1
|
Deviatkin AA, Aleshina YA, Karganova GG, Lukashev AN. Selection Pressure Profile Suggests Species Criteria among Tick-Borne Orthoflaviviruses. Viruses 2024; 16:1554. [PMID: 39459887 PMCID: PMC11512272 DOI: 10.3390/v16101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Orthoflaviviruses are arthropod-borne viruses that are transmitted by mosquitoes or ticks and cause a range of significant human diseases. Among the most important tick-borne orthoflaviviruses (TBFVs) is tick-borne encephalitis virus (TBEV), which is endemic in Eurasia, and Powassan virus, which is endemic in Asia and North America. There is a significant controversy regarding species assignment in the tick-borne encephalitis virus complex due to the complex phylogenetic, serological, ecological, and pathogenetic properties of viruses. Comparing the rate of non-synonymous to synonymous substitutions (dN/dS) over the course of tick-borne orthoflavivirus diversification suggests that there is a very strong stabilizing selection (Nei-Gojobori dN/dS < 0.1) among tick-borne orthoflaviviruses that differ by less than 13.5% amino acid/21.4% nucleotide sequences, and discretely more rapid accumulation of non-synonymous substitutions (dN/dS > 0.13) among more divergent viruses that belong to distinct species. This pattern was similarly observed in genome regions encoding structural (E) and non-structural (NS3) proteins. Below this distance threshold, viruses appear fit and strongly tied to their ecological niche, whereas above the threshold, a greater degree of adaptation appears necessary. This species criterion suggests that all subtypes of TBEV, all related ovine/caprine encephalomyelitis viruses, and Omsk hemorrhagic fever virus (OHFV) together correspond to a single species. Within this species, viruses make up 11 subtypes that are reliably segregated by a 10% nucleotide distance cut-off suggested earlier for TBEV. The same 10% subtype cut-off suggests that Powassan virus includes two subtypes, Powassan and Deer Tick virus.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia
- Laboratory of Postgenomic Technologies, Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - Yulia A. Aleshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.A.A.); (A.N.L.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina G. Karganova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia;
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.A.A.); (A.N.L.)
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| |
Collapse
|
2
|
Hill V, Cleemput S, Pereira JS, Gifford RJ, Fonseca V, Tegally H, Brito AF, Ribeiro G, de Souza VC, Brcko IC, Ribeiro IS, De Lima ITT, Slavov SN, Sampaio SC, Elias MC, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, Lima ARJ, Oliveira TD, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. PLoS Biol 2024; 22:e3002834. [PMID: 39283942 PMCID: PMC11426435 DOI: 10.1371/journal.pbio.3002834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Indexed: 09/25/2024] Open
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here, we propose adding 2 sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present assignment tools to show that the proposed lineages are useful for regional, national, and subnational discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | - James Siqueira Pereira
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Vagner Fonseca
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Gabriela Ribeiro
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Vinicius Carius de Souza
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Isabela Carvalho Brcko
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Igor Santana Ribeiro
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | | | - Svetoslav Nanev Slavov
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Maria Carolina Elias
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | | | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Phadungsombat J, Nakayama EE, Shioda T. Unraveling Dengue Virus Diversity in Asia: An Epidemiological Study through Genetic Sequences and Phylogenetic Analysis. Viruses 2024; 16:1046. [PMID: 39066210 PMCID: PMC11281397 DOI: 10.3390/v16071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue. Although most infected individuals are asymptomatic or present with only mild symptoms, severe manifestations could potentially devastate human populations in tropical and subtropical regions. In hyperendemic regions such as South Asia and Southeast Asia (SEA), all four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) have been prevalent for several decades. Each DENV serotype is further divided into multiple genotypes, reflecting the extensive diversity of DENV. Historically, specific DENV genotypes were associated with particular geographical distributions within endemic regions. However, this epidemiological pattern has changed due to urbanization, globalization, and climate change. This review comprehensively traces the historical and recent genetic epidemiology of DENV in Asia from the first time DENV was identified in the 1950s to the present. We analyzed envelope sequences from a database covering 16 endemic countries across three distinct geographic regions in Asia. These countries included Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka from South Asia; Cambodia, Laos, Myanmar, Thailand, and Vietnam from Mainland SEA; and Indonesia, the Philippines, Malaysia, and Singapore from Maritime SEA. Additionally, we describe the phylogenetic relationships among DENV genotypes within each serotype, along with their geographic distribution, to enhance the understanding of DENV dynamics.
Collapse
Affiliation(s)
| | | | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (J.P.); (E.E.N.)
| |
Collapse
|
4
|
Luciani L, Combe P, Touret F, Gazin C, Klitting R, Pezzi L, Thirion L, Charrel R, Grard G, de Lamballerie X, Nougairède A. Broad-spectrum dengue virus detection using the commercial RealStar dengue RT-PCR kit 3.0 (Altona) and an in-house combined real-time RT-PCR assay. Heliyon 2024; 10:e31252. [PMID: 38803933 PMCID: PMC11128986 DOI: 10.1016/j.heliyon.2024.e31252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
In endemic areas, the genetic diversity among co-circulating dengue virus (DENV) strains is considerable and new, highly divergent strains are identified on a regular basis. It is thus critical to ensure that molecular diagnostic tools effectively detect virus genomes even in case of important genetic variation. Here, we tested both the pan-DENV detection capacity and the limit of detection of two real-time RT-PCR assays: (i) the commercial RealStar Altona 3.0 system and (ii) a laboratory developed test (LDT) combining two RT-PCR systems in a single reaction tube (DenAllDUO). We used a panel of DENV strains representative of the genetic diversity within DENV species, combined with three in vitro transcribed RNAs as surrogates for unavailable strains corresponding to recently discovered strains with substantial genetic divergence: DENV serotype 1 (DENV-1) Brun2014, DENV-2 QML22 and DENV-4 DKE121. Both systems (i) targeted the genome 3' untranslated region, (ii) displayed a broad detection spectrum, encompassing most of DENV species diversity, and (iii) detected the three aforementioned divergent strains. DenAllDUO detected all the strains tested, whereas the RealStar system failed to detect strains from DENV-4 genotype III. Altogether, our findings support the value of these two RT-PCR systems as part of the Dengue diagnostic arsenal.
Collapse
Affiliation(s)
- Léa Luciani
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Pierre Combe
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Céline Gazin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
| | - Laura Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
| | - Laurence Thirion
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Rémi Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| |
Collapse
|
5
|
Hill V, Cleemput S, Fonseca V, Tegally H, Brito AF, Gifford R, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Ndiaye M, Balde D, Diagne MM, Faye O, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, de Oliveira T, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307504. [PMID: 38798319 PMCID: PMC11118645 DOI: 10.1101/2024.05.16.24307504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Robert Gifford
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, UK
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa M Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
7
|
Hanley KA, Cecilia H, Azar SR, Moehn B, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Immunologically mediated trade-offs shaping transmission of sylvatic dengue and Zika viruses in native and novel non-human primate hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547187. [PMID: 37425901 PMCID: PMC10327119 DOI: 10.1101/2023.06.30.547187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| |
Collapse
|
8
|
Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, Dohare R, Ahmed A, Almajhdi FN, Hussain T, Parveen S. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiol Infect 2023; 151:e127. [PMID: 37293986 PMCID: PMC10540175 DOI: 10.1017/s0950268823000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/01/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Evolutionary studies on Dengue virus (DENV) in endemic regions are necessary since naturally occurring mutations may lead to genotypic variations or shifts in serotypes, which may lead to future outbreaks. Our study comprehends the evolutionary dynamics of DENV, using phylogenetic, molecular clock, skyline plots, network, selection pressure, and entropy analyses based on partial CprM gene sequences. We have collected 250 samples, 161 in 2017 and 89 in 2018. Details for the 2017 samples were published in our previous article and that of 2018 are presented in this study. Further evolutionary analysis was carried out using 800 sequences, which incorporate the study and global sequences from GenBank: DENV-1 (n = 240), DENV-3 (n = 374), and DENV-4 (n = 186), identified during 1944-2020, 1956-2020, and 1956-2021, respectively. Genotypes V, III, and I were identified as the predominant genotypes of the DENV-1, DENV-3, and DENV-4 serotypes, respectively. The rate of nucleotide substitution was found highest in DENV-3 (7.90 × 10-4 s/s/y), followed by DENV-4 (6.23 × 10-4 s/s/y) and DENV-1 (5.99 × 10-4 s/s/y). The Bayesian skyline plots of the Indian strains revealed dissimilar patterns amongst the population size of the three serotypes. Network analyses showed the presence of different clusters within the prevalent genotypes. The data presented in this study will assist in supplementing the measures for vaccine development against DENV.
Collapse
Affiliation(s)
- Arshi Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Bansidhar Tarai
- Department of Microbiology and Infection Control, Max Superspeciality Hospital, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Abdullah
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad N. Almajhdi
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Rahim R, Hasan A, Phadungsombat J, Hasan N, Ara N, Biswas SM, Nakayama EE, Rahman M, Shioda T. Genetic Analysis of Dengue Virus in Severe and Non-Severe Cases in Dhaka, Bangladesh, in 2018-2022. Viruses 2023; 15:v15051144. [PMID: 37243230 DOI: 10.3390/v15051144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dengue virus (DENV) infections have unpredictable clinical outcomes, ranging from asymptomatic or minor febrile illness to severe and fatal disease. The severity of dengue infection is at least partly related to the replacement of circulating DENV serotypes and/or genotypes. To describe clinical profiles of patients and the viral sequence diversity corresponding to non-severe and severe cases, we collected patient samples from 2018 to 2022 at Evercare Hospital Dhaka, Bangladesh. Serotyping of 495 cases and sequencing of 179 cases showed that the dominant serotype of DENV shifted from DENV2 in 2017 and 2018 to DENV3 in 2019. DENV3 persisted as the only representative serotype until 2022. Co-circulation of clades B and C of the DENV2 cosmopolitan genotype in 2017 was replaced by circulation of clade C alone in 2018 with all clones disappearing thereafter. DENV3 genotype I was first detected in 2017 and was the only genotype in circulation until 2022. We observed a high incidence of severe cases in 2019 when the DENV3 genotype I became the only virus in circulation. Phylogenetic analysis revealed clusters of severe cases in several different subclades of DENV3 genotype I. Thus, these serotype and genotype changes in DENV may explain the large dengue outbreaks and increased severity of the disease in 2019.
