1
|
Döring Y, van der Vorst EPC, Weber C. Targeting immune cell recruitment in atherosclerosis. Nat Rev Cardiol 2024; 21:824-840. [PMID: 38664575 DOI: 10.1038/s41569-024-01023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 10/17/2024]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany.
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Ardinal AP, Wiyono AV, Estiko RI. Unveiling the therapeutic potential of miR-146a: Targeting innate inflammation in atherosclerosis. J Cell Mol Med 2024; 28:e70121. [PMID: 39392102 PMCID: PMC11467738 DOI: 10.1111/jcmm.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Atherosclerosis is the foremost vascular disease, precipitating debilitating complications. Although therapeutic strategies have historically focused on reducing cholesterol deposition, recent insights emphasize the pivotal role of inflammation. Innate inflammation significantly contributes to plaque instability and rupture, underscoring the need for intervention across all disease stages. Numerous studies have highlighted the therapeutic potential of targeting innate immune pathways in atherosclerosis, revealing significant advancements in understanding the molecular mechanisms underlying inflammatory processes within arterial lesions. Notably, research has demonstrated that the modulation of microRNA-146a (miR-146a) expression impacts innate inflammation, effectively halts atherosclerosis progression, and enhances plaque stability by targeting interleukin-1 receptor-associated kinase (IRAK) and activating TNF receptor-associated factor 6 (TRAF6), a signalling pathway involving toll-like receptors (TLRs). Understanding the intricate mechanisms involved is crucial. This study provides a comprehensive analysis of the evidence and underlying mechanisms through which miR-146a exerts its effects. Integrating these findings into clinical practice may herald a transformative era in managing atherosclerotic cardiovascular disease.
Collapse
|
3
|
Hernandez R, Li X, Shi J, Dave TR, Zhou T, Chen Q, Zhou C. Paternal hypercholesterolemia elicits sex-specific exacerbation of atherosclerosis in offspring. JCI Insight 2024; 9:e179291. [PMID: 39253968 PMCID: PMC11385100 DOI: 10.1172/jci.insight.179291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tejasvi R. Dave
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and
- Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
5
|
Wang N, Chen C, Ren J, Dai D. MicroRNA delivery based on nanoparticles of cardiovascular diseases. Mol Cell Biochem 2024; 479:1909-1923. [PMID: 37542599 DOI: 10.1007/s11010-023-04821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Chunyan Chen
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jianmin Ren
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Dandan Dai
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
6
|
Santos-Gomes J, Mendes-Ferreira P, Adão R, Maia-Rocha C, Rego B, Poels M, Saint-Martin Willer A, Masson B, Provencher S, Bonnet S, Montani D, Perros F, Antigny F, Leite-Moreira AF, Brás-Silva C. Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function. Int J Mol Sci 2024; 25:8054. [PMID: 39125620 PMCID: PMC11311781 DOI: 10.3390/ijms25158054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Rats
- Cell Proliferation/genetics
- Disease Models, Animal
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Monocrotaline
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Vascular Remodeling/genetics
- Ventricular Function, Right
Collapse
Affiliation(s)
- Joana Santos-Gomes
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, 91190 Paris, France;
| | - Rui Adão
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carolina Maia-Rocha
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Beatriz Rego
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Manu Poels
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Anaïs Saint-Martin Willer
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Bastien Masson
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 4G5, Canada; (S.P.); (S.B.)
- Department of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 4G5, Canada; (S.P.); (S.B.)
- Department of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - David Montani
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, 91190 Paris, France;
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Fabrice Antigny
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Adelino F. Leite-Moreira
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Faculty of Nutrition and Food Sciences, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
7
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
8
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
9
|
Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol 2024; 12:1349077. [PMID: 38303912 PMCID: PMC10830866 DOI: 10.3389/fbioe.2024.1349077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Gene therapy is a technique that rectifies defective or abnormal genes by introducing exogenous genes into target cells to cure the disease. Although gene therapy has gained some accomplishment for the diagnosis and therapy of inherited or acquired cardiovascular diseases, how to efficiently and specifically deliver targeted genes to the lesion sites without being cleared by the blood system remains challenging. Based on nanotechnology development, the non-viral vectors provide a promising strategy for overcoming the difficulties in gene therapy. At present, according to the physicochemical properties, nanotechnology-based non-viral vectors include polymers, liposomes, lipid nanoparticles, and inorganic nanoparticles. Non-viral vectors have an advantage in safety, efficiency, and easy production, possessing potential clinical application value when compared with viral vectors. Therefore, we summarized recent research progress of gene therapy for cardiovascular diseases based on commonly used non-viral vectors, hopefully providing guidance and orientation for future relevant research.
