1
|
Banerjee S, Szyszka P, Beck CW. Knockdown of NeuroD2 leads to seizure-like behavior, brain neuronal hyperactivity and a leaky blood-brain barrier in a Xenopus laevis tadpole model of DEE75. Genetics 2024; 227:iyae085. [PMID: 38788202 PMCID: PMC11228833 DOI: 10.1093/genetics/iyae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEE) are a genetically diverse group of severe, early onset seizure disorders. DEE are normally identified clinically in the first six months of life by the presence of frequent, difficult to control seizures and accompanying stalling or regression of development. DEE75 results from de novo mutations of the NEUROD2 gene that result in loss of activity of the encoded transcription factor, and the seizure phenotype was shown to be recapitulated in Xenopus tropicalis tadpoles. We used CRISPR/Cas9 to make a DEE75 model in Xenopus laevis, to further investigate the developmental etiology. NeuroD2.S CRISPR/Cas9 edited tadpoles were more active, swam faster on average, and had more seizures (C-shaped contractions resembling unprovoked C-start escape responses) than their sibling controls. Live imaging of Ca2+ signaling revealed prolongued, strong signals sweeping through the brain, indicative of neuronal hyperactivity. While the resulting tadpole brain appeared grossly normal, the blood-brain barrier (BBB) was found to be leakier than that of controls. Additionally, the TGFβ antagonist Losartan was shown to have a short-term protective effect, reducing neuronal hyperactivity and reducing permeability of the BBB. Treatment of NeuroD2 CRISPant tadpoles with 5 mM Losartan decreased seizure events by more than 4-fold compared to the baseline. Our results support a model of DEE75 resulting from reduced NeuroD2 activity during vertebrate brain development, and indicate that a leaky BBB contributes to epileptogenesis.
Collapse
Affiliation(s)
- Sulagna Banerjee
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
| | - Paul Szyszka
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Paiola M, McGuire CC, Lopez Ruiz V, De Jesús Andino F, Robert J. Larval T Cells Are Functionally Distinct from Adult T Cells in Xenopus laevis. Immunohorizons 2023; 7:696-707. [PMID: 37870488 PMCID: PMC10615653 DOI: 10.4049/immunohorizons.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The amphibian Xenopus laevis tadpole provides a unique comparative experimental organism for investigating the roles of innate-like T (iT) cells in tolerogenic immunity during early development. Unlike mammals and adult frogs, where conventional T cells are dominant, tadpoles rely mostly on several prominent distinct subsets of iT cells interacting with cognate nonpolymorphic MHC class I-like molecules. In the present study, to investigate whole T cell responsiveness ontogenesis in X. laevis, we determined in tadpoles and adult frogs the capacity of splenic T cells to proliferate in vivo upon infection with two different pathogens, ranavirus FV3 and Mycobacterium marinum, as well as in vitro upon PHA stimulation using the thymidine analogous 5-ethynyl-2'-deoxyuridine and flow cytometry. We also analyzed by RT-quantitative PCR T cell responsiveness upon PHA stimulation. In vivo tadpole splenic T cells showed limited capacity to proliferate, whereas the in vitro proliferation rate was higher than adult T cells. Gene markers for T cell activation and immediate-early genes induced upon TCR activation were upregulated with similar kinetics in tadpole and adult splenocytes. However, the tadpole T cell signature included a lower amplitude in the TCR signaling, which is a hallmark of mammalian memory-like T cells and iT or "preset" T cells. This study suggests that reminiscent of mammalian neonatal T cells, tadpole T cells are functionally different from their adult counterpart.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Connor C. McGuire
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
3
|
A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. Int J Mol Sci 2022; 23:ijms23147578. [PMID: 35886924 PMCID: PMC9323330 DOI: 10.3390/ijms23147578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a global driver of disability, and we currently lack effective therapies to promote neural repair and recovery. TBI is characterized by an initial insult, followed by a secondary injury cascade, including inflammation, excitotoxicity, and glial cellular response. This cascade incorporates molecular mechanisms that represent potential targets of therapeutic intervention. In this study, we investigate the response to focal impact injury to the optic tectum of Xenopus laevis tadpoles. This injury disrupts the blood-brain barrier, causing edema, and produces deficits in visually-driven behaviors which are resolved within one week. Within 3 h, injured brains show a dramatic transcriptional activation of inflammatory cytokines, upregulation of genes associated with inflammation, and recruitment of microglia to the injury site and surrounding tissue. Shortly afterward, astrocytes undergo morphological alterations and accumulate near the injury site, and these changes persist for at least 48 h following injury. Genes associated with astrocyte reactivity and neuroprotective functions also show elevated levels of expression following injury. Since our results demonstrate that the response to focal impact injury in Xenopus resembles the cellular alterations observed in rodents and other mammalian models, the Xenopus tadpole offers a new, scalable vertebrate model for TBI.