Collapse
Affiliation(s)
- Rummana Rahim
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Abu Hasan
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | | | - Nazmul Hasan
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Nikhat Ara
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Suma Mita Biswas
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan
| | - Mizanur Rahman
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan
| |
Collapse
|
10
|
Yu X, Cheng G. Contribution of phylogenetics to understanding the evolution and epidemiology of dengue virus. Animal Model Exp Med 2022; 5:410-417. [PMID: 36245335 PMCID: PMC9610151 DOI: 10.1002/ame2.12283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is one of the most important arboviral pathogens in the tropics and subtropics, and nearly one‐third of the world's population is at risk of infection. The transmission of DENV involves a sylvatic cycle between nonhuman primates (NHP) and Aedes genus mosquitoes, and an endemic cycle between human hosts and predominantly Aedes aegypti. DENV belongs to the genus Flavivirus of the family Flaviviridae and consists of four antigenically distinct serotypes (DENV‐1‐4). Phylogenetic analyses of DENV have revealed its origin, epidemiology, and the drivers that determine its molecular evolution in nature. This review discusses how phylogenetic research has improved our understanding of DENV evolution and how it affects viral ecology and improved our ability to analyze and predict future DENV emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
11
|
Development and Characterization of a Genetically Stable Infectious Clone for a Genotype I Isolate of Dengue Virus Serotype 1. Viruses 2022; 14:v14092073. [PMID: 36146879 PMCID: PMC9501529 DOI: 10.3390/v14092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is primarily transmitted by the bite of an infected mosquito of Aedes aegypti and Aedes albopictus, and symptoms caused may range from mild dengue fever to severe dengue hemorrhagic fever and dengue shock syndrome. Reverse genetic system represents a valuable tool for the study of DENV virology, infection, pathogenesis, etc. Here, we generated and characterized an eukaryotic-activated full-length infectious cDNA clone for a DENV serotype 1 (DENV-1) isolate, D19044, collected in 2019. Initially, nearly the full genome was determined by sequencing overlapping RT-PCR products, and was classified to be genotype I DENV-1. D19044 wild-type cDNA clone (D19044_WT) was assembled by four subgenomic fragments, in a specific order, into a low-copy vector downstream the CMV promoter. D19044_WT released the infectious virus at a low level (1.26 × 103 focus forming units per milliliter [FFU/mL]) following plasmid transfection of BHK-21 cells. Further adaptation by consecutive virus passages up to passage 37, and seven amino acid substitutions (7M) were identified from passage-recovered viruses. The addition of 7M (D19044_7M) greatly improved viral titer (7.5 × 104 FFU/mL) in transfected BHK-21 culture, and virus infections in 293T, Huh7.5.1, and C6/36 cells were also efficient. D19044_7M plasmid was genetically stable in transformant bacteria after five transformation-purification cycles, which did not change the capacity of producing infectious virus. Moreover, the D19044_7M virus was inhibited by mycophenolic acid in a dose-dependent manner. In conclusion, we have developed a DNA-launched full-length infectious clone for a genotype I isolate of DENV-1, with genetic stability in transformant bacteria, thus providing a useful tool for the study of DENV-1.
Collapse
|
12
|
Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, Desai C, Handley SA, Dowd KA, Amaro-Carambot E, Cardosa MJ, Sariol CA, Kallas EG, Sékaly RP, Vasilakis N, Fremont DH, Whitehead SS, Pierson TC, Diamond MS. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 2021; 29:1634-1648.e5. [PMID: 34610295 PMCID: PMC8595868 DOI: 10.1016/j.chom.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023]
Abstract
Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Chandni Desai
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emerito Amaro-Carambot
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - M Jane Cardosa
- Institute of Health and Community Medicine, Universiti Sarawak Malaysia (UNIMAS), Kota Samarahan, Sarawak 94300, Malaysia; Integrated Research Associates, San Rafael, CA 94903, USA
| | - Carlos A Sariol
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Esper G Kallas
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Rafick-Pierre Sékaly
- Department of Microbiology and Immunology, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA.
| |
Collapse
|
13
|
Navero-Castillejos J, Benitez R, Torner N, Muñoz J, Camprubí-Ferrer D, Peiró-Mestres A, Sulleiro E, Silgado A, Gonzalo V, Falgueras T, Alejo-Cancho I, Roldán M, Plasencia V, Albarracin R, Perez J, Navarro A, Calderón A, Rubio R, Navarro M, Micó M, Llaberia J, Navarro M, Barrachina J, Vilamala A, Martí C, Pulido MÁ, Sanchez-Seco MP, Vazquez A, Martínez A, Jané M, Martínez MJ. Molecular Characterization of Imported and Autochthonous Dengue in Northeastern Spain. Viruses 2021; 13:1910. [PMID: 34696340 PMCID: PMC8539074 DOI: 10.3390/v13101910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue is the most significant arbovirus worldwide and a public health threat to non-endemic areas in which Aedes vectors are present. Autochthonous dengue transmission has been reported in several European countries in the last decade. Infected travelers from endemic regions arriving to areas colonized by Aedes albopictus in Europe need to be monitored in surveillance and control programs. We aimed to perform molecular characterization of RT-PCR-positive dengue cases detected in Catalonia, northeastern Spain, from 2013 to 2018. The basic demographic information and the geographical regions of importation were also analyzed. One-hundred four dengue cases were studied (103 imported infections and the first autochthonous case in our region). The dengue virus strains detected were serotyped and genotyped using molecular methods, and phylogenetic analyses were conducted. All four dengue serotypes were detected in travelers, including up to 10 different genotypes, reflecting the global circulation of dengue in endemic areas. The primary travel-related case of the 2018 autochthonous transmission was not identified, but the molecular analysis revealed dengue serotype 1, genotype I of Asian origin. Our results highlight the diversity of imported dengue virus strains and the role of molecular epidemiology in supporting arbovirus surveillance programs.
Collapse
Affiliation(s)
- Jessica Navero-Castillejos
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain; (J.M.); (D.C.-F.); (M.R.)
| | - Rosa Benitez
- North Metropolitan International Health Unit PROSICS, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Nuria Torner
- CIBER Epidemiology and Public Health CIBERESP, University of Barcelona, 08036 Barcelona, Spain;
| | - José Muñoz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain; (J.M.); (D.C.-F.); (M.R.)
| | - Daniel Camprubí-Ferrer
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain; (J.M.); (D.C.-F.); (M.R.)
| | - Aida Peiró-Mestres
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
| | - Elena Sulleiro
- Department of Microbiology, Vall d’Hebron University Hospital, PROSICS, 08035 Barcelona, Spain; (E.S.); (A.S.)
| | - Aroa Silgado
- Department of Microbiology, Vall d’Hebron University Hospital, PROSICS, 08035 Barcelona, Spain; (E.S.); (A.S.)
| | - Verónica Gonzalo
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
| | - Teresa Falgueras
- Hospital Municipal de Badalona, Badalona Serveis Assistencials, 08911 Badalona, Spain; (T.F.); (A.C.)
| | - Izaskun Alejo-Cancho
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
| | - Montserrat Roldán
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain; (J.M.); (D.C.-F.); (M.R.)
| | - Virginia Plasencia
- Microbiology Laboratory, Catlab, 08232 Viladecavalls, Spain; (V.P.); (J.P.); (R.R.)
| | - Rosa Albarracin
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
| | - Josefa Perez
- Microbiology Laboratory, Catlab, 08232 Viladecavalls, Spain; (V.P.); (J.P.); (R.R.)
| | - Alexander Navarro
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
| | - Ana Calderón
- Hospital Municipal de Badalona, Badalona Serveis Assistencials, 08911 Badalona, Spain; (T.F.); (A.C.)
| | - Rosa Rubio
- Microbiology Laboratory, Catlab, 08232 Viladecavalls, Spain; (V.P.); (J.P.); (R.R.)
| | - Mireia Navarro
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain; (J.M.); (D.C.-F.); (M.R.)
| | - Miguel Micó
- Microbiology Department, Xarxa Assistencial Universitària de Manresa, 08243 Manresa, Spain;
| | - Jaume Llaberia
- Hospital de Barcelona, Societat Cooperativa d’Instal·lacions Assistencials Sanitàries (SCIAS), 08034 Barcelona, Spain;
| | - María Navarro
- Microbiology Department, Hospital Universitari de Vic, 08500 Barcelona, Spain; (M.N.); (A.V.)
| | - Josep Barrachina
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
| | - Anna Vilamala
- Microbiology Department, Hospital Universitari de Vic, 08500 Barcelona, Spain; (M.N.); (A.V.)
| | - Carmina Martí
- Hospital General de Granollers, 08402 Granollers, Spain; (C.M.); (M.Á.P.)
| | | | - María Paz Sanchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Madrid, Spain; (M.P.S.-S.); (A.V.)
| | - Ana Vazquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28222 Madrid, Spain; (M.P.S.-S.); (A.V.)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Ana Martínez
- Public Health Agency of Catalonia, Generalitat of Catalonia, 08005 Barcelona, Spain; (A.M.); (M.J.)
| | - Mireia Jané
- Public Health Agency of Catalonia, Generalitat of Catalonia, 08005 Barcelona, Spain; (A.M.); (M.J.)
| | - Miguel Julián Martínez
- Department of Clinical Microbiology, Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (J.N.-C.); (A.P.-M.); (V.G.); (I.A.-C.); (R.A.); (A.N.); (M.N.); (J.B.)
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain; (J.M.); (D.C.-F.); (M.R.)
| |
Collapse
|
14
|
Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol 2021; 12:574411. [PMID: 34211454 PMCID: PMC8239437 DOI: 10.3389/fimmu.2021.574411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1-5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.
