ligase IV (Lig4) activity, which is indispensable in DNA double-strand break repair by NHEJ. However, this approach has not been evaluated in CHO cells. In this study, the LIG4 gene was knocked out of CHO cells using CRISPR/Cas9-mediated genome editing. Efficiency of gene targeting in LIG4-/--CHO cell lines was estimated by a green fluorescence protein promoterless reporter system. Notably, the RI efficiency, most likely mediated by NHEJ in CHO, was inhibited by LIG4 knockout, whereas SSI efficiency strongly increased 9.2-fold under the precise control of the promoter in the ROSA26 site in LIG4-/--CHO cells. Moreover, deletion of LIG4 had no obvious side effects on CHO cell proliferation. CONCLUSIONS Deficiency of LIG4 represents a feasible strategy to improve SSI efficiency and suggests it can be applied to develop and engineer CHO cell lines in the future.
Collapse
|
21
|
Liu SC, Feng YL, Sun XN, Chen RD, Liu Q, Xiao JJ, Zhang JN, Huang ZC, Xiang JF, Chen GQ, Yang Y, Lou C, Li HD, Cai Z, Xu SM, Lin H, Xie AY. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing. Genome Biol 2022; 23:165. [PMID: 35915475 PMCID: PMC9341079 DOI: 10.1186/s13059-022-02736-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Due to post-cleavage residence of the Cas9-sgRNA complex at its target, Cas9-induced DNA double-strand breaks (DSBs) have to be exposed to engage DSB repair pathways. Target interaction of Cas9-sgRNA determines its target binding affinity and modulates its post-cleavage target residence duration and exposure of Cas9-induced DSBs. This exposure, via different mechanisms, may initiate variable DNA damage responses, influencing DSB repair pathway choices and contributing to mutational heterogeneity in genome editing. However, this regulation of DSB repair pathway choices is poorly understood. RESULTS In repair of Cas9-induced DSBs, repair pathway choices vary widely at different target sites and classical nonhomologous end joining (c-NHEJ) is not even engaged at some sites. In mouse embryonic stem cells, weakening the target interaction of Cas9-sgRNA promotes bias towards c-NHEJ and increases target dissociation and reduces target residence of Cas9-sgRNAs in vitro. As an important strategy for enhancing homology-directed repair, inactivation of c-NHEJ aggravates off-target activities of Cas9-sgRNA due to its weak interaction with off-target sites. By dislodging Cas9-sgRNA from its cleaved targets, DNA replication alters DSB end configurations and suppresses c-NHEJ in favor of other repair pathways, whereas transcription has little effect on c-NHEJ engagement. Dissociation of Cas9-sgRNA from its cleaved target by DNA replication may generate three-ended DSBs, resulting in palindromic fusion of sister chromatids, a potential source for CRISPR/Cas9-induced on-target chromosomal rearrangements. CONCLUSIONS Target residence of Cas9-sgRNA modulates DSB repair pathway choices likely through varying dissociation of Cas9-sgRNA from cleaved DNA, thus widening on-target and off-target mutational spectra in CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Si-Cheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Yi-Li Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xiu-Na Sun
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Ruo-Dan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Qian Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Jing-Jing Xiao
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Jin-Na Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- The First affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - Zhi-Cheng Huang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Ji-Feng Xiang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, People's Republic of China
| | - Guo-Qiao Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Yi Yang
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Chao Lou
- Shurui Tech Ltd, Hangzhou, Zhejiang, 310005, People's Republic of China
| | - Hao-Dan Li
- Shurui Tech Ltd, Hangzhou, Zhejiang, 310005, People's Republic of China
| | - Zhen Cai
- The First affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - Shi-Ming Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China
| | - Hui Lin
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China
| | - An-Yong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310019, People's Republic of China.
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, 310029, People's Republic of China.
| |
Collapse
|
22
|
Aulicino F, Pelosse M, Toelzer C, Capin J, Ilegems E, Meysami P, Rollarson R, Berggren PO, Dillingham M, Schaffitzel C, Saleem M, Welsh G, Berger I. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res 2022; 50:7783-7799. [PMID: 35801912 PMCID: PMC9303279 DOI: 10.1093/nar/gkac587] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic β-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.
Collapse
Affiliation(s)
- Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Martin Pelosse
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christine Toelzer
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Parisa Meysami
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Ruth Rollarson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Mark Simon Dillingham
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
23
|
Application of Gene Editing Technology in Resistance Breeding of Livestock. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071070. [PMID: 35888158 PMCID: PMC9325061 DOI: 10.3390/life12071070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
As a new genetic engineering technology, gene editing can precisely modify the specific gene sequence of the organism’s genome. In the last 10 years, with the rapid development of gene editing technology, zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR/Cas9 systems have been applied to modify endogenous genes in organisms accurately. Now, gene editing technology has been used in mice, zebrafish, pigs, cattle, goats, sheep, rabbits, monkeys, and other species. Breeding for disease-resistance in agricultural animals tends to be a difficult task for traditional breeding, but gene editing technology has made this easier. In this work, we overview the development and application of gene editing technology in the resistance breeding of livestock. Also, we further discuss the prospects and outlooks of gene editing technology in disease-resistance breeding.