Collapse
Affiliation(s)
- Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Garcia VP, Fandl HK, Hijmans JG, Berry AR, Cardenas HL, Stockelman KA, DeSouza NM, Treuth JW, Greiner JJ, Park AJ, Stauffer BL, DeSouza CA. Effects of circulating endothelial microvesicles isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide production. Am J Physiol Endocrinol Metab 2024; 326:E38-E49. [PMID: 37991453 PMCID: PMC11193534 DOI: 10.1152/ajpendo.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Circulating endothelial cell-derived microvesicles (EMVs) have been shown to be elevated with obesity and associated with endothelial dysfunction; however, their direct effect on endothelial cells is unknown. The experimental aim of this study was to determine the effect of EMVs isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were identified, enumerated, and isolated from plasma by flow cytometry from 24 sedentary adults: 12 normal-weight adults [8 M/4 F; age: 55 ± 6 yr; body mass index (BMI): 24.3 ± 0.7 kg/m2; EMV: 144 ± 53 EMVs/µL] and 12 adults with obesity (6 M/6 F; 59 ± 7 yr; BMI: 31.0 ± 1.1 kg/m2; EMV: 245 ± 89 EMVs/µL). Human umbilical vein endothelial cells were cultured and treated with EMVs from either normal-weight adults or adults with obesity. EMVs from obese adults induced significantly higher release of interleukin (IL)-6 (108.2 ± 7.7 vs. 90.9 ± 10.0 pg/mL) and IL-8 (75.4 ± 9.8 vs. 59.5 ± 11.5 pg/mL) from endothelial cells vs. EMVs from normal-weight adults, concordant with greater intracellular expression of phosphorylated NF-κB p65 (Ser536; active NF-κB) [145.0 ± 34.1 vs. 114.5 ± 30.4 arbitrary units (AU)]. Expression of phosphorylated p38-MAPK (15.4 ± 5.7 vs. 9.2 ± 2.5 AU) and active caspase-3 (168.2 ± 65.5 vs. 107.8 ± 40.5 AU), markers of cell apoptosis, was higher in cells treated with obesity-related EMVs. Phosphorylated endothelial nitric oxide synthase (eNOS) (Ser1177) expression (23.5 ± 7.2 vs. 34.7 ± 9.7 AU) and NO production (6.9 ± 1.4 vs. 8.7 ± 0.7 µmol/L) were significantly lower in the cells treated with EMVs from obese adults. These data indicate that circulating EMVs from adults with obesity promote a proinflammatory, proapoptotic, and NO-compromised endothelial phenotype. Circulating EMVs are a potential mediator of obesity-related endothelial dysfunction.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production in vitro. Circulating EMVs harvested from adults with obesity promoted a proinflammatory, proapoptotic, and NO-compromised endothelial phenotype. Elevated circulating EMVs in adults with obesity, independent of other cardiometabolic risk factors, are a potential novel systemic mediator of obesity-related endothelial dysfunction and vascular risk.