Collapse
Affiliation(s)
- Eriberto N. Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Lmar M. Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| |
Collapse
|
15
|
Aliaga-Samanez A, Cobos-Mayo M, Real R, Segura M, Romero D, Fa JE, Olivero J. Worldwide dynamic biogeography of zoonotic and anthroponotic dengue. PLoS Negl Trop Dis 2021; 15:e0009496. [PMID: 34097704 PMCID: PMC8211191 DOI: 10.1371/journal.pntd.0009496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/17/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dengue is a viral disease transmitted by mosquitoes. The rapid spread of dengue could lead to a global pandemic, and so the geographical extent of this spread needs to be assessed and predicted. There are also reasons to suggest that transmission of dengue from non-human primates in tropical forest cycles is being underestimated. We investigate the fine-scale geographic changes in transmission risk since the late 20th century, and take into account for the first time the potential role that primate biogeography and sylvatic vectors play in increasing the disease transmission risk. We apply a biogeographic framework to the most recent global dataset of dengue cases. Temporally stratified models describing favorable areas for vector presence and for disease transmission are combined. Our models were validated for predictive capacity, and point to a significant broadening of vector presence in tropical and non-tropical areas globally. We show that dengue transmission is likely to spread to affected areas in China, Papua New Guinea, Australia, USA, Colombia, Venezuela, Madagascar, as well as to cities in Europe and Japan. These models also suggest that dengue transmission is likely to spread to regions where there are presently no or very few reports of occurrence. According to our results, sylvatic dengue cycles account for a small percentage of the global extent of the human case record, but could be increasing in relevance in Asia, Africa, and South America. The spatial distribution of factors favoring transmission risk in different regions of the world allows for distinct management strategies to be prepared. The rate of disease emergence is increasing globally, and many long-existing diseases are extending their distribution ranges. This is the case for dengue, a global pandemic whose mosquito vectors are currently occupying ever-increasing numbers of regions worldwide. We updated the most complete global dataset of dengue cases available, and addressed the fine-scale analysis of the geographic changes experienced in dengue-transmission risk since the late 20th century. Our approach is the first to take into account the potential role of primates and sylvatic vectors in increasing the disease transmission risk in tropical forests. We built models that describe the favorable areas for vector presence and for disease occurrence, and combined them in order to obtain a novel model for predicting transmission risk. We show that dengue transmission is likely to spread to affected areas in Asia, Africa, North and South America, and Oceania, and to regions with presently no or very few cases, including cities in Europe and Japan. The global contribution of sylvatic dengue cycles is small but meaningful. Our methodological approach can differentiate the factors favoring risk in different world regions, thus allowing for management strategies to be prepared specifically for each of these regions.
Collapse
Affiliation(s)
- Alisa Aliaga-Samanez
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- * E-mail:
| | - Marina Cobos-Mayo
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raimundo Real
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Málaga, Spain
| | - Marina Segura
- Centro de Vacunación Internacional de Málaga, Ministerio de Sanidad, Consumo y Bienestar Social, Málaga, Spain
| | - David Romero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Laboratorio de Desarrollo Sustentable y Gestión Ambiental del Territorio, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Julia E. Fa
- Division of Biology and Conservation Ecology, Manchester Metropolitan University, Manchester, United Kingdom
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor, Indonesia
| | - Jesús Olivero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Málaga, Spain
| |
Collapse
|
16
|
Hall-Mendelin S, Pyke AT, Ramirez AL, Staunton KM, Burtonclay P, McMahon J, Barcelon J, van den Hurk AF. Infection, Dissemination, and Replication of Urban and Sylvatic Strains of Dengue Virus Type 2 (Flaviviridae: Flavivirus) in Australian Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1412-1418. [PMID: 33459781 DOI: 10.1093/jme/tjaa292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 06/12/2023]
Abstract
The dengue viruses (DENVs) occur throughout tropical and subtropical regions of the world where they infect 100s of millions of people annually. In Australia, the dengue receptive zone is confined to the northern state of Queensland where the principal vector Aedes aegypti (L.) is present. In the current study, two populations of Ae. aegypti from north Queensland were exposed to two urban outbreak strains and one sylvatic strain of dengue virus type 2 (DENV-2). The titer of virus required to infect 50% of mosquitoes was between 105 and 106 50% tissue culture infectious dose (TCID)50/ml and was influenced by the combination of the origin of Ae. aegypti population and virus strain. When exposed to infectious bloodmeal titers > 106 TCID50/ml, infection and dissemination rates were all > 50% and were significantly affected by the origin of the mosquito population but not by the strain of DENV-2. Replication of DENV-2 was also significantly affected by the mosquito population and the titer of the infectious bloodmeal that mosquitoes were exposed to. The results of this study are discussed in the context of DENV transmission dynamics in northern Australia and the relative fitness of the sylvatic virus strain in urban Ae. aegypti populations.
Collapse
Affiliation(s)
- Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| | - Alyssa T Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| | - Ana L Ramirez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA
| | - Kyran M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Peter Burtonclay
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| | - Jamie McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| | - Jean Barcelon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Young KI, Buenemann M, Vasilakis N, Perera D, Hanley KA. Shifts in mosquito diversity and abundance along a gradient from oil palm plantations to conterminous forests in Borneo. Ecosphere 2021; 12. [PMID: 33996190 DOI: 10.1002/ecs2.3463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Deforestation precipitates spillover of enzootic, vector-borne viruses into humans, but specific mechanisms for this effect have rarely been investigated. Expansion of oil palm cultivation is a major driver of deforestation. Here, we demonstrate that mosquito abundance decreased over ten stepwise distances from interior forest into conterminous palm plantations in Borneo. Diversity in interior plantation narrowed to one species, Aedes albopictus, a potential bridge vector for spillover of multiple viruses. A. albopictus was equally abundant across all distances in forests, forest-plantation edge, and plantations, while A. niveus, a known vector of sylvatic dengue virus, was found only in forests. A. albopictus collections were significantly female-biased in plantation but not in edge or forest. Our data reveal that the likelihood of encountering any mosquito is greater in interior forest and edge than plantation, while the likelihood of encountering A. albopictus is equivalent across the gradient sampled from interior plantation to interior forest.
Collapse
Affiliation(s)
- Katherine I Young
- Department of Biology, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center of Tropical Diseases, and Institute for Human Infections and Immunity, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555 USA
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, 1780 E University Ave, Las Cruces, New Mexico 88003 USA
| |
Collapse
|
18
|
Genetic Variation in the Domain II, 3' Untranslated Region of Human and Mosquito Derived Dengue Virus Strains in Sri Lanka. Viruses 2021; 13:v13030421. [PMID: 33807922 PMCID: PMC8001906 DOI: 10.3390/v13030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic variations in dengue virus (DENV) play a distinct role in epidemic emergence. The DENV 3′ UTR has become a recent interest in research. The objective of the study was to examine the genetic variation in the domain II, 3′ UTR region of human and mosquito-derived DENV. DENV-infected human sera were orally infected to laboratory reared Aedes aegypti mosquitoes. The domain II, 3′ UTR of each human- and mosquito-derived sample was amplified. The nucleotide sequence variation, phylogenetic and secondary structure analysis was carried out incorporating respective regions of so far recorded Sri Lankan and the reference genotype strains of the DENV3 and DENV1 serotypes. The human- and mosquito-derived domain II, 3′ UTR were identical in nucleotide sequences within the serotypes isolated, indicating the conserved nature of the region during host switch. The sequence analysis revealed distinct variations in study isolates compared to so far recorded Sri Lankan isolates. However, despite single nucleotide variations, the maintenance of structural integrity was evident in related strains within the serotypes in the secondary structure analysis. The phylogenetic analysis revealed distinct clade segregation of the study sequences from so far reported Sri Lankan isolates and illustrated the phylogenetic relations of the study sequences to the available global isolates of respective serotypes.
Collapse
|
19
|
Fang Y, Tambo E, Xue JB, Zhang Y, Zhou XN, Khater EIM. Detection of DENV-2 and Insect-Specific Flaviviruses in Mosquitoes Collected From Jeddah, Saudi Arabia. Front Cell Infect Microbiol 2021; 11:626368. [PMID: 33718273 PMCID: PMC7947193 DOI: 10.3389/fcimb.2021.626368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 12/04/2022] Open
Abstract
Background Mosquito-borne diseases are rapidly spreading due to increasing international travel and trade. Routine mosquito surveillance and screening for mosquito-borne pathogens can be early indicators for local disease transmission and outbreaks. However, arbovirus detection in mosquito vectors has rarely been reported in Saudi Arabia. Methods A total of 769,541 Aedes and Culex mosquitoes were collected by Black Hole traps during routine mosquito surveillance in the first half of 2016. Culex. quinquefasciatus and Ae. aegypti were the most prevalent species observed. Twenty-five and 24 randomly selected pools of Ae. aegypti and Cx. quinquefasciatus, respectively, were screened for arboviruses by RT-PCR. Results Dengue 2 (DENV-2) and four strains of insect-specific flaviviruses, including one of cell-fusing agent virus (CFAV) and three of Phlebotomus-associated flavivirus (PAFV) were detected in pools of Ae. aegypti. We also detected 10 strains of Culex flavivirus (CxFV) in pools of Cx. quinquefasciatus. Phylogenetic analysis using whole genome sequences placed the DENV strain into the cosmopolitan 1 sub-DENV-2 genotype, and the CxFVs into the African/Caribbean/Latin American genotype. These analyses also showed that the DENV-2 strain detected in the present study was closely related to strains detected in China in 2014 and in Japan in 2018, which suggests frequent movement of DENV-2 strains among these countries. Furthermore, the phylogenetic analysis suggested at least five introductions of DENV-2 into Saudi Arabia from 2014 through 2018, most probably from India. Conclusions To our knowledge, this study reports the first detection of four arboviruses DENV, CFAV, PAFV, and CxFV in mosquitoes in Saudi Arabia, which shows that they are co-circulating in Jeddah. Our findings show a need for widespread mosquito-based arbovirus surveillance programs in Saudi Arabia, which will improve our understanding of the transmission dynamics of the mosquito-borne arboviruses within the country and help early predict and mitigate the risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Ernest Tambo
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah, Saudi Arabia
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,Chinese Center for Tropical Diseases Research, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, China.,National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Emad I M Khater
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah, Saudi Arabia.,Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Origin and Spread of the Dengue Virus Type 1, Genotype V in Senegal, 2015-2019. Viruses 2021; 13:v13010057. [PMID: 33406660 PMCID: PMC7824722 DOI: 10.3390/v13010057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023] Open
Abstract
Dengue virus (DENV) is the most widespread arthropod-borne virus, with the number and severity of outbreaks increasing worldwide in recent decades. Dengue is caused by genetically distinct serotypes, DENV-1–4. Here, we present data on DENV-1, isolated from patients with dengue fever during an outbreak in Senegal and Mali (Western Africa) in 2015–2019, that were analyzed by sequencing the envelope (E) gene. The emergence and the dynamics of DENV-1 in Western Africa were inferred by using maximum likelihood and Bayesian methods. The DENV-1 grouped into a monophyletic cluster that was closely related to those from Southeast Asia. The virus appears to have been introduced directly into Medina Gounass (Suburb of Dakar), Senegal (location probability = 0.301, posterior = 0.76). The introduction of the virus in Senegal occurred around 2014 (95% HPD = 2012.88–2014.84), and subsequently, the virus moved to regions within Senegal (e.g., Louga and Fatick), causing intense outbreaks in the subsequent years. The virus appears to have been introduced in Mali (a neighboring country) after its introduction in Senegal. In conclusion, we present evidence that the outbreak caused by DENV-1 in urban environments in Senegal and Mali after 2015 was caused by a single viral introduction from Asia.