Collapse
|
4
|
Mathew S, Sivasubbu S. Long Non Coding RNA Based Regulation of Cerebrovascular Endothelium. Front Genet 2022; 13:834367. [PMID: 35495157 PMCID: PMC9043600 DOI: 10.3389/fgene.2022.834367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and high throughput discovery of long non coding RNAs (lncRNAs) has far outstripped the functional annotation of these novel transcripts in their respective cellular contexts. The cells of the blood brain barrier (BBB), especially the cerebrovascular endothelial cells (CVECs), are strictly regulated to maintain a controlled state of homeostasis for undisrupted brain function. Several key pathways are understood in CVEC function that lead to the development and maintenance of their barrier properties, the dysregulation of which leads to BBB breakdown and neuronal injury. Endothelial lncRNAs have been discovered and functionally validated in the past decade, spanning a wide variety of regulatory mechanisms in health and disease. We summarize here the lncRNA-mediated regulation of established pathways that maintain or disrupt the barrier property of CVECs, including in conditions such as ischemic stroke and glioma. These lncRNAs namely regulate the tight junction assembly/disassembly, angiogenesis, autophagy, apoptosis, and so on. The identification of these lncRNAs suggests a less understood mechanistic layer, calling for further studies in appropriate models of the blood brain barrier to shed light on the lncRNA-mediated regulation of CVEC function. Finally, we gather various approaches for validating lncRNAs in BBB function in human organoids and animal models and discuss the therapeutic potential of CVEC lncRNAs along with the current limitations.
Collapse
Affiliation(s)
- Samatha Mathew
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Sridhar Sivasubbu,
| |
Collapse
|
5
|
Stranahan AM. Visceral adiposity, inflammation, and hippocampal function in obesity. Neuropharmacology 2021; 205:108920. [PMID: 34902347 DOI: 10.1016/j.neuropharm.2021.108920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
The 'apple-shaped' anatomical pattern that accompanies visceral adiposity increases risk for multiple chronic diseases, including conditions that impact the brain, such as diabetes and hypertension. However, distinguishing between the consequences of visceral obesity, as opposed to visceral adiposity-associated metabolic and cardiovascular pathologies, presents certain challenges. This review summarizes current literature on relationships between adipose tissue distribution and cognition in preclinical models and highlights unanswered questions surrounding the potential role of tissue- and cell type-specific insulin resistance in these effects. While gaps in knowledge persist related to insulin insensitivity and cognitive impairment in obesity, several recent studies suggest that cells of the neurovascular unit contribute to hippocampal synaptic dysfunction, and this review interprets those findings in the context of progressive metabolic dysfunction in the CNS. Signalling between cerebrovascular endothelial cells, astrocytes, microglia, and neurons has been linked with memory deficits in visceral obesity, and this article describes the cellular changes in each of these populations with respect to their role in amplification or diminution of peripheral signals. The picture emerging from these studies, while incomplete, implicates pro-inflammatory cytokines, insulin resistance, and hyperglycemia in various stages of obesity-induced hippocampal dysfunction. As in the parable of the five blind wanderers holding different parts of an elephant, considerable work remains in order to assemble a model for the underlying mechanisms linking visceral adiposity with age-related cognitive decline.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
7
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
8
|
Forzán MJ, Bienentreu J, Schock DM, Lesbarrères D. Multi-tool diagnosis of an outbreak of ranavirosis in amphibian tadpoles in the Canadian boreal forest. DISEASES OF AQUATIC ORGANISMS 2019; 135:33-41. [PMID: 31219433 DOI: 10.3354/dao03369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Investigation of mortalities in isolated wild amphibian populations presents diagnostic difficulties that can hinder reaching a definitive diagnosis for the cause of death. Disease can only be diagnosed when pathogen presence (e.g. detection by PCR) is linked to tissue lesions (histopathology) in the host. We report a 2-site outbreak of ranavirosis in wild anuran tadpoles in the boreal forest of Wood Buffalo National Park, Canada, diagnosed by histologic and molecular techniques. Mortalities occurred in wood frog Rana sylvatica tadpoles and boreal chorus frog Pseudacris maculata tadpoles. Lack of mortality in sympatric Canadian toad Bufo (Anaxyrus) hemiophrys tadpoles suggested lower disease susceptibility in this species. In the former 2 species, ranavirosis was diagnosed based on consistent histopathology, immunohistochemistry (IHC), in situ hybridization (ISH), and quantitative PCR results. The most common histopathologic lesion present in wood and boreal chorus frog tadpoles was necrosis of the skin, oral mucosa, renal tubular epithelium, renal hematopoietic tissue, and branchial epithelium. Mild hepatic and pancreatic necrosis and rare intracytoplasmic inclusion bodies in hepatocytes were less common. Skeletal and connective tissues in budding limbs often had multifocal to coalescing necrosis and were intensely positive for ranavirus, with IHC staining even in areas where no obvious necrosis could be observed. Abundant IHC and ISH staining in actively growing tissues support a link between disease emergence and amphibian developmental stage. Our findings provide a definitive diagnosis of ranavirosis in free-living amphibians and highlight the effectiveness of multi-tool approaches to mortality investigation and elucidation of pathogenesis of ranavirosis in wild amphibians.