Collapse
Affiliation(s)
- Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Auburn R Berry
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Hannah L Cardenas
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Kelly A Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - J William Treuth
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Andrew J Park
- Rocky Mountain Regional Spinal Injury System, Craig Hospital, Englewood, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
- Denver Health Medical Center, Denver, Colorado, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
| |
Collapse
|
11
|
Jung I, Cho YJ, Park M, Park K, Lee SH, Kim WH, Jeong H, Lee JE, Kim GY. Proteomic analysis reveals activation of platelet- and fibrosis-related pathways in hearts of ApoE -/- mice exposed to diesel exhaust particles. Sci Rep 2023; 13:22636. [PMID: 38114606 PMCID: PMC10730529 DOI: 10.1038/s41598-023-49790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Air pollution is an environmental risk factor linked to multiple human diseases including cardiovascular diseases (CVDs). While particulate matter (PM) emitted by diesel exhaust damages multiple organ systems, heart disease is one of the most severe pathologies affected by PM. However, the in vivo effects of diesel exhaust particles (DEP) on the heart and the molecular mechanisms of DEP-induced heart dysfunction have not been investigated. In the current study, we attempted to identify the proteomic signatures of heart fibrosis caused by diesel exhaust particles (DEP) in CVDs-prone apolipoprotein E knockout (ApoE-/-) mice model using tandem mass tag (TMT)-based quantitative proteomic analysis. DEP exposure induced mild heart fibrosis in ApoE-/- mice compared with severe heart fibrosis in ApoE-/- mice that were treated with CVDs-inducing peptide, angiotensin II. TMT-based quantitative proteomic analysis of heart tissues between PBS- and DEP-treated ApoE-/- mice revealed significant upregulation of proteins associated with platelet activation and TGFβ-dependent pathways. Our data suggest that DEP exposure could induce heart fibrosis, potentially via platelet-related pathways and TGFβ induction, causing cardiac fibrosis and dysfunction.
Collapse
Affiliation(s)
- Inkyo Jung
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Yoon Jin Cho
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Minhan Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kihong Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seung Hee Lee
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Hyuk Jeong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Ji Eun Lee
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Geun-Young Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeng2-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
12
|
Fadaei R, Fallah S, Moradi MT, Rostampour M, Khazaie H. Circulating levels of miR125a, miR126, and miR146a-5p in patients with obstructive sleep apnea and their relation with markers of endothelial dysfunction. PLoS One 2023; 18:e0287594. [PMID: 37917636 PMCID: PMC10621836 DOI: 10.1371/journal.pone.0287594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased risk factors for cardiovascular diseases (CVDs). Oxidative stress, insulin resistance, inflammation, and endothelial dysfunction are increased in OSA patients and microRNAs (miRs) are regulatory elements that influence these pathological mechanisms. miR125a, miR126, and miR146a-5p play a role in these pathological mechanisms and have not been evaluated in patients with OSA. METHOD This case-control study was performed on 90 OSA patients and 34 controls. Circulating levels of miR125a, miR126, and miR146a-5 were determined using real-time PCR, and serum levels of hsCRP, ICAM-1, and VCAM-1 were evaluated using ELISA kits. RESULTS miR125a and miR146a were elevated in patients with OSA compared to controls while miR126 decreased significantly. All three miRs indicated a remarkable difference between the mild-OSA group compared to the severe-OSA group. Furthermore, patients with OSA showed elevated levels of hsCRP, ICAM-1, and VCAM-1. Multiple linear regression indicated an independent association of miR125a with ICAM-1 and hsCRP, miR126 associated with VCAM-1 and total cholesterol, and miR146a-5p represented an association with apnea-hypopnea index and ICAM-1. Furthermore, miR146a-5p illustrated a good diagnostic ability to differentiate between OSA and controls. CONCLUSIONS Circulating miR125a, miR126, and miR146a-5p fluctuations in patients with OSA and their relations with markers of endothelial dysfunction provide in vivo evidence and suggest a potential role for these miRs with endothelial dysfunction in patients with OSA.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
14
|
Shaharyar MA, Bhowmik R, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sarkar A, Kazmi I, Karmakar S. Vaccine Formulation Strategies and Challenges Involved in RNA Delivery for Modulating Biomarkers of Cardiovascular Diseases: A Race from Laboratory to Market. Vaccines (Basel) 2023; 11:vaccines11020241. [PMID: 36851119 PMCID: PMC9963957 DOI: 10.3390/vaccines11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
It has been demonstrated that noncoding RNAs have significant physiological and pathological roles. Modulation of noncoding RNAs may offer therapeutic approaches as per recent findings. Small RNAs, mostly long noncoding RNAs, siRNA, and microRNAs make up noncoding RNAs. Inhibiting or promoting protein breakdown by binding to 3' untranslated regions of target mRNA, microRNAs post-transcriptionally control the pattern of gene expression. Contrarily, long non-coding RNAs perform a wider range of tasks, including serving as molecular scaffolding, decoys, and epigenetic regulators. This article provides instances of long noncoding RNAs and microRNAs that may be a biomarker of CVD (cardiovascular disease). In this paper we highlight various RNA-based vaccine formulation strategies designed to target these biomarkers-that are either currently in the research pipeline or are in the global pharmaceutical market-along with the physiological hurdles that need to be overcome.