Collapse
|
21
|
Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. INFECTION GENETICS AND EVOLUTION 2020; 92:104680. [PMID: 33326875 DOI: 10.1016/j.meegid.2020.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Arthropod-borne viruses (arboviruses) comprise a significant and ongoing threat to human health, infecting hundreds of millions annually. Three such arboviruses include circumtropical dengue, Zika, and chikungunya viruses, exhibiting continuous emergence primarily via Aedes mosquito vectors. Nicaragua has experienced endemic dengue virus (DENV) transmission involving multiple serotypes since 1985, with chikungunya virus (CHIKV) reported in 2014-2015, followed by Zika virus (ZIKV) first reported in 2016. In order to identify patterns of genetic variation and selection pressures shaping the evolution of co-circulating DENV serotypes in light of the arrival of CHIKV and ZIKV, we employed whole-genome sequencing on an Illumina MiSeq platform of random-amplified total RNA libraries to characterize 42 DENV low-passage isolates, derived from viremic patients in Nicaragua between 2013 and 2016. Our approach also revealed clinically undetected co-infections with CHIKV. Of the three DENV serotypes (1, 2, and 3) co-circulating during our study, we uncovered distinct patterns of evolution using comparative phylogenetic inference. DENV-1 genetic variation was structured into two distinct co-circulating lineages with no evidence of positive selection in the origins of either lineage, suggesting they are equally fit. In contrast, the evolutionary history of DENV-2 was marked by positive selection, and a unique, divergent lineage correlated with high epidemic potential emerged in 2015 to drive an outbreak in 2016. DENV-3 genetic variation remained unstructured into lineages throughout the period of study. Thus, this study reveals insights into evolutionary and epidemiologic trends exhibited during the circulation of multiple arboviruses in Nicaragua.
Collapse
|
22
|
Pickering P, Hugo LE, Devine GJ, Aaskov JG, Liu W. Australian Aedes aegypti mosquitoes are susceptible to infection with a highly divergent and sylvatic strain of dengue virus type 2 but are unlikely to transmit it. Parasit Vectors 2020; 13:240. [PMID: 32393378 PMCID: PMC7212620 DOI: 10.1186/s13071-020-04091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Humans are the primary hosts of dengue viruses (DENV). However, sylvatic cycles of transmission can occur among non-human primates and human encroachment into forested regions can be a source of emergence of new strains such as the highly divergent and sylvatic strain of DENV2, QML22, recovered from a dengue fever patient returning to Australia from Borneo. The objective of the present study was to evaluate the vector competence of Australian Aedes aegypti mosquitoes for this virus. Methods Four- to five-day-old mosquitoes from two strains of Ae. aegypti from Queensland, Australia, were fed a meal of sheep blood containing 108 50% cell culture infectious dose per ml (CCID50/ml) of either QML22 or an epidemic strain of DENV serotype 2 (QML16) isolated from a dengue fever patient in Australia in 2015. Mosquitoes were maintained at 28 °C, 75% relative humidity and sampled 7, 10 and 14 days post-infection (dpi). Live virions in mosquito bodies (abdomen/thorax), legs and wings and saliva expectorates from individual mosquitoes were quantified using a cell culture enzyme-linked immunosorbent assay (CCELISA) to determine infection, dissemination and transmission rates. Results The infection and dissemination rates of the sylvatic DENV2 strain, QML22, were significantly lower than that for QML16. While the titres of virus in the bodies of mosquitoes infected with either of these viruses were similar, titres in legs and wings were significantly lower in mosquitoes infected with QML22 at most time points although they reached similar levels by 14 dpi. QML16 was detected in 16% (n = 25) and 28% (n = 25) of saliva expectorates at 10 and 14 dpi, respectively. In contrast, no virus was detected in the saliva expectorates of QML22 infected mosquitoes. Conclusions Australia urban/peri-urban Ae. aegypti species are susceptible to infection by the sylvatic and highly divergent DENV 2 QML22 but replication of QML22 is attenuated relative to the contemporary strain, QML16. A salivary gland infection or escape barrier may be acting to prevent infection of saliva and would prevent onward transmission of this highly divergent virus in Australia.![]()
Collapse
Affiliation(s)
- Paul Pickering
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Leon E Hugo
- Queensland Institute of Medical Research-Berghofer Medical Research Institute, Brisbane, Australia
| | - Gregor J Devine
- Queensland Institute of Medical Research-Berghofer Medical Research Institute, Brisbane, Australia
| | - John G Aaskov
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia.,Queensland University of Technology, Brisbane, Australia
| | - Wenjun Liu
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia.
| |
Collapse
|
23
|
Young KI, Medwid JT, Azar SR, Huff RM, Drumm H, Coffey LL, Pitts RJ, Buenemann M, Vasilakis N, Perera D, Hanley KA. Identification of Mosquito Bloodmeals Collected in Diverse Habitats in Malaysian Borneo Using COI Barcoding. Trop Med Infect Dis 2020; 5:tropicalmed5020051. [PMID: 32244739 PMCID: PMC7344668 DOI: 10.3390/tropicalmed5020051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Land cover and land use change (LCLUC) acts as a catalyst for spillover of arthropod-borne pathogens into novel hosts by shifting host and vector diversity, abundance, and distribution, ultimately reshaping host–vector interactions. Identification of bloodmeals from wild-caught mosquitoes provides insight into host utilization of particular species in particular land cover types, and hence their potential role in pathogen maintenance and spillover. Here, we collected 134 blood-engorged mosquitoes comprising 10 taxa across 9 land cover types in Sarawak, Malaysian Borneo, a region experiencing intense LCLUC and concomitant spillover of arthropod-borne pathogens. Host sources of blood were successfully identified for 116 (87%) mosquitoes using cytochrome oxidase subunit I (COI) barcoding. A diverse range of hosts were identified, including reptiles, amphibians, birds, and mammals. Sixteen engorged Aedes albopictus, a major vector of dengue virus, were collected from seven land cover types and found to feed exclusively on humans (73%) and boar (27%). Culex tritaeniohynchus (n = 2), Cx. gelidus (n = 3), and Cx. quiquefasciatus (n = 3), vectors of Japanese encephalitis virus, fed on humans and pigs in the rural built-up land cover, creating potential transmission networks between these species. Our data support the use of COI barcoding to characterize mosquito–host networks in a biodiversity hotspot.
Collapse
Affiliation(s)
- Katherine I. Young
- Department of Biology, New Mexico State University, Las Cruces NM 88003, USA; (J.T.M.); (K.A.H.)
- Correspondence:
| | - Joseph T. Medwid
- Department of Biology, New Mexico State University, Las Cruces NM 88003, USA; (J.T.M.); (K.A.H.)
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.R.A.); (N.V.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert M. Huff
- Department of Biology, Baylor University, Waco, TX 76706, USA; (R.M.H.); (R.J.P.)
| | - Hannah Drumm
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (H.D.); (L.L.C.)
| | - Lark L. Coffey
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (H.D.); (L.L.C.)
- Department of Pathology, Microbiology & Immunology, University of California Davis, Davis, CA 95616, USA
| | - R. Jason Pitts
- Department of Biology, Baylor University, Waco, TX 76706, USA; (R.M.H.); (R.J.P.)
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.R.A.); (N.V.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David Perera
- Institute of Health and Communiti Medicine, Universiti of Malaysia Sarawak, Sarawak 94300, Malaysia;
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces NM 88003, USA; (J.T.M.); (K.A.H.)
| |
Collapse
|
24
|
Aragão CF, Pinheiro VCS, Nunes Neto JP, da Silva EVP, Pereira GJG, do Nascimento BLS, Castro KDS, Maia AM, Catete CP, Martins LC, Tadei WP, da Silva SP, Cruz ACR. Natural Infection of Aedes aegypti by Chikungunya and Dengue type 2 Virus in a Transition Area of North-Northeast Brazil. Viruses 2019; 11:E1126. [PMID: 31817553 PMCID: PMC6949906 DOI: 10.3390/v11121126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023] Open
Abstract
Dengue fever, chikungunya, and Zika are diseases caused by viruses transmitted by Aedes aegypti and Aedes albopictus. In Brazil, the number of human infections is high, but few studies are performed in mosquito vectors. This study aimed to investigate the presence of Zika, Dengue and Chikungunya viruses in Ae. aegypti and Ae. albopictus from the municipalities of Alto Alegre, Caxias, Codó, and São Mateus do Maranhão, located in the state of Maranhão, Northeast Brazil. The mosquitoes were collected with a mechanical aspirator, identified, triturated, and then submitted to RNA extraction and RT-qPCR. The positive samples were confirmed by virus isolation and genome sequencing. Three hundred and forty-eight Ae. aegypti (176 males and 172 females) and 12 Ae. albopictus (eight males and four females) were collected and tested. Ae. aegypti was the only vector positive in two municipalities-Codó, with detection of Chikungunya virus (CHIKV) belonging to the East-Central-South African genotype, and in Caxias, with detection of Dengue virus (DENV)-2 belonging to the Asian/American genotype. The detection of CHIKV and DENV-2 is evidence that those viruses are maintained in arthropod vectors, and shows the epidemiological risk in the area for chikungunya cases and a possible increase of severe dengue cases, associated with the occurrence of dengue hemorrhagic fever.