Collapse
Affiliation(s)
- M J Forzán
- Cornell Wildlife Health Lab, Department of Population Medicine, Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
9
|
Rhoo KH, Robert J. Adoptive Transfer of Fluorescently Labeled Immune Cells in Xenopus. Cold Spring Harb Protoc 2019; 2019:pdb.prot097592. [PMID: 29980588 DOI: 10.1101/pdb.prot097592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Adoptive cell transfer from inbred adult Xenopus to inbred tadpoles is a useful way to study the dissemination of immune cells or pathogen-infected immune cells in tadpoles. For example, Xenopus peritoneal leukocytes (PLs) can be readily infected by pathogens such as Frog virus 3 (FV3) and Mycobacterium marinum (M. marinum). By transferring fluorescently labeled, FV3-infected PLs into tadpoles, we observed infiltration of these cells into the tadpole's brain, which indicates that FV3-infected PLs can cross blood brain barrier. Taking advantage of tadpoles' transparency, fluorescently labeled immune cells can be tracked in real time using fluorescence microscopy.
Collapse
Affiliation(s)
- Kun Hyoe Rhoo
- Department of Immunology Microbiology and Virology, University of Rochester, Medical Center, New York 14620
| | - Jacques Robert
- Department of Immunology Microbiology and Virology, University of Rochester, Medical Center, New York 14620
| |
Collapse
|
10
|
De Jesús Andino F, Robert J. Assessing Antibody Responses to Pathogens or Model Antigens in Xenopus by Enzyme-Linked Immunosorbent Assay (ELISA). Cold Spring Harb Protoc 2019; 2019:pdb.prot099234. [PMID: 30042135 DOI: 10.1101/pdb.prot099234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xenopus laevis-specific monoclonal antibodies recognize IgM and IgY antibodies not only from X. laevis but also X. tropicalis as well as a variety of amphibian species including Ranidae, Bufonidae, and even some salamanders. These reagents are very useful to assess antibody responses from the serum or other animal secretions (e.g., peritoneal fluid). We present here an enzyme-linked immunosorbent assay (ELISA) optimized for amphibians that permits users to detect and titrate the presence of each type of antibody (IgM and IgY) produced against particular pathogens (e.g., virus, bacteria, or fungus) or antigens (e.g., DNP-KLH).