Collapse
|
24
|
Shams F, Bayat H, Mohammadian O, Mahboudi S, Vahidnezhad H, Soosanabadi M, Rahimpour A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BIOIMPACTS 2022; 12:371-391. [PMID: 35975201 PMCID: PMC9376165 DOI: 10.34172/bi.2022.23871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
![]()
Introduction: Clustered regularly interspaced short palindromic repeat and its associated protein (CRISPR-Cas)-based technologies generate targeted modifications in host genome by inducing site-specific double-strand breaks (DSBs) that can serve as a substrate for homology-directed repair (HDR) in both in vitro and in vivo models. HDR pathway could enhance incorporation of exogenous DNA templates into the CRISPR-Cas9-mediated DSB site. Owing to low rate of HDR pathway, the efficiency of accurate genome editing is diminished. Enhancing the efficiency of HDR can provide fast, easy, and accurate technologies based on CRISPR-Cas9 technologies.
Methods: The current study presents an overview of attempts conducted on the precise genome editing strategies based on small molecules and modified CRISPR-Cas9 systems.
Results: In order to increase HDR rate in targeted cells, several logical strategies have been introduced such as generating CRISPR effector chimeric proteins, anti-CRISPR proteins, modified Cas9 with donor template, and using validated synthetic or natural small molecules for either inhibiting non-homologous end joining (NHEJ), stimulating HDR, or synchronizing cell cycle. Recently, high-throughput screening methods have been applied for identification of small molecules which along with the CRISPR system can regulate precise genome editing through HDR.
Conclusion: The stimulation of HDR components or inhibiting NHEJ can increase the accuracy of CRISPR-Cas-mediated engineering systems. Generating chimeric programmable endonucleases provide this opportunity to direct DNA template close proximity of CRISPR-Cas-mediated DSB. Small molecules and their derivatives can also proficiently block or activate certain DNA repair pathways and bring up novel perspectives for increasing HDR efficiency, especially in human cells. Further, high throughput screening of small molecule libraries could result in more discoveries of promising chemicals that improve HDR efficiency and CRISPR-Cas9 systems.
Collapse
Affiliation(s)
- Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Azam Rahimpour
- Medical Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Cell Cycle. Int J Mol Sci 2022; 23:ijms23115992. [PMID: 35682671 PMCID: PMC9181127 DOI: 10.3390/ijms23115992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Genome editing is currently widely used in biomedical research; however, the use of this method in the clinic is still limited because of its low efficiency and possible side effects. Moreover, the correction of mutations that cause diseases in humans seems to be extremely important and promising. Numerous attempts to improve the efficiency of homology-directed repair-mediated correction of mutations in mammalian cells have focused on influencing the cell cycle. Homology-directed repair is known to occur only in the late S and G2 phases of the cell cycle, so researchers are looking for safe ways to enrich the cell culture with cells in these phases of the cell cycle. This review surveys the main approaches to influencing the cell cycle in genome editing experiments (predominantly using Cas9), for example, the use of cell cycle synchronizers, mitogens, substances that affect cyclin-dependent kinases, hypothermia, inhibition of p53, etc. Despite the fact that all these approaches have a reversible effect on the cell cycle, it is necessary to use them with caution, since cells during the arrest of the cell cycle can accumulate mutations, which can potentially lead to their malignant transformation.