Collapse
Affiliation(s)
- Carine Fortes Aragão
- Programa de Pós-Graduação em Biologia dos Agentes Infecciosos e Parasitários, Universidade Federal do Pará, Belém, PA 66075-110, Brazil;
| | - Valéria Cristina Soares Pinheiro
- Laboratório de Entomologia Médica, Centro de Estudos Superiores de Caxias, Universidade Estadual do Maranhão, Caxias, MA 65604-380, Brazil;
| | - Joaquim Pinto Nunes Neto
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Eliana Vieira Pinto da Silva
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Glennda Juscely Galvão Pereira
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Bruna Laís Sena do Nascimento
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Karoline da Silva Castro
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, PA 66087-670, Brazil; (K.d.S.C.); (A.M.M.)
| | - Ariadne Mendonça Maia
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Universidade do Estado do Pará, Belém, PA 66087-670, Brazil; (K.d.S.C.); (A.M.M.)
| | - Clistenes Pamplona Catete
- Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil;
| | - Lívia Carício Martins
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Wanderli Pedro Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, CEP 69060-001, Manaus - AM, Brazil;
| | - Sandro Patroca da Silva
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| | - Ana Cecília Ribeiro Cruz
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Secretaria de Vigilância e Saúde, Ministério da Saúde, Ananindeua, PA 67030-000, Brazil; (J.P.N.N.); (E.V.P.d.S.); (G.J.G.P.); (B.L.S.d.N.); (L.C.M.); (S.P.d.S.)
| |
Collapse
|
25
|
Andrade DV, Warnes C, Young E, Katzelnick LC, Balmaseda A, de Silva AM, Baric RS, Harris E. Tracking the polyclonal neutralizing antibody response to a dengue virus serotype 1 type-specific epitope across two populations in Asia and the Americas. Sci Rep 2019; 9:16258. [PMID: 31700029 PMCID: PMC6838341 DOI: 10.1038/s41598-019-52511-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/18/2019] [Indexed: 01/22/2023] Open
Abstract
The four dengue virus serotypes (DENV1-4) cause major public health problems worldwide. Highly neutralizing type-specific human monoclonal antibodies (hmAbs) target conformation-dependent epitopes on the DENV envelope protein, including 1F4, a DENV1 type-specific hmAb. Using a recombinant DENV2 virus displaying the DENV1 1F4 epitope (rDENV2/1), we measured the proportion and kinetics of DENV1 neutralizing antibodies targeting the 1F4 epitope in individuals living in Asia and the Americas where different DENV1 genotypes were circulating. Samples from 20 individuals were analyzed 3 and 18 months post-primary DENV1 infection, alongside samples from 4 individuals collected annually for four years post-primary DENV1 infection, from two studies in Nicaragua. We also analyzed convalescent post-primary DENV1 plasma samples from Sri Lankan individuals. We found that neutralizing antibodies recognizing the 1F4 epitope vary in prevalence across both populations and were detected from 20 days to four years post-infection. Additionally, both populations displayed substantial variability, with a range of high to low proportions of DENV1 type-specific neutralizing antibodies recognizing the 1F4 epitope seen across individuals. Thus, the 1F4 epitope is a major but not exclusive target of type-specific neutralizing antibodies post-primary infection with different DENV1 genotypes in Asia and Latin America, and additional epitopes likely contribute to type-specific neutralization of DENV1.
Collapse
Affiliation(s)
- Daniela V Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen Young
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, CA, USA
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Angel Balmaseda
- National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, CA, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Johari NA, Voon K, Toh SY, Sulaiman LH, Yap IKS, Lim PKC. Sylvatic dengue virus type 4 in Aedes aegypti and Aedes albopictus mosquitoes in an urban setting in Peninsular Malaysia. PLoS Negl Trop Dis 2019; 13:e0007889. [PMID: 31730672 PMCID: PMC6881067 DOI: 10.1371/journal.pntd.0007889] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/27/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Dengue fever is endemic in Malaysia, contributing to significant economic and health burden in the country. Aedes aegypti and Ae. albopictus are the main vectors of the dengue virus (DENV), which circulates in sylvatic and human transmission cycles and has been present in Malaysia for decades. The study investigated the presence and distribution of DENV in urban localities in the Klang Valley, Peninsular Malaysia. A total of 364 Ae. aegypti and 1,025 Ae. albopictus larvae, and 10 Ae. aegypti and 42 Ae. albopictus adult mosquitoes were screened for the presence of DENV. In total, 31 (2.2%) samples were positive, of which 2 Ae. albopictus larvae were co-infected with two serotypes, one with DENV-2 and DENV-3 and the other with DENV-3 and DENV-4. Phylogenetic analysis determined that the isolates belonged to DENV-1 genotype I (1 Ae. aegypti adult), DENV-2 (1 Ae. albopictus larva), DENV-3 genotype V (3 Ae. aegypti larvae and 10 Ae. albopictus larvae) and DENV-4 genotype IV (6 Ae. aegypti larvae and 12 Ae. albopictus larvae), a sylvatic strain of DENV-4 which was most closely related with sylvatic strains isolated from arboreal mosquitoes and sentinel monkeys in Peninsular Malaysia in the 1970s. All four DENV serotypes were co-circulating throughout the study period. The detection of a sylvatic strain of DENV-4 in Ae. aegypti and Ae. albopictus mosquitoes in urban areas in Peninsular Malaysia highlights the susceptibility of these vectors to infection with sylvatic DENV. The infectivity and vector competence of these urban mosquitoes to this strain of the virus needs further investigation, as well as the possibility of the emergence of sylvatic virus into the human transmission cycle.
Collapse
Affiliation(s)
- Nur Alia Johari
- Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Kenny Voon
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shen Yung Toh
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Lokman Hakim Sulaiman
- Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- Department of Community Medicine, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Ivan Kok Seng Yap
- Sarawak Research and Development Council, Ministry of Education, Science and Technological Research, Sarawak, Malaysia
| | - Patricia Kim Chooi Lim
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Turell MJ, Gozalo AS, Guevara C, Schoeler GB, Carbajal F, López-Sifuentes VM, Watts DM. Lack of Evidence of Sylvatic Transmission of Dengue Viruses in the Amazon Rainforest Near Iquitos, Peru. Vector Borne Zoonotic Dis 2019; 19:685-689. [PMID: 30964397 PMCID: PMC6716187 DOI: 10.1089/vbz.2018.2408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dengue viruses (DENV) are currently responsible for more human morbidity and mortality than any other known arbovirus, and all four DENV are known to exist in sylvatic cycles that might allow these viruses to persist if the urban (Aedes aegypti) cycle could be controlled. To determine whether DENV were being maintained in a sylvatic cycle in a forested area about 14 km southwest of Iquitos, Peru, a city in which all 4 serotypes of DENV circulate, we placed 20 DENV seronegative Aotus monkeys in cages either in the canopy or near ground level for a total of 125.6 months. Despite capturing >66,000 mosquitoes in traps that collected some of the mosquitoes attracted to these monkeys, blood samples obtained once a month from each animal were tested and found to be negative by an enzyme-linked immunosorbent assay for IgM and IgG antibodies to dengue, yellow fever, Venezuelan equine encephalitis, Oropouche, and Mayaro viruses. Although all four DENV serotypes were endemic in nearby Iquitos, the findings of this study did not support a DENV sylvatic maintenance and transmission cycle in a selected area of the Amazon rainforest in northeastern Peru.
Collapse
Affiliation(s)
- Michael J. Turell
- Virology Division, U.S. Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland
| | - Alfonso S. Gozalo
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Carolina Guevara
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - George B. Schoeler
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | - Faustino Carbajal
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Callao, Peru
| | | | - Douglas M. Watts
- Department of Viral and Rickettsial Diseases, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
28
|
Bell SM, Katzelnick L, Bedford T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. eLife 2019; 8:42496. [PMID: 31385805 PMCID: PMC6731059 DOI: 10.7554/elife.42496] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
Dengue virus (DENV) exists as four genetically distinct serotypes, each of which is historically assumed to be antigenically uniform. Recent analyses suggest that antigenic heterogeneity may exist within each serotype, but its source, extent and impact remain unclear. Here, we construct a sequence-based model to directly map antigenic change to underlying genetic divergence. We identify 49 specific substitutions and four colinear substitution clusters that robustly predict dengue antigenic relationships. We report moderate antigenic diversity within each serotype, resulting in genotype-specific patterns of heterotypic cross-neutralization. We also quantify the impact of antigenic variation on real-world DENV population dynamics, and find that serotype-level antigenic fitness is a dominant driver of dengue clade turnover. These results provide a more nuanced understanding of the relationship between dengue genetic and antigenic evolution, and quantify the effect of antigenic fitness on dengue evolutionary dynamics.
Collapse
Affiliation(s)
- Sidney M Bell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cell Biology Program, University of Washington, Seattle, United States
| | - Leah Katzelnick
- Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, United States.,Department of Biology, University of Florida, Gainesville, United States
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
29
|
Multiple introductions of dengue virus strains contribute to dengue outbreaks in East Kalimantan, Indonesia, in 2015-2016. Virol J 2019; 16:93. [PMID: 31345242 PMCID: PMC6659258 DOI: 10.1186/s12985-019-1202-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue fever is a febrile disease caused by dengue virus (DENV), which affects people throughout the tropical and subtropical regions of the world, including Indonesia. East Kalimantan (Borneo) province suffered a dramatic increase in dengue cases in 2015 and 2016, making it the province with the second highest incidence of dengue in Indonesia. Despite this, dengue in East Kalimantan is understudied; leaving transmission dynamics of the disease in the area are mostly unknown. In this study, we investigate the factors contributing to the outbreaks in East Kalimantan. METHODS Prospective clinical and molecular virology study was conducted in two main cities in the province, namely Samarinda and Balikpapan, in 2015-2016. Patients' clinical, hematological, and demographic data were recorded. Dengue detection and confirmation was performed using NS1-antigen and IgG/IgM antibody detection. RT-PCR was conducted to determine the serotypes of the virus. Phylogenetic analysis was performed based on envelope gene sequences. RESULTS Three hundred patients with suspected dengue were recruited. Among these, 132 (44%) were diagnosed with dengue by NS1 antigen and/or nucleic acid detection. The majority of the infections (60%) were primary, with dengue hemorrhagic fever (DHF) the predominant manifestation (71.9%). Serotyping detected all four DENV serotypes in 112 (37.3%) cases, with the majority of patients (58.9%) infected by DENV-3. Phylogenetic analysis based on envelope gene sequences revealed the genotypes of the viruses as DENV-1 Genotype I, DENV-2 Cosmopolitan, and DENV-3 Genotype I. Most virus strains were closely-related to strains from cities in Indonesia. CONCLUSIONS Our observations indicate that multiple introductions of endemic DENV from surrounding cities in Indonesia, coupled with relatively low herd immunity, were likely responsible for the outbreak of the dominant viruses. The study provides information on the clinical spectrum of the disease, together with serology, viral genetics, and demographic data, which will be useful for better understanding of dengue disease in Borneo.
Collapse
|
30
|
Suzuki K, Phadungsombat J, Nakayama EE, Saito A, Egawa A, Sato T, Rahim R, Hasan A, Lin MYC, Takasaki T, Rahman M, Shioda T. Genotype replacement of dengue virus type 3 and clade replacement of dengue virus type 2 genotype Cosmopolitan in Dhaka, Bangladesh in 2017. INFECTION GENETICS AND EVOLUTION 2019; 75:103977. [PMID: 31351235 DOI: 10.1016/j.meegid.2019.103977] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 01/18/2023]
Abstract
Dengue is a mosquito-borne disease that has spread to >100 countries and is caused by the dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. DENV comprises 4 serotypes (DENV-1 to -4), and each serotype is further divided into distinct genotypes. In India, it is reported that all 4 serotypes of DENV co-circulate. Although Bangladesh is a neighboring country of India, very few reports have published DENV sequence data for the country, especially after 2012. To understand the current distribution of DENV genotypes in Bangladesh, we determined the nucleotide sequences of envelope regions obtained from 58 DENV-positive patients diagnosed at Apollo Hospitals Dhaka during the period between September 2017 and February 2018. We found 5 DENV-1, 47 DENV-2, and 6 DENV-3 serotypes. A phylogenetic analysis of the obtained viral sequences revealed that DENV-3 genotype I was present instead of DENV-3 genotype II, which was predominant in Bangladesh between 2000 and 2009. Furthermore, we found two distinct lineages of the Cosmopolitan genotype of DENV-2, one of which was closely related to strains from Southeast Asia and has never been reported previously in Bangladesh. These results indicated that DENVs in Bangladesh have increased in genotypic diversity and suggest that the DENV genotypic shift observed in other Asian countries also might have been taking place in Bangladesh.