Collapse
|
11
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
12
|
Grayfer L. Elicitation of Xenopus laevis Tadpole and Adult Frog Peritoneal Leukocytes. Cold Spring Harb Protoc 2018; 2018:pdb.prot097642. [PMID: 29084862 DOI: 10.1101/pdb.prot097642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peritoneal lavage of Xenopus laevis tadpoles and adult frogs is a reliable way of isolating resident and/or recruited innate immune populations. This protocol details the isolation of tadpole and adult amphibian (Xenopus laevis) peritoneal leukocytes. The isolated cells are comprised predominantly of innate immune populations and chiefly of mononuclear and polymorphonuclear granulocytes. As described here, these cells are typically elicited by peritoneal injections of animals with heat-killed Escherichia coli, causing peritoneal accumulation of inflammatory cell populations, which are then isolated from the stimulated animals by lavage. E. coli-mediated elicitation of tadpole and adult peritoneal leukocytes greatly enhances the total numbers of recovered cells, at the cost of their inflammatory activation. Conversely, lavage may be performed on naïve, unstimulated animals to isolate nonactivated cells with much lower yield. This protocol represents a reliable means of deriving tadpole and adult frog innate immune cell populations, and the conditions of the stimulation may be amended to suit the specifics of a given experimental design.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| |
Collapse
|
13
|
Campbell LJ, Hammond SA, Price SJ, Sharma MD, Garner TWJ, Birol I, Helbing CC, Wilfert L, Griffiths AGF. A novel approach to wildlife transcriptomics provides evidence of disease-mediated differential expression and changes to the microbiome of amphibian populations. Mol Ecol 2018; 27:1413-1427. [PMID: 29420865 DOI: 10.1111/mec.14528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Abstract
Ranaviruses are responsible for a lethal, emerging infectious disease in amphibians and threaten their populations throughout the world. Despite this, little is known about how amphibian populations respond to ranaviral infection. In the United Kingdom, ranaviruses impact the common frog (Rana temporaria). Extensive public engagement in the study of ranaviruses in the UK has led to the formation of a unique system of field sites containing frog populations of known ranaviral disease history. Within this unique natural field system, we used RNA sequencing (RNA-Seq) to compare the gene expression profiles of R. temporaria populations with a history of ranaviral disease and those without. We have applied a RNA read-filtering protocol that incorporates Bloom filters, previously used in clinical settings, to limit the potential for contamination that comes with the use of RNA-Seq in nonlaboratory systems. We have identified a suite of 407 transcripts that are differentially expressed between populations of different ranaviral disease history. This suite contains genes with functions related to immunity, development, protein transport and olfactory reception among others. A large proportion of potential noncoding RNA transcripts present in our differentially expressed set provide first evidence of a possible role for long noncoding RNA (lncRNA) in amphibian response to viruses. Our read-filtering approach also removed significantly more bacterial reads from libraries generated from positive disease history populations. Subsequent analysis revealed these bacterial read sets to represent distinct communities of bacterial species, which is suggestive of an interaction between ranavirus and the host microbiome in the wild.
Collapse
Affiliation(s)
- Lewis J Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn, UK.,Institute of Zoology, Zoological Society of London, London, UK
| | - Stewart A Hammond
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Stephen J Price
- Institute of Zoology, Zoological Society of London, London, UK.,UCL Genetics Institute, University College London, London, UK
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | |
Collapse
|
14
|
Kirschman LJ, Crespi EJ, Warne RW. Critical disease windows shaped by stress exposure alter allocation trade‐offs between development and immunity. J Anim Ecol 2017; 87:235-246. [DOI: 10.1111/1365-2656.12778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Erica J. Crespi
- School of Biological SciencesWashington State University Pullman WA USA
| | - Robin W. Warne
- Department of ZoologySouthern Illinois University Carbondale IL USA
| |
Collapse
|
15
|
Abstract
We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene.
Collapse
Affiliation(s)
- Robert Jacques
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sanchez Jazz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Torres-Luquis Odalys
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - De Jesús Andino Francisco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
16
|
Sater AK, Moody SA. Using Xenopus to understand human disease and developmental disorders. Genesis 2017; 55. [PMID: 28095616 DOI: 10.1002/dvg.22997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Model animals are crucial to biomedical research. Among the commonly used model animals, the amphibian, Xenopus, has had tremendous impact because of its unique experimental advantages, cost effectiveness, and close evolutionary relationship with mammals as a tetrapod. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to biomedicine, and it is a cornerstone of research in cell biology, developmental biology, evolutionary biology, immunology, molecular biology, neurobiology, and physiology. The prospects for Xenopus as an experimental system are excellent: Xenopus is uniquely well-suited for many contemporary approaches used to study fundamental biological and disease mechanisms. Moreover, recent advances in high throughput DNA sequencing, genome editing, proteomics, and pharmacological screening are easily applicable in Xenopus, enabling rapid functional genomics and human disease modeling at a systems level.
Collapse
Affiliation(s)
- Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
17
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
18
|
Robert J, Jancovich JK. Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates. Viruses 2016; 8:E187. [PMID: 27399758 PMCID: PMC4974522 DOI: 10.3390/v8070187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses (Iridoviridae) are large DNA viruses that are causing emerging infectious diseases at an alarming rate in both wild and captive cold blood vertebrate species all over the world. Although the general biology of these viruses that presents some similarities with poxvirus is characterized, many aspects of their replication cycles, host cell interactions and evolution still remain largely unclear, especially in vivo. Over several years, strategies to generate site-specific ranavirus recombinant, either expressing fluorescent reporter genes or deficient for particular viral genes, have been developed. We review here these strategies, the main ranavirus recombinants characterized and their usefulness for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA.
| |
Collapse
|