Collapse
Affiliation(s)
- Md. Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
- Correspondence: (I.K.); (S.K.); Tel.: +966-543970731 (I.K.); +91-8017136385 (S.K.)
| |
Collapse
|
15
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
16
|
Liu GW, Guzman EB, Menon N, Langer RS. Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharm Res 2023; 40:3-25. [PMID: 36735106 PMCID: PMC9897626 DOI: 10.1007/s11095-023-03471-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated during health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strategies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how to surmount those challenges.
Collapse
Affiliation(s)
- Gary W Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward B Guzman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nandita Menon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Strand Therapeutics, MA, 02215, Boston, USA
| | - Robert S Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
18
|
Jiang T, Su H, Li Y, Wu Y, Ming Y, Li C, Fu R, Feng L, Li Z, Li L, Ni R, Liu Y. Post-marketing safety of immunomodulatory drugs in multiple myeloma: A pharmacovigilance investigation based on the FDA adverse event reporting system. Front Pharmacol 2022; 13:989032. [PMID: 36532784 PMCID: PMC9751748 DOI: 10.3389/fphar.2022.989032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 06/10/2024] Open
Abstract
Objective: In recent years, the emergence of immunomodulatory drugs (IMiDs) has significantly improved clinical outcomes in patients with multiple myeloma (MM); however, serious adverse events (AEs) have hindered their safe clinical application. This study aimed to characterize the safety profiles and differences in IMiDs through a disproportionality analysis using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS), a post-marketing surveillance database. Methods: This study filtered reports of thalidomide, lenalidomide, and pomalidomide as primary suspect drugs in FAERS files from January 2013 to December 2021. AEs in the reports were retrieved according to the preferred terms (PTs) of the Medical Dictionary for Regulatory Activities. Furthermore, we detected safety signals using the reporting odds ratio (ROR), proportional reporting ratio (PRR), and Bayesian belief propagation neural network (BCPNN). When all three algorithms showed an association between the target drug and the AE, a positive signal was generated. Results: We extracted 9,968 thalidomide, 231,926 lenalidomide, and 55,066 pomalidomide AE reports. AEs were more common in male patients and in those >44 years old. Important safety signals were detected based on the system organ classes (SOC), including thalidomide (cardiac disorders: ROR, 2.87; PRR, 2.79; IC 1.22), lenalidomide (gastrointestinal disorders: ROR, 2.38; PRR, 2.27; IC 0.75), and pomalidomide (respiratory, thoracic, and mediastinal disorders: ROR, 2.14; PRR, 2.09; IC 0.85). Within the PT level, we identified novel risk signals: the thalidomide-induced second primary malignancy (SPM) signal was significant; lenalidomide reduced the success rate of hematopoietic stem cell collection; and three IMiDs may cause human chorionic gonadotropin increase, but this needs to be proven by clinical data. Pneumonia, sepsis, and renal failure are common risk factors for death due to IMiDs. Compared with thalidomide and lenalidomide, pomalidomide has a lower risk of venous thromboembolism (VTE) and is beneficial to patients with renal insufficiency. Conclusion: Mining data from FAERS resulted in novel AE signals, including adenocarcinoma of colon, harvest failure of blood stem cells, and increased levels of human chorionic gonadotropin. Further investigation is required to verify the significance of these signals. Moreover, IMiDs showed differences in safety reports, which should be emphasized by clinicians.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hui Su
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yanping Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Wu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
20
|
Scavenger receptor-targeted plaque delivery of microRNA-coated nanoparticles for alleviating atherosclerosis. Proc Natl Acad Sci U S A 2022; 119:e2201443119. [PMID: 36122215 PMCID: PMC9522431 DOI: 10.1073/pnas.2201443119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis treatments by gene regulation are garnering attention, yet delivery of gene cargoes to atherosclerotic plaques remains inefficient. Here, we demonstrate that assembly of therapeutic oligonucleotides into a three-dimensional spherical nucleic acid nanostructure improves their systemic delivery to the plaque and the treatment of atherosclerosis. This noncationic nanoparticle contains a shell of microRNA-146a oligonucleotides, which regulate the NF-κB pathway, for achieving transfection-free cellular entry. Upon an intravenous injection into apolipoprotein E knockout mice fed with a high-cholesterol diet, this nanoparticle naturally targets class A scavenger receptor on plaque macrophages and endothelial cells, contributing to elevated delivery to the plaques (∼1.2% of the injected dose). Repeated injections of the nanoparticle modulate genes related to immune response and vascular inflammation, leading to reduced and stabilized plaques but without inducing severe toxicity. Our nanoparticle offers a safe and effective treatment of atherosclerosis and reveals the promise of nucleic acid nanotechnology for cardiovascular disease.