Collapse
Affiliation(s)
- Keita Suzuki
- Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan; TANAKA Kikinzoku Kogyo K.K., 2-73, Shinmachi, Hiratsuka, Kanagawa 254-0076, Japan
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases, Mahidol University, 420/6 Ratchawithi road, Ratchathewi, Bangkok 10400, Thailand
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Akatsuki Saito
- Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akio Egawa
- Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tairyu Sato
- Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Rummana Rahim
- Apollo Hospitals Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Abu Hasan
- Apollo Hospitals Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Marco Yung-Cheng Lin
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Mizanur Rahman
- Apollo Hospitals Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka 565-0871, Japan; Mahidol-Osaka Center for Infectious Diseases, Mahidol University, 420/6 Ratchawithi road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
31
|
Auerswald H, de Jesus A, Seixas G, Nazareth T, In S, Mao S, Duong V, Silva AC, Paul R, Dussart P, Sousa CA. First dengue virus seroprevalence study on Madeira Island after the 2012 outbreak indicates unreported dengue circulation. Parasit Vectors 2019; 12:103. [PMID: 30867031 PMCID: PMC6417143 DOI: 10.1186/s13071-019-3357-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background In 2012, the first dengue virus outbreak was reported on the Portuguese island of Madeira with 1080 confirmed cases. Dengue virus of serotype 1 (DENV-1), probably imported from Venezuela, caused this outbreak with autochthonous transmission by invasive Aedes aegypti mosquitoes. Results We investigated the seroprevalence among the population on Madeira Island four years after the outbreak. Study participants (n = 358), representative of the island population regarding their age and gender, were enrolled in 2012 in a cross-sectional study. Dengue antibodies were detected with an in-house enzyme-linked immunosorbent assay (ELISA) using the dimer of domain III (ED3) of the DENV-1 envelope protein as well as commercial Panbio indirect and capture IgG ELISAs. Positive ELISA results were validated with a neutralization test. The overall seroprevalence was found to be 7.8% (28/358) with the in-house ELISA, whereas the commercial DENV indirect ELISA detected IgG antibodies in 8.9% of the individuals (32/358). The results of the foci reduction neutralization test confirmed DENV-1 imported from South America as the causative agent of the 2012 epidemic. Additionally, we found a higher seroprevalence in study participants with an age above 60 years old and probable secondary DENV infected individuals indicating unreported dengue circulation before or after 2012 on Madeira Island. Conclusions This study revealed that the number of infections might have been much higher than estimated from only confirmed cases in 2012/2013. These mainly DENV-1 immune individuals are not protected from a secondary DENV infection and the majority of the population of Madeira Island is still naïve for DENV. Surveillance of mosquitoes and arboviruses should be continued on Madeira Island as well as in other European areas where invasive vector mosquitoes are present. Electronic supplementary material The online version of this article (10.1186/s13071-019-3357-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Ana de Jesus
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gonçalo Seixas
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Teresa Nazareth
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Sokthearom Mao
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Ana Clara Silva
- Departamento de Saúde, Planeamento e Administração Geral, Instituto de Administração da Saúde e Assuntos Sociais, IP-RAM, Funchal, Madeira, Portugal.,Madeira Regional Government, Institute of Health and Social Affairs, Av. Zarco, Funchal, Madeira, Portugal
| | - Richard Paul
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France.,Génomique évolutive, modélisation et santé UMR 2000, Centre National de la Recherche Scientifique (CNRS), 75724, Paris Cedex 15, France
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia.
| | - Carla Alexandra Sousa
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Phadungsombat J, Lin MYC, Srimark N, Yamanaka A, Nakayama EE, Moolasart V, Suttha P, Shioda T, Uttayamakul S. Emergence of genotype Cosmopolitan of dengue virus type 2 and genotype III of dengue virus type 3 in Thailand. PLoS One 2018; 13:e0207220. [PMID: 30419004 PMCID: PMC6231660 DOI: 10.1371/journal.pone.0207220] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/26/2018] [Indexed: 01/27/2023] Open
Abstract
Dengue is a mosquito-borne disease that has spread to over 100 countries. Dengue fever is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. DENV comprises 4 serotypes (DENV-1 to DENV-4), and each serotype is divided into distinct genotypes. Thailand is an endemic area where all 4 serotypes of DENV co-circulate. To understand the current genotype distribution of DENVs in Thailand, we enrolled 100 cases of fever with dengue-like symptoms at the Bamrasnaradura Infectious Diseases Institute during 2016–2017. Among them, 37 cases were shown to be dengue-positive by real-time PCR. We were able to isolate DENVs from 21 cases, including 1 DENV-1, 8 DENV-2, 4 DENV-3, and 8 DENV-4. To investigate the divergence of the viruses, RNA was extracted from isolated DENVs and viral near-whole genome sequences were determined. Phylogenetic analysis of the obtained viral sequences revealed that DENV-2 genotype Cosmopolitan was co-circulating with DENV-2 genotype Asian-I, the previously predominating genotype in Thailand. Furthermore, DENV-3 genotype III was found instead of DENV-3 genotype II. The DENV-2 Cosmopolitan and DENV-3 genotype III found in Thailand were closely related to the respective strains found in nearby countries. These results indicated that DENVs in Thailand have increased in genotypic diversity, and suggested that the DENV genotypic shift observed in other Asian countries also might be taking place in Thailand.
Collapse
Affiliation(s)
- Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Narinee Srimark
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Atsushi Yamanaka
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Visal Moolasart
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi, Thailand
| | - Patama Suttha
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi, Thailand
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- * E-mail:
| | | |
Collapse
|
33
|
First Reported Complete Genome Sequence of a Dengue Virus Serotype 4 Strain from Papua New Guinea. Microbiol Resour Announc 2018; 7:MRA01082-18. [PMID: 30533658 PMCID: PMC6256681 DOI: 10.1128/mra.01082-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
A male patient in his 50s who traveled from Papua New Guinea (PNG) to Australia in 2016 was diagnosed with a dengue virus serotype 4 (DENV-4) infection, and the virus was isolated from his acute-phase serum. Here, we describe the first complete genome sequence of a DENV-4 strain from PNG. A male patient in his 50s who traveled from Papua New Guinea (PNG) to Australia in 2016 was diagnosed with a dengue virus serotype 4 (DENV-4) infection, and the virus was isolated from his acute-phase serum. Here, we describe the first complete genome sequence of a DENV-4 strain from PNG.
Collapse
|
34
|
Pyke AT, Gunn W, Taylor C, Mackay IM, McMahon J, Jelley L, Waite B, May F. On the Home Front: Specialised Reference Testing for Dengue in the Australasian Region. Trop Med Infect Dis 2018; 3:E75. [PMID: 30274471 PMCID: PMC6161173 DOI: 10.3390/tropicalmed3030075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 11/30/2022] Open
Abstract
Reference laboratories are vital for disease control and interpreting the complexities and impact of emerging pathogens. The role of these centralized facilities extends beyond routine screening capabilities to provide rapid, specific, and accurate diagnoses, advanced data analysis, consultation services, and sophisticated disease surveillance and monitoring. Within the Australasian region, the Public Health Virology Laboratory (PHV), Forensic and Scientific Services, Department of Health, Queensland Government, Australia, and the Institute of Environmental Science and Research Limited (ESR), New Zealand (NZ) perform specialised reference testing and surveillance for dengue viruses (DENVs) and other emerging arthropod-borne viruses (arboviruses), including chikungunya virus (CHIKV) and Zika virus (ZIKV). With a focus on DENV, we review the reference testing performed by PHV (2005 to 2017) and ESR (2008 to 2017). We also describe how the evolution and expansion of reference-based methodologies and the adoption of new technologies have provided the critical elements of preparedness and early detection that complement frontline public health control efforts and limit the spread of arboviruses within Australasia.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, QLD 4108, Australia.
| | - Wendy Gunn
- Institute of Environmental Science and Research Limited, Wallaceville, 5018 Upper Hutt, New Zealand.
| | - Carmel Taylor
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, QLD 4108, Australia.
| | - Ian M Mackay
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, QLD 4108, Australia.
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia.
| | - Jamie McMahon
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, QLD 4108, Australia.
| | - Lauren Jelley
- Institute of Environmental Science and Research Limited, Wallaceville, 5018 Upper Hutt, New Zealand.
| | - Ben Waite
- Institute of Environmental Science and Research Limited, Wallaceville, 5018 Upper Hutt, New Zealand.
| | - Fiona May
- Metro North Public Health Unit, Metro North Hospital and Health Service, Queensland Health, Windsor, QLD 4030, Australia.
| |
Collapse
|
35
|
Fontaine A, Lequime S, Moltini-Conclois I, Jiolle D, Leparc-Goffart I, Reiner RC, Lambrechts L. Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics. PLoS Pathog 2018; 14:e1007187. [PMID: 30005085 PMCID: PMC6059494 DOI: 10.1371/journal.ppat.1007187] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/25/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
The kinetics of arthropod-borne virus (arbovirus) transmission by their vectors have long been recognized as a powerful determinant of arbovirus epidemiology. The time interval between virus acquisition and transmission by the vector, termed extrinsic incubation period (EIP), combines with vector mortality rate and vector competence to determine the proportion of infected vectors that eventually become infectious. However, the dynamic nature of this process, and the amount of natural variation in transmission kinetics among arbovirus strains, are poorly documented empirically and are rarely considered in epidemiological models. Here, we combine newly generated empirical measurements in vivo and outbreak simulations in silico to assess the epidemiological significance of genetic variation in dengue virus (DENV) transmission kinetics by Aedes aegypti mosquitoes. We found significant variation in the dynamics of systemic mosquito infection, a proxy for EIP, among eight field-derived DENV isolates representing the worldwide diversity of recently circulating type 1 strains. Using a stochastic agent-based model to compute time-dependent individual transmission probabilities, we predict that the observed variation in systemic mosquito infection kinetics may drive significant differences in the probability of dengue outbreak and the number of human infections. Our results demonstrate that infection dynamics in mosquitoes vary among wild-type DENV isolates and that this variation potentially affects the risk and magnitude of dengue outbreaks. Our quantitative assessment of DENV genetic variation in transmission kinetics contributes to improve our understanding of heterogeneities in arbovirus epidemiological dynamics.