Collapse
|
26
|
Chmielowiec J, Szlachcic WJ, Yang D, Scavuzzo MA, Wamble K, Sarrion-Perdigones A, Sabek OM, Venken KJT, Borowiak M. Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nat Commun 2022; 13:1952. [PMID: 35414140 PMCID: PMC9005503 DOI: 10.1038/s41467-022-29646-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro derivation of pancreatic β-cells from human pluripotent stem cells holds promise as diabetes treatment. Despite recent progress, efforts to generate physiologically competent β-cells are still hindered by incomplete understanding of the microenvironment's role in β-cell development and maturation. Here, we analyze the human mesenchymal and endothelial primary cells from weeks 9-20 fetal pancreas and identify a time point-specific microenvironment that permits β-cell differentiation. Further, we uncover unique factors that guide in vitro development of endocrine progenitors, with WNT5A markedly improving human β-cell differentiation. WNT5A initially acts through the non-canonical (JNK/c-JUN) WNT signaling and cooperates with Gremlin1 to inhibit the BMP pathway during β-cell maturation. Interestingly, we also identify the endothelial-derived Endocan as a SST+ cell promoting factor. Overall, our study shows that the pancreatic microenvironment-derived factors can mimic in vivo conditions in an in vitro system to generate bona fide β-cells for translational applications.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katrina Wamble
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Omaima M Sabek
- Department of Surgery, The Methodist Hospital, Houston, TX, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malgorzata Borowiak
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Vojnits K, Nakanishi M, Porras D, Kim Y, Feng Z, Golubeva D, Bhatia M. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules 2022; 27:molecules27082434. [PMID: 35458632 PMCID: PMC9025795 DOI: 10.3390/molecules27082434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Application of the CRISPR/Cas9 system to knock in fluorescent proteins to endogenous genes of interest in human pluripotent stem cells (hPSCs) has the potential to facilitate hPSC-based disease modeling, drug screening, and optimization of transplantation therapy. To evaluate the capability of fluorescent reporter hPSC lines for high-content screening approaches, we targeted EGFP to the endogenous OCT4 locus. Resulting hPSC–OCT4–EGFP lines generated expressed EGFP coincident with pluripotency markers and could be adapted to multi-well formats for high-content screening (HCS) campaigns. However, after long-term culture, hPSCs transiently lost their EGFP expression. Alternatively, through EGFP knock-in to the AAVS1 locus, we established a stable and consistent EGFP-expressing hPSC–AAVS1–EGFP line that maintained EGFP expression during in vitro hematopoietic and neural differentiation. Thus, hPSC–AAVS1–EGFP-derived sensory neurons could be adapted to a high-content screening platform that can be applied to high-throughput small-molecule screening and drug discovery campaigns. Our observations are consistent with recent findings indicating that high-frequency on-target complexities appear following CRISPR/Cas9 genome editing at the OCT4 locus. In contrast, we demonstrate that the AAVS1 locus is a safe genomic location in hPSCs with high gene expression that does not impact hPSC quality and differentiation. Our findings suggest that the CRISPR/Cas9-integrated AAVS1 system should be applied for generating stable reporter hPSC lines for long-term HCS approaches, and they underscore the importance of careful evaluation and selection of the applied reporter cell lines for HCS purposes.
Collapse
|
28
|
Chen J, Li S, He Y, Li J, Xia L. An update on precision genome editing by homology-directed repair in plants. PLANT PHYSIOLOGY 2022; 188:1780-1794. [PMID: 35238390 PMCID: PMC8968426 DOI: 10.1093/plphys/kiac037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/20/2022] [Indexed: 05/22/2023]
Abstract
Beneficial alleles derived from local landraces or related species, or even orthologs from other plant species, are often caused by differences of one or several single-nucleotide polymorphisms or indels in either the promoter region or the encoding region of a gene and often account for major differences in agriculturally important traits. Clustered regularly interspaced short palindromic repeats-associated endonuclease Cas9 system (CRISPR/Cas9)-mediated precision genome editing enables targeted allele replacement or insertion of flag or foreign genes at specific loci via homology-directed repair (HDR); however, HDR efficiency is low due to the intrinsic rare occurrence of HDR and insufficient DNA repair template in the proximity of a double-stranded break (DSB). Precise replacement of the targeted gene with elite alleles from landraces or relatives into a commercial variety through genome editing has been a holy grail in the crop genome editing field. In this update, we briefly summarize CRISPR/Cas-mediated HDR in plants. We describe diverse strategies to improve HDR efficiency by manipulating the DNA repair pathway, timing DSB induction, and donor delivery, and so on. Lastly, we outline open questions and challenges in HDR-mediated precision genome editing in both plant biological research and crop improvement.
Collapse
Affiliation(s)
- Jilin Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
29
|
Kocher T, Petkovic I, Bischof J, Koller U. Current developments in gene therapy for epidermolysis bullosa. Expert Opin Biol Ther 2022; 22:1137-1150. [PMID: 35235467 DOI: 10.1080/14712598.2022.2049229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The genodermatosis epidermolysis bullosa (EB) is a monogenetic disease, characterized by severe blister formation on the skin and mucous membranes upon minimal mechanical trauma. Causes for the disease are mutations in genes encoding proteins that are essential for skin integrity. In EB, one of these proteins is either functionally impaired or completely absent. Therefore, the development and improvement of DNA and RNA-based therapeutic approaches for this severe blistering skin disease is mandatory to achieve a treatment option for the patients. AREAS COVERED Currently, there are several forms of DNA/RNA therapies potentially feasible for EB. Whereas some of them are still at the preclinical stage, others are clinically advanced and have already been applied to patients. In particular, this is the case for a cDNA replacement approach successfully applied for a small number of patients with junctional EB. EXPERT OPINION The heterogeneity of EB justifies the development of therapeutic options with distinct modes of action at a DNA or RNA level. Besides, splicing-modulating therapies, based on RNA trans-splicing or short antisense oligonucleotides, especially designer nucleases, have steadily improved in efficiency and safety and thus likely represent the most promising gene therapy tool in the near future.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Igor Petkovic
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
30
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
31
|
Sun W, Liu H, Yin W, Qiao J, Zhao X, Liu Y. Strategies for Enhancing the Homology-directed Repair Efficiency of CRISPR-Cas Systems. CRISPR J 2022; 5:7-18. [PMID: 35076280 DOI: 10.1089/crispr.2021.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The CRISPR-Cas nuclease has emerged as a powerful genome-editing tool in recent years. The CRISPR-Cas system induces double-strand breaks that can be repaired via the non-homologous end joining or homology-directed repair (HDR) pathway. Compared to non-homologous end joining, HDR can be used for the treatment of incurable monogenetic diseases. Therefore, remarkable efforts have been dedicated to enhancing the efficacy of HDR. In this review, we summarize the currently used strategies for enhancing the HDR efficiency of CRISPR-Cas systems based on three factors: (1) regulation of the key factors in the DNA repair pathways, (2) modulation of the components in the CRISPR machinery, and (3) alteration of the intracellular environment around double-strand breaks. Representative cases and potential solutions for further improving HDR efficiency are also discussed, facilitating the development of new CRISPR technologies to achieve highly precise genetic manipulation in the future.