Collapse
|
21
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Zhang H, Yang K, Chen F, Liu Q, Ni J, Cao W, Hua Y, He F, Liu Z, Li L, Fan G. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front Immunol 2022; 13:975367. [PMID: 36110847 PMCID: PMC9470149 DOI: 10.3389/fimmu.2022.975367] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The CCL2-CCR2 axis is one of the major chemokine signaling pathways that has received special attention because of its function in the development and progression of cardiovascular disease. Numerous investigations have been performed over the past decades to explore the function of the CCL2-CCR2 signaling axis in cardiovascular disease. Laboratory data on the CCL2-CCR2 axis for cardiovascular disease have shown satisfactory outcomes, yet its clinical translation remains challenging. In this article, we describe the mechanisms of action of the CCL2-CCR2 axis in the development and evolution of cardiovascular diseases including heart failure, atherosclerosis and coronary atherosclerotic heart disease, hypertension and myocardial disease. Laboratory and clinical data on the use of the CCL2-CCR2 pathway as a targeted therapy for cardiovascular diseases are summarized. The potential of the CCL2-CCR2 axis in the treatment of cardiovascular diseases is explored.
Collapse
Affiliation(s)
- Haixia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ke Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianqian Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weilong Cao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Zhihao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| |
Collapse
|
23
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
24
|
Medina-Gil JM, Pérez-García A, Saavedra-Santana P, Díaz-Carrasco A, Martínez-Quintana E, Rodríguez-González F, Ramírez CM, Riaño M, Garay-Sánchez P, Tugores A. A Common Variant at the 3'untranslated Region of the CCL7 Gene (rs17735770) Is Associated With Decreased Susceptibility to Coronary Heart Disease. Front Cardiovasc Med 2022; 9:908070. [PMID: 35711383 PMCID: PMC9194478 DOI: 10.3389/fcvm.2022.908070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Monocytes participate in the development of atherosclerosis through the action of cytokines and other inflammatory mediators. Among them, CCR2 and its ligands, CCL2 and CCL7 play an important role, so the main objective of this work was to determine whether genetic variants affecting their activity were associated with cardiovascular disease. A cohort of 519 patients that have suffered coronary events was analyzed under a propensity score-matching protocol selecting a homogeneous set of cases and controls, according to age, sex, smoking status, dyslipidemia, arterial hypertension and type 2 diabetes as risk factors. While dyslipidemia and arterial hypertension were more prevalent among patients with angina pectoris, current smoking status and elevated inflammatory markers, including total leukocyte and monocyte counts, were more likely associated with acute coronary events. Propensity score matching analysis, performed to eliminate the influence of these risk factors and highlight genetic modifiers, revealed that a single nucleotide variant, rs17735770 at the 3'untranslated region of the CCL7 gene transcript, was associated with decreased cardiovascular risk in a group represented mostly by men, with an average age of 57, and without significant differences in traditional risk factors. Furthermore, the presence of this variant altered the local mRNA structure encompassing a binding site for miR-23ab, resulting in increased translation of a reporter gene in a miR23 