Collapse
Affiliation(s)
- Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Génomique Evolutive, Modélisation et Santé, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), IHU—Méditerranée Infection, Marseille, France
| | - Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Génomique Evolutive, Modélisation et Santé, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Génomique Evolutive, Modélisation et Santé, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Davy Jiolle
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Génomique Evolutive, Modélisation et Santé, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Isabelle Leparc-Goffart
- Centre National de Référence des Arbovirus, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Robert Charles Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Génomique Evolutive, Modélisation et Santé, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
36
|
Stewart-Ibarra AM, Ryan SJ, Kenneson A, King CA, Abbott M, Barbachano-Guerrero A, Beltrán-Ayala E, Borbor-Cordova MJ, Cárdenas WB, Cueva C, Finkelstein JL, Lupone CD, Jarman RG, Maljkovic Berry I, Mehta S, Polhemus M, Silva M, Endy TP. The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. Am J Trop Med Hyg 2018; 98:1444-1459. [PMID: 29512482 PMCID: PMC5953373 DOI: 10.4269/ajtmh.17-0762] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
Here, we report the findings from the first 2 years (2014-2015) of an arbovirus surveillance study conducted in Machala, Ecuador, a dengue-endemic region. Patients with suspected dengue virus (DENV) infections (index cases, N = 324) were referred from five Ministry of Health clinical sites. A subset of DENV-positive index cases (N = 44) were selected, and individuals from the index household and four neighboring homes within 200 m were recruited (N = 400). Individuals who entered the study, other than the index cases, are referred to as associates. In 2014, 70.9% of index cases and 35.6% of associates had acute or recent DENV infections. In 2015, 28.3% of index cases and 12.8% of associates had acute or recent DENV infections. For every DENV infection captured by passive surveillance, we detected an additional three acute or recent DENV infections in associates. Of associates with acute DENV infections, 68% reported dengue-like symptoms, with the highest prevalence of symptomatic acute infections in children aged less than 10 years. The first chikungunya virus (CHIKV) infections were detected on epidemiological week 12 in 2015; 43.1% of index cases and 3.5% of associates had acute CHIKV infections. No Zika virus infections were detected. Phylogenetic analyses of isolates of DENV from 2014 revealed genetic relatedness and shared ancestry of DENV1, DENV2, and DENV4 genomes from Ecuador with those from Venezuela and Colombia, indicating the presence of viral flow between Ecuador and surrounding countries. Enhanced surveillance studies, such as this, provide high-resolution data on symptomatic and inapparent infections across the population.
Collapse
Affiliation(s)
- Anna M. Stewart-Ibarra
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Sadie J. Ryan
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- College of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Aileen Kenneson
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Christine A. King
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Mark Abbott
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Arturo Barbachano-Guerrero
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Efraín Beltrán-Ayala
- Department of Medicine, Universidad Técnica de Machala, Machala, El Oro, Ecuador
| | - Mercy J. Borbor-Cordova
- Laboratorio para Investigaciónes Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas Province, Ecuador
| | - Washington B. Cárdenas
- Laboratorio para Investigaciónes Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas Province, Ecuador
| | - Cinthya Cueva
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | | | - Christina D. Lupone
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Public Health and Preventative Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Mark Polhemus
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Mercy Silva
- Ministry of Health, Machala, El Oro, Ecuador
| | - Timothy P. Endy
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| |
Collapse
|
37
|
Pollett S, Melendrez MC, Maljkovic Berry I, Duchêne S, Salje H, Cummings DAT, Jarman RG. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. INFECTION GENETICS AND EVOLUTION 2018; 62:279-295. [PMID: 29704626 DOI: 10.1016/j.meegid.2018.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen.
Collapse
Affiliation(s)
- S Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Marie Bashir Institute, University of Sydney, NSW, Australia; Institute for Global Health Sciences, University of California at San Francisco, CA, USA.
| | - M C Melendrez
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - I Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - S Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - H Salje
- Institut Pasteur, Paris, France; Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - D A T Cummings
- Johns Hopkins School of Public Health, Baltimore, MD, USA; University of Florida, FL, USA
| | - R G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
38
|
Stabell AC, Meyerson NR, Gullberg RC, Gilchrist AR, Webb KJ, Old WM, Perera R, Sawyer SL. Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir. eLife 2018; 7:31919. [PMID: 29557779 PMCID: PMC5860865 DOI: 10.7554/elife.31919] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
Human dengue viruses emerged from primate reservoirs, yet paradoxically dengue does not reach high titers in primate models. This presents a unique opportunity to examine the genetics of spillover versus reservoir hosts. The dengue virus 2 (DENV2) - encoded protease cleaves human STING, reducing type I interferon production and boosting viral titers in humans. We find that both human and sylvatic (reservoir) dengue viruses universally cleave human STING, but not the STING of primates implicated as reservoir species. The special ability of dengue to cleave STING is thus specific to humans and a few closely related ape species. Conversion of residues 78/79 to the human-encoded 'RG' renders all primate (and mouse) STINGs sensitive to viral cleavage. Dengue viruses may have evolved to increase viral titers in the dense and vast human population, while maintaining decreased titers and pathogenicity in the more rare animals that serve as their sustaining reservoir in nature.
Collapse
Affiliation(s)
- Alex C Stabell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Rebekah C Gullberg
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Kristofor J Webb
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Rushika Perera
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
39
|
Liu W, Pickering P, Duchêne S, Holmes EC, Aaskov JG. Highly Divergent Dengue Virus Type 2 in Traveler Returning from Borneo to Australia. Emerg Infect Dis 2018; 22:2146-2148. [PMID: 27869598 PMCID: PMC5189156 DOI: 10.3201/eid2212.160813] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dengue virus type 2 was isolated from a tourist who returned from Borneo to Australia. Phylogenetic analysis identified this virus as highly divergent and occupying a basal phylogenetic position relative to all known human and sylvatic dengue virus type 2 strains and the most divergent lineage not assigned to a new serotype.
Collapse
|
40
|
Moore PR, van den Hurk AF, Mackenzie JS, Pyke AT. Dengue viruses in Papua New Guinea: evidence of endemicity and phylogenetic variation, including the evolution of new genetic lineages. Emerg Microbes Infect 2017; 6:e114. [PMID: 29259329 PMCID: PMC5750459 DOI: 10.1038/emi.2017.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Dengue is the most common cause of mosquito-borne viral disease in humans, and is endemic in more than 100 tropical and subtropical countries. Periodic outbreaks of dengue have been reported in Papua New Guinea (PNG), but there is only limited knowledge of its endemicity and disease burden. To help elucidate the status of the dengue viruses (DENVs) in PNG, we performed envelope (E) gene sequencing of DENV serotypes 1-4 (DENV 1-4) obtained from infected patients who traveled to Australia or from patients diagnosed during local DENV transmission events between 2001 and 2016. Phylogenetic analysis and comparison with globally available DENV sequences revealed new endemic PNG lineages for DENV 1-3 which have emerged within the last decade. We also identified another possible PNG lineage for DENV-4 from 2016. The DENV-1 and 3 PNG lineages were most closely related to recent lineages circulating on Pacific island nations while the DENV-2 lineage and putative DENV-4 PNG lineage were most similar to Indonesian sequences. This study has demonstrated for the first time the co-circulation of DENV 1-4 strains in PNG and provided molecular evidence of endemic DENV transmission. Our results provide an important platform for improved surveillance and monitoring of DENVs in PNG and broaden the global understanding of DENV genetic diversity.
Collapse
Affiliation(s)
- Peter R Moore
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Andrew F van den Hurk
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, Perth, Western Australia 6102, Australia
- Division of Microbiology and Infectious Diseases, PathWest, Nedlands, Western Australia 6909, Australia
| | - Alyssa T Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| |
Collapse
|
41
|
Lequime S, Richard V, Cao-Lormeau VM, Lambrechts L. Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti. Virus Evol 2017; 3:vex031. [PMID: 29497564 PMCID: PMC5782851 DOI: 10.1093/ve/vex031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Like other pathogens with high mutation and replication rates, within-host dengue virus
(DENV) populations evolve during infection of their main mosquito vector, Aedes
aegypti. Within-host DENV evolution during transmission provides opportunities
for adaptation and emergence of novel virus variants. Recent studies of DENV genetic
diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues
such as midgut and salivary glands, suggesting that convergent positive selection is not a
major driver of within-host DENV evolution in the vector. However, it is unknown whether
this conclusion extends to the transmitted viral subpopulation because it is technically
difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome
sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individual
Ae. aegypti mosquitoes previously infected with one of two DENV-1
genotypes. We compared the transmitted viral subpopulations found in the pooled saliva
samples collected in time series with the input viral population present in the infectious
blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of
the input viral population was unchanged. Although the pooling strategy prevents analysis
of individual saliva samples, our results demonstrate the lack of strong convergent
positive selection during a single round of DENV transmission by Ae.
aegypti. This finding reinforces the idea that genetic drift and purifying
selection are the dominant evolutionary forces shaping within-host DENV genetic diversity
during transmission by mosquitoes.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 25-28 rue du Docteur Roux, 75015 Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, 4 place Jussieu, 75005 Paris, France
| | - Vaea Richard
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - Van-Mai Cao-Lormeau
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 25-28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
42
|
Cecilia D, Patil J, Kakade M, Walimbe A, Alagarasu K, Anukumar B, Abraham A. Emergence of the Asian genotype of DENV-1 in South India. Virology 2017; 510:40-45. [DOI: 10.1016/j.virol.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
43
|
Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, Vasilakis N, Perera D, Hanley KA. Abundance and distribution of sylvatic dengue virus vectors in three different land cover types in Sarawak, Malaysian Borneo. Parasit Vectors 2017; 10:406. [PMID: 28859676 PMCID: PMC5580228 DOI: 10.1186/s13071-017-2341-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape. RESULTS Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing. CONCLUSIONS Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.
Collapse
Affiliation(s)
- Katherine I Young
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| | - Stephanie Mundis
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert B Tesh
- Department of Pathology and Center for Biodefense and Emerging Infectious Disease, Center for Tropical Diseases; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Disease, Center for Tropical Diseases; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
44
|
Complete Genome Sequence of a Highly Divergent Dengue Virus Type 2 Strain, Imported into Australia from Sabah, Malaysia. GENOME ANNOUNCEMENTS 2017; 5:5/29/e00546-17. [PMID: 28729258 PMCID: PMC5522925 DOI: 10.1128/genomea.00546-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 2015, a female patient returning to Australia from Sabah, Malaysia, was diagnosed with a suspected sylvatic dengue virus type 2 (DENV-2) infection, becoming the second case of imported highly divergent dengue virus infection recorded in Australia. We describe here the complete genome sequencing of the DENV-2 strain isolated from this patient.