Collapse
Affiliation(s)
- Wenli Sun
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Wenhao Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Jie Qiao
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China
| | - Xueke Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Henan, People's Republic of China; and Ltd., Hubei, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, People's Republic of China; Ltd., Hubei, People's Republic of China.,BravoVax Co., Ltd., Hubei, People's Republic of China
| |
Collapse
|
32
|
Murakami Y, Kobayashi T. An effective double gene knock‐in strategy using small‐molecule
L755507
in the medaka fish (
Oryzias latipes
). Genesis 2022; 60:e23465. [DOI: 10.1002/dvg.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Murakami
- Department of Fisheries, Graduate School of Agriculture Kindai University Nara Japan
| | - Toru Kobayashi
- Department of Fisheries, Graduate School of Agriculture Kindai University Nara Japan
| |
Collapse
|
33
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
34
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
35
|
Movahedi A, Wei H, Zhou X, Fountain JC, Chen ZH, Mu Z, Sun W, Zhang J, Li D, Guo B, Varshney RK, Yang L, Zhuge Q. Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9. HORTICULTURE RESEARCH 2022; 9:uhac154. [PMID: 36133672 PMCID: PMC9478684 DOI: 10.1093/hr/uhac154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/22/2022] [Accepted: 06/27/2022] [Indexed: 05/21/2023]
Abstract
CRISPR-mediated genome editing has become a powerful tool for the genetic modification of biological traits. However, developing an efficient, site-specific, gene knock-in system based on homology-directed DNA repair (HDR) remains a significant challenge in plants, especially in woody species like poplar. Here, we show that simultaneous inhibition of non-homologous end joining (NHEJ) recombination cofactor XRCC4 and overexpression of HDR enhancer factors CtIP and MRE11 can improve HDR efficiency for gene knock-in. Using this approach, the BleoR gene was integrated onto the 3' end of the MKK2 MAP kinase gene to generate a BleoR-MKK2 fusion protein. Based on fully edited nucleotides evaluated by TaqMan real-time PCR, the HDR-mediated knock-in efficiency was up to 48% when using XRCC4 silencing incorporated with a combination of CtIP and MRE11 overexpression compared with no HDR enhancement or NHEJ silencing. Furthermore, this combination of HDR enhancer overexpression and NHEJ repression also increased genome targeting efficiency and gave 7-fold fewer CRISPR-induced insertions and deletions (InDels), resulting in no functional effects on MKK2-based salt stress responses in poplar. Therefore, this approach may be useful not only in poplar and plants or crops but also in mammals for improving CRISPR-mediated gene knock-in efficiency.
Collapse
Affiliation(s)
| | - Hui Wei
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | | | | | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhiying Mu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Weibo Sun
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Dawei Li
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | | | | | | |
Collapse
|
36
|
Ghanta KS, Chen Z, Mir A, Dokshin GA, Krishnamurthy PM, Yoon Y, Gallant J, Xu P, Zhang XO, Ozturk AR, Shin M, Idrizi F, Liu P, Gneid H, Edraki A, Lawson ND, Rivera-Pérez JA, Sontheimer EJ, Watts JK, Mello CC. 5'-Modifications improve potency and efficacy of DNA donors for precision genome editing. eLife 2021; 10:e72216. [PMID: 34665130 PMCID: PMC8568340 DOI: 10.7554/elife.72216] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022] Open
Abstract
Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA-repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifications to both double-stranded and single-stranded DNA-repair templates. We describe 5'-terminal modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, that consistently increase the frequency of precision editing in the germlines of three animal models (Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.
Collapse
Affiliation(s)
- Krishna S Ghanta
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Aamir Mir
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | | | - Yeonsoo Yoon
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Judith Gallant
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ping Xu
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Ahmet Rasit Ozturk
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Masahiro Shin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Feston Idrizi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Hassan Gneid
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Alireza Edraki
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jaime A Rivera-Pérez
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
37
|
Peterson D, Barone P, Lenderts B, Schwartz C, Feigenbutz L, St. Clair G, Jones S, Svitashev S. Advances in Agrobacterium transformation and vector design result in high-frequency targeted gene insertion in maize. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2000-2010. [PMID: 33934470 PMCID: PMC8486252 DOI: 10.1111/pbi.13613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 05/03/2023]
Abstract
CRISPR-Cas is a powerful DNA double-strand break technology with wide-ranging applications in plant genome modification. However, the efficiency of genome editing depends on various factors including plant genetic transformation processes and types of modifications desired. Agrobacterium infection is the preferred method of transformation and delivery of editing components into the plant cell. While this method has been successfully used to generate gene knockouts in multiple crops, precise nucleotide replacement and especially gene insertion into a pre-defined genomic location remain highly challenging. Here, we report an efficient, selectable marker-free site-specific gene insertion in maize using Agrobacterium infection. Advancements in maize transformation and new vector design enabled increase of targeted insertion frequencies by two orders of magnitude in comparison to conventional Agrobacterium-mediated delivery. Importantly, these advancements allowed not only a significant improvement of the frequency, but also of the quality of generated events. These results further enable the application of genome editing for trait product development in a wide variety of crop species amenable to Agrobacterium-mediated transformation.
Collapse
|
38
|
Guzmán-Zapata D, Vargas-Morales BV, Loyola-Vargas VM. From genome scissors to molecular scalpel: evolution of CRISPR systems. Biotechnol Genet Eng Rev 2021; 37:82-104. [PMID: 34412573 DOI: 10.1080/02648725.2021.1962071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
From bizarre palindromic repeats to a bacterial defense mechanism, to genome editing tool, and more, Clustered Regularly Interspaced Short Palindromic Repeats or CRISPR has significantly impacted the way we study genome modification in less than a decade. In this review, we would like to highlight some key players over 30 years of research and explain this biotechnological tool's basic mechanisms. We also refer to the evolution of the CRISPR variants and some of the applications derived from them. The understanding and upgrading of this system will be a valuable tool in the years to come to solve some of the challenges in diverse fields from pharmaceuticals to therapeutics, from basic plant genetics to crop improvement, from metabolic engineering to waste management and industrial processing.
Collapse
Affiliation(s)
- Daniel Guzmán-Zapata
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, México
| | | | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, México
| |
Collapse
|
39
|
Wen W, Quan ZJ, Li SA, Yang ZX, Fu YW, Zhang F, Li GH, Zhao M, Yin MD, Xu J, Zhang JP, Cheng T, Zhang XB. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biol 2021; 22:236. [PMID: 34416913 PMCID: PMC8377869 DOI: 10.1186/s13059-021-02462-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After repairing double-strand breaks (DSBs) caused by CRISPR-Cas9 cleavage, genomic damage, such as large deletions, may have pathogenic consequences. RESULTS We show that large deletions are ubiquitous but are dependent on editing sites and cell types. Human primary T cells display more significant deletions than hematopoietic stem and progenitor cells (HSPCs), whereas we observe low levels in induced pluripotent stem cells (iPSCs). We find that the homology-directed repair (HDR) with single-stranded oligodeoxynucleotides (ssODNs) carrying short homology reduces the deletion damage by almost half, while adeno-associated virus (AAV) donors with long homology reduce large deletions by approximately 80%. In the absence of HDR, the insertion of a short double-stranded ODN by NHEJ reduces deletion indexes by about 60%. CONCLUSIONS Timely bridging of broken ends by HDR and NHEJ vastly decreases the unintended consequences of dsDNA cleavage. These strategies can be harnessed in gene editing applications to attenuate unintended outcomes.
Collapse
Affiliation(s)
- Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zi-Jun Quan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Si-Ang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Meng-Di Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
40
|
Lucas CG, Redel BK, Chen PR, Spate LD, Prather RS, Wells KD. Effects of RAD51-stimulatory compound 1 (RS-1) and its vehicle, DMSO, on pig embryo culture. Reprod Toxicol 2021; 105:44-52. [PMID: 34407461 DOI: 10.1016/j.reprotox.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Pigs have become an important model for agricultural and biomedical purposes. The advent of genomic engineering tools, such as the CRISPR/Cas9 system, has facilitated the production of livestock models with desired modifications. However, precise site-specific modifications in pigs through the homology-directed repair (HDR) pathway remains a challenge. In mammalian embryos, the use of small molecules to inhibit non-homologous end joining (NHEJ) or to improve HDR have been tested, but little is known about their toxicity. The compound RS-1 stimulates the activity of the RAD51 protein, which plays a key role in the HDR mechanism, demonstrating enhancement of HDR events in rabbit and bovine zygotes. Thus, in this study, we evaluated the dosage and temporal effects of RS-1 on porcine embryo development and viability. Additionally, we assessed the effects of its vehicle, DMSO, during embryo in vitro culture. Transient exposure to 7.5 μM of RS-1 did not adversely affect early embryo development and was compatible with subsequent development to term. Additionally, low concentrations of its vehicle, DMSO, did not show any toxicity to in vitro produced embryos. The transient use of RS-1 at 7.5 μM during in vitro culture seems to be the best protocol of choice to reduce the potentially toxic effects of RS-1 while attempting to improve HDR in the pig. Direct injection of the CRISPR/Cas9 system, combined with strategies to increase the frequency of targeted modifications via HDR, have become an important tool to simplify and accelerate the production of genetically modified livestock models.
Collapse
Affiliation(s)
- C G Lucas
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA.
| | - B K Redel
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; USDA-ARS, Plant Genetics Unit, Columbia, MO, USA
| | - P R Chen
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - L D Spate
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - R S Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - K D Wells
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA
| |
Collapse
|
41
|
Vu TV, Doan DTH, Tran MT, Sung YW, Song YJ, Kim JY. Improvement of the LbCas12a-crRNA System for Efficient Gene Targeting in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:722552. [PMID: 34447405 PMCID: PMC8383147 DOI: 10.3389/fpls.2021.722552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 05/03/2023]
Abstract
Plant gene targeting (GT) can be utilized to precisely replace up to several kilobases of a plant genome. Recent studies using the powerful clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases significantly improved plant GT efficiency. However, GT for loci without associated selection markers is still inefficient. We previously utilized Lachnospiraceae bacterium Cas12a (LbCas12a) in combination with a replicon for tomato GT and obtained high GT efficiency with some selection markers. In this study, we advance our GT system by inhibiting the cNHEJ pathway with small chemical molecules such as NU7441. Further optimization of the GT is also possible with the treatment of silver nitrate possibly via its pronounced actions in ethylene inhibition and polyamine production. Importantly, the GT efficiency is significantly enhanced with the use of a temperature-tolerant LbCas12a (ttLbCas12a) that is capable of performing target cleavage even at low temperatures. Targeted deep sequencing, as well as conventional methods, are used for the assessment of the editing efficiency at both cell and plant levels. Our work demonstrates the significance of the selection of gene scissors, the appropriate design and number of LbCas12a crRNAs, the use of chemical treatments, and the establishment of favorable experimental conditions for further enhancement of plant HDR to enable efficient GT in tomato.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bạc Liêu, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
42
|
Denes CE, Cole AJ, Aksoy YA, Li G, Neely GG, Hesselson D. Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. Int J Mol Sci 2021; 22:8571. [PMID: 34445274 PMCID: PMC8395304 DOI: 10.3390/ijms22168571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
Modification of the human genome has immense potential for preventing or treating disease. Modern genome editing techniques based on CRISPR/Cas9 show great promise for altering disease-relevant genes. The efficacy of precision editing at CRISPR/Cas9-induced double-strand breaks is dependent on the relative activities of nuclear DNA repair pathways, including the homology-directed repair and error-prone non-homologous end-joining pathways. The competition between multiple DNA repair pathways generates mosaic and/or therapeutically undesirable editing outcomes. Importantly, genetic models have validated key DNA repair pathways as druggable targets for increasing editing efficacy. In this review, we highlight approaches that can be used to achieve the desired genome modification, including the latest progress using small molecule modulators and engineered CRISPR/Cas proteins to enhance precision editing.
Collapse
Affiliation(s)
- Christopher E. Denes
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.E.D.); (G.L.)
| | - Alexander J. Cole
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yagiz Alp Aksoy
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia;
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Geng Li
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.E.D.); (G.L.)
| | - Graham Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.E.D.); (G.L.)
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Daniel Hesselson
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia;
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
43
|
Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv 2021; 49:107737. [PMID: 33785374 DOI: 10.1016/j.biotechadv.2021.107737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments. More recently, large-scale experiments revealed a previously overlooked feature: Cas9 can generate reproducible mutation patterns. As a result, it has become apparent that Cas9-induced double-strand break (DSB) repair is nonrandom and can be predicted to some extent. Here, we review the present state of knowledge regarding the specificity and safety of CRISPR-Cas9 technology to define gRNA, protein and target-related problems and solutions. These issues include sequence-specific off-target effects, immune responses, genetic variation and chromatin accessibility. We present new insights into the role of DNA repair in genome editing and define factors influencing editing outcomes. In addition, we propose practical guidelines for increasing the specificity of editing and discuss novel perspectives in improvement of this technology.
Collapse
Affiliation(s)
- Pawel Sledzinski
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Mateusz Nowaczyk
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland.
| |
Collapse
|
44
|
Sweeney CL, Pavel-Dinu M, Choi U, Brault J, Liu T, Koontz S, Li L, Theobald N, Lee J, Bello EA, Wu X, Meis RJ, Dahl GA, Porteus MH, Malech HL, De Ravin SS. Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Ther 2021; 28:373-390. [PMID: 33712802 PMCID: PMC8232036 DOI: 10.1038/s41434-021-00251-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
X-linked chronic granulomatous disease is an immunodeficiency characterized by defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the 13 exons and splice sites of the CYBB gene, resulting in loss of gp91phox protein. Here we report gene correction by homology-directed repair in patient hematopoietic stem/progenitor cells (HSPCs) using CRISPR/Cas9 for targeted insertion of CYBB exon 1-13 or 2-13 cDNAs from adeno-associated virus donors at endogenous CYBB exon 1 or exon 2 sites. Targeted insertion of exon 1-13 cDNA did not restore physiologic gp91phox levels, consistent with a requirement for intron 1 in CYBB expression. However, insertion of exon 2-13 cDNA fully restored gp91phox and ROS production upon phagocyte differentiation. Addition of a woodchuck hepatitis virus post-transcriptional regulatory element did not further enhance gp91phox expression in exon 2-13 corrected cells, indicating that retention of intron 1 was sufficient for optimal CYBB expression. Targeted correction was increased ~1.5-fold using i53 mRNA to transiently inhibit nonhomologous end joining. Following engraftment in NSG mice, corrected HSPCs generated phagocytes with restored gp91phox and ROS production. Our findings demonstrate the utility of tailoring donor design and targeting strategies to retain regulatory elements needed for optimal expression of the target gene.
Collapse
Affiliation(s)
- Colin L Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Brault
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Liu
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sherry Koontz
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Narda Theobald
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janet Lee
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ezekiel A Bello
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | | - Matthew H Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Harry L Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suk See De Ravin
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl) 2021; 99:593-617. [PMID: 33594520 PMCID: PMC7885987 DOI: 10.1007/s00109-020-02034-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy has entered a new era after decades-long efforts, where the recombinant adeno-associated virus (AAV) has stood out as the most potent vector for in vivo gene transfer and demonstrated excellent efficacy and safety profiles in numerous preclinical and clinical studies. Since the first AAV-derived therapeutics Glybera was approved by the European Medicines Agency (EMA) in 2012, there is an increasing number of AAV-based gene augmentation therapies that have been developed and tested for treating incurable genetic diseases. In the subsequent years, the United States Food and Drug Administration (FDA) approved two additional AAV gene therapy products, Luxturna and Zolgensma, to be launched into the market. Recent breakthroughs in genome editing tools and the combined use with AAV vectors have introduced new therapeutic modalities using somatic gene editing strategies. The promising outcomes from preclinical studies have prompted the continuous evolution of AAV-delivered therapeutics and broadened the scope of treatment options for untreatable diseases. Here, we describe the clinical updates of AAV gene therapies and the latest development using AAV to deliver the CRISPR components as gene editing therapeutics. We also discuss the major challenges and safety concerns associated with AAV delivery and CRISPR therapeutics, and highlight the recent achievement and toxicity issues reported from clinical applications.
Collapse
Affiliation(s)
- Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Brian Anugerah Urip
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Chun Christopher Ngan
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510320, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
46
|
Kagita A, Lung MSY, Xu H, Kita Y, Sasakawa N, Iguchi T, Ono M, Wang XH, Gee P, Hotta A. Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein. Stem Cell Reports 2021; 16:985-996. [PMID: 33711268 PMCID: PMC8072016 DOI: 10.1016/j.stemcr.2021.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 10/25/2022] Open
Abstract
Combined with CRISPR-Cas9 technology and single-stranded oligodeoxynucleotides (ssODNs), specific single-nucleotide alterations can be introduced into a targeted genomic locus in induced pluripotent stem cells (iPSCs); however, ssODN knockin frequency is low compared with deletion induction. Although several Cas9 transduction methods have been reported, the biochemical behavior of CRISPR-Cas9 nuclease in mammalian cells is yet to be explored. Here, we investigated intrinsic cellular factors that affect Cas9 cleavage activity in vitro. We found that intracellular RNA, but not DNA or protein fractions, inhibits Cas9 from binding to single guide RNA (sgRNA) and reduces the enzymatic activity. To prevent this, precomplexing Cas9 and sgRNA before delivery into cells can lead to higher genome editing activity compared with Cas9 overexpression approaches. By optimizing electroporation parameters of precomplexed ribonucleoprotein and ssODN, we achieved efficiencies of single-nucleotide correction as high as 70% and loxP insertion up to 40%. Finally, we could replace the HLA-C1 allele with the C2 allele to generate histocompatibility leukocyte antigen custom-edited iPSCs.
Collapse
Affiliation(s)
- Akihiro Kagita
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mandy S Y Lung
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Huaigeng Xu
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuto Kita
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Noriko Sasakawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro Iguchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Miyuki Ono
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Xiou H Wang
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Peter Gee
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
47
|
Zhang M, Yang C, Tasan I, Zhao H. Expanding the Potential of Mammalian Genome Engineering via Targeted DNA Integration. ACS Synth Biol 2021; 10:429-446. [PMID: 33596056 DOI: 10.1021/acssynbio.0c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inserting custom designed DNA sequences into the mammalian genome plays an essential role in synthetic biology. In particular, the ability to introduce foreign DNA in a site-specific manner offers numerous advantages over random DNA integration. In this review, we focus on two mechanistically distinct systems that have been widely adopted for targeted DNA insertion in mammalian cells, the CRISPR/Cas9 system and site-specific recombinases. The CRISPR/Cas9 system has revolutionized the genome engineering field thanks to its high programmability and ease of use. However, due to its dependence on linearized DNA donor and endogenous cellular pathways to repair the induced double-strand break, CRISPR/Cas9-mediated DNA insertion still faces limitations such as small insert size, and undesired editing outcomes via error-prone repair pathways. In contrast, site-specific recombinases, in particular the Serine integrases, demonstrate large-cargo capability and no dependence on cellular repair pathways for DNA integration. Here we first describe recent advances in improving the overall efficacy of CRISPR/Cas9-based methods for DNA insertion. Moreover, we highlight the advantages of site-specific recombinases over CRISPR/Cas9 in the context of targeted DNA integration, with a special focus on the recent development of programmable recombinases. We conclude by discussing the importance of protein engineering to further expand the current toolkit for targeted DNA insertion in mammalian cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
48
|
Pol α-primase dependent nuclear localization of the mammalian CST complex. Commun Biol 2021; 4:349. [PMID: 33731801 PMCID: PMC7969954 DOI: 10.1038/s42003-021-01845-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
The human CST complex composed of CTC1, STN1, and TEN1 is critically involved in telomere maintenance and homeostasis. Specifically, CST terminates telomere extension by inhibiting telomerase access to the telomeric overhang and facilitates lagging strand fill in by recruiting DNA Polymerase alpha primase (Pol α-primase) to the telomeric C-strand. Here we reveal that CST has a dynamic intracellular localization that is cell cycle dependent. We report an increase in nuclear CST several hours after the initiation of DNA replication, followed by exit from the nucleus prior to mitosis. We identify amino acids of CTC1 involved in Pol α-primase binding and nuclear localization. We conclude, the CST complex does not contain a nuclear localization signal (NLS) and suggest that its nuclear localization is reliant on Pol α-primase. Hypomorphic mutations affecting CST nuclear import are associated with telomere syndromes and cancer, emphasizing the important role of this process in health.
Collapse
|
49
|
Karapurkar JK, Antao AM, Kim KS, Ramakrishna S. CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:185-229. [PMID: 34127194 DOI: 10.1016/bs.pmbts.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR/Cas9), derived from bacterial and archean immune systems, has received much attention from the scientific community as a powerful, targeted gene editing tool. The CRISPR/Cas9 system enables a simple, relatively effortless and highly specific gene targeting strategy through temporary or permanent genome regulation or editing. This endonuclease has enabled gene correction by taking advantage of the endogenous homology directed repair (HDR) pathway to successfully target and correct disease-causing gene mutations. Numerous studies using CRISPR support the promise of efficient and simple genome manipulation, and the technique has been validated in in vivo and in vitro experiments, indicating its potential for efficient gene correction at any genomic loci. In this chapter, we detailed various strategies related to gene editing using the CRISPR/Cas9 system. We also outlined strategies to improve the efficiency of gene correction via the HDR pathway and to improve viral and non-viral mediated gene delivery methods, with an emphasis on their therapeutic potential for correcting genetic disorder in humans and other mammals.
Collapse
Affiliation(s)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
50
|
Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 2021; 24:102168. [PMID: 33665582 PMCID: PMC7907465 DOI: 10.1016/j.isci.2021.102168] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/20/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Methanol biotransformation can expand biorefinery substrate spectrum other than biomass by using methylotrophic microbes. Ogataea (Hansenula) polymorpha, a representative methylotrophic yeast, attracts much attention due to its thermotolerance, but the low homologous recombination (HR) efficiency hinders its precise genetic manipulation during cell factory construction. Here, recombination machinery engineering (rME) is explored for enhancing HR activity together with establishing an efficient CRISPR-Cas9 system in O. polymorpha. Overexpression of HR-related proteins and down-regulation of non-homologous end joining (NHEJ) increased HR rates from 20%-30% to 60%-70%. With these recombination perturbation mutants, a competition between HR and NHEJ is observed. This HR up-regulated system has been applied for homologous integration of large fragments and in vivo assembly of multiple fragments, which enables the production of fatty alcohols in O. polymorpha. These findings will simplify genetic engineering in non-conventional yeasts and facilitate the adoption of O. polymorpha as an attractive cell factory for industrial application.
Collapse
|