Collapse
|
45
|
Huang B, Prow NA, van den Hurk AF, Allcock RJN, Moore PR, Doggett SL, Warrilow D. Archival Isolates Confirm a Single Topotype of West Nile Virus in Australia. PLoS Negl Trop Dis 2016; 10:e0005159. [PMID: 27906966 PMCID: PMC5131910 DOI: 10.1371/journal.pntd.0005159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022] Open
Abstract
West Nile virus is globally wide-spread and causes significant disease in humans and animals. The evolution of West Nile virus Kunjin subtype in Australia (WNVKUN) was investigated using archival samples collected over a period of 50 years. Based on the pattern of fixed amino acid substitutions and time-stamped molecular clock analyses, a single long-term lineage (or topotype) was inferred. This implies that a bottleneck exists such that regional strains eventually die out and are replaced with strains from a single source. This was consistent with current hypotheses regarding the distribution of WNVKUN, whereby the virus is enzootic in northern Australia and is disseminated to southern states by water-birds or mosquitoes after flooding associated with above average rainfall. In addition, two previous amino acid changes associated with pathogenicity, an N-Y-S glycosylation motif in the envelope protein and a phenylalanine at amino acid 653 in the RNA polymerase, were both detected in all isolates collected since the 1980s. Changes primarily occurred due to stochastic drift. One fixed substitution each in NS3 and NS5, subtly changed the chemical environment of important functional groups, and may be involved in fine-tuning RNA synthesis. Understanding these evolutionary changes will help us to better understand events such as the emergence of the virulent strain in 2011. West Nile virus is endemic in Australia, and is considered benign in relation to strains that circulate globally. In 2011, a more pathogenic variant emerged which caused disease in horses. To understand the evolution of the virus, and as a background to the emergence of the pathogenic strain, we used high throughput sequencing combined with bioinformatics tools to obtain an overview of the evolution of the virus over 50 years. A single lineage regardless of the collection site was apparent. This was also supported by the pattern of changes in sequence between the isolates. The most significant finding was that the single lineage nature of the virus’s evolution infers that regional strains circulate for some years before becoming extinct. The regional strains must then be replaced by continual re-seeding, most likely by waterbirds that disseminate the virus across the continent after above average rainfall. There were changes in the nucleotide sequence that had become established at a population level. These were related to the structure of the viral proteins: in particular the envelope protein, the helicase (NS3) and methyltransferase domain of NS5. There were two changes in catalytic domains which may indicate some fine-tuning of replication.
Collapse
Affiliation(s)
- Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
| | - Natalie A Prow
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
| | - Richard J. N. Allcock
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
- Translational Cancer Pathology Laboratory, Pathwest Laboratory Medicine WA, QEII Medical Centre, Nedlands, Australia
| | - Peter R. Moore
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Pathology West–ICPMR, Westmead Hospital, Westmead, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
- * E-mail:
| |
Collapse
|
46
|
Gan ES, Ting DHR, Chan KR. The mechanistic role of antibodies to dengue virus in protection and disease pathogenesis. Expert Rev Anti Infect Ther 2016; 15:111-119. [PMID: 27796143 DOI: 10.1080/14787210.2017.1254550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Dengue is a prevalent disease in tropical and subtropical countries with an estimated 400 million people infected annually. While significant advancement has been made in the chase for an effective dengue vaccine, the recently licensed Sanofi vaccine was, in contrast to in vitro data, only partially protective. Areas covered: This suggests that our understanding of the serological correlates for dengue is currently inadequate. With growing evidence supporting the role of fragment crystalizable gamma receptors (FcγRs) in antibody-mediated neutralization or antibody-dependent enhancement (ADE) of dengue virus (DENV) infection, FcγR-expressing cells have been increasingly used for measuring neutralizing antibody responses elicited by dengue vaccines. Here, we review the mechanisms of how FcγRs modulates both DENV neutralization and enhanced infections via its interactions with antibodies. Expert commentary: This review provides insights on the importance of factoring FcγRs for in vitro neutralization assays. Bridging the gap between in vitro and clinical observations would allow researchers to more accurately predict in vivo vaccine efficacy.
Collapse
Affiliation(s)
- Esther Shuyi Gan
- a Program in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| | - Donald Heng Rong Ting
- b Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore , Singapore
| | - Kuan Rong Chan
- a Program in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore , Singapore
| |
Collapse
|
47
|
Pyke AT, Warrilow D. Archival Collections are Important in the Study of the Biology, Diversity, and Evolution of Arboviruses. Evol Bioinform Online 2016; 12:27-30. [PMID: 27688704 PMCID: PMC5024791 DOI: 10.4137/ebo.s40569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/05/2022] Open
Abstract
Historically, classifications of arboviruses were based on serological techniques. Hence, collections of arbovirus isolates have been central to this process by providing the antigenic reagents for these methods. However, with increasing concern about biosafety and security, the introduction of molecular biology techniques has led to greater emphasis on the storage of nucleic acid sequence data over the maintenance of archival material. In this commentary, we provide examples of where archival collections provide an important source of genetic material to assist in confirming the authenticity of reference strains and vaccine stocks, to clarify taxonomic relationships particularly when isolates of the same virus species have been collected across a wide expanse of time and space, for future phenotypic analysis, to determine the historical diversity of strains, and to understand the mechanisms leading to changes in genome structure and virus evolution.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Health, Archerfield, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Health, Archerfield, Queensland, Australia
| |
Collapse
|
48
|
Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia. PLoS Negl Trop Dis 2016; 10:e0004959. [PMID: 27643685 PMCID: PMC5028067 DOI: 10.1371/journal.pntd.0004959] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
Background Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Methodology/Principal Findings Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. Conclusions/Significance We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia. Zika virus was first isolated in Uganda in 1947 and exists in a transmission cycle between mosquitoes and non-human primates or humans. Whilst most clinical infections result in a self-limiting febrile illness, Zika virus has recently been linked to neurological syndromes, such as Guillain-Barré syndrome and congenital birth defects. Since 2007, Zika virus has undergone a dramatic range expansion, causing epidemics in nations and territories of the western Pacific and South America. To assess the emergence and transmission risk of Zika virus emerging in Australia, we evaluated the ability of local mosquitoes to become infected with and transmit the prototype African Zika virus strain. In agreement with its substantiated role in Zika virus transmission overseas, Australian Aedes aegypti were shown to be competent vectors. Coupled with its anthropophilic feeding behavior, this species should be considered the primary potential Zika virus vector in Australia. Although other common Australian species, such as Ae. notoscriptus and Ae. vigilax, were readily infected, they did not transmit the virus. The species of Culex tested were either refractory to infection or had a low infection rate. We also demonstrated that the Zika virus dose necessary to infect Ae. aegypti was higher than virus levels reported in infected humans. Finally, a high threshold level of virus circulating through the mosquito body was required before Ae. aegypti transmitted the virus. These results suggest that an outbreak of Zika virus in Australia would require high mosquito population densities and a susceptible human population.
Collapse
|
49
|
Pyke AT, Moore PR, Hall-Mendelin S, McMahon JL, Harrower BJ, Constantino TR, van den Hurk AF. Isolation of Zika Virus Imported from Tonga into Australia. PLOS CURRENTS 2016; 8. [PMID: 27679739 PMCID: PMC5028185 DOI: 10.1371/currents.outbreaks.849adc0ad16beec4536695281707f785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The globally emergent Zika virus (ZIKV) is a threat to Australia, given the number of imported cases from epidemic regions and the presence of competent mosquito vectors. We report the isolation of ZIKV from a female traveler who recently returned from Tonga to Brisbane, Queensland, Australia in 2016. Methods: A specific TaqMan real-time reverse transcriptase polymerase chain reaction assay (RT-PCR) assay was used to detect ZIKV in serum and urine samples. Conventional cell culture techniques and suckling mice were employed in an attempt to isolate ZIKV from serum and urine. Results: A ZIKV isolate (TS17-2016) was recovered from the serum sample after one passage in suckling mouse brains and harvested 11 days post inoculation. Phylogenetic analysis of complete envelope (E) gene sequences demonstrated TS17-2016 shared 99.9% nucleotide identity with other contemporary sequences from Tonga 2016, Brazil 2015 and French Polynesia 2013 within the Asian lineage. Discussion: This is the first known report of successful isolation of ZIKV from a human clinical sample in Australia and the first from a traveler from Tonga. This study highlights the potential difficulties in isolating ZIKV from acute clinical samples using conventional cell culture techniques, particularly in non-endemic countries like Australia where access to samples of sufficient viral load is limited. The successful isolation of TS17-2016 will be essential for continued investigations of ZIKV transmission and pathogenicity and will enable the advancement of new preventative control measures extremely relevant to the Australian and Pacific region.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Jamie L McMahon
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Bruce J Harrower
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Tanya R Constantino
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| |
Collapse
|
50
|
Yin Y, Xu Y, Su L, Zhu X, Chen M, Zhu W, Xia H, Huang X, Gong S. Epidemiologic investigation of a family cluster of imported ZIKV cases in Guangdong, China: probable human-to-human transmission. Emerg Microbes Infect 2016; 5:e100. [PMID: 27599469 PMCID: PMC5113051 DOI: 10.1038/emi.2016.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that can potentially threaten South China. A Chinese family of four returning from Venezuela to China was found to be positive for ZIKV when the youngest son's fever was first detected at an airport immigration inspection. They were isolated temporarily in a local hospital in Enping city, Guangdong province, where their clinical data were recorded and urine and saliva were collected to isolate ZIKV and to obtain viral sequences. All of them except the mother presented mild symptoms of rash and fever. Envelope gene sequences from the father, daughter and son were completely identical. Phylogenetic analysis demonstrated that this strain is similar to several imported strains reported in recent months, which are all clustered into a group isolated from 2015 ZIKA outbreaks in Brazil. Together with the climatic features in Venezuela, New York and Guangdong in February, it can be concluded that our subjects are imported cases from Venezuela. With the same viral sequence being shared between family members, neither direct human-to-human nor vector transmission can be ruled out in this study, but the former seems more likely. Although our subjects had mild illness, epidemiologists and public health officials should be aware of the risk of further expansion of ZIKV transmission by local competent vectors.
Collapse
Affiliation(s)
- Yingxian Yin
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yi Xu
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ling Su
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Minxia Chen
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Weijin Zhu
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xi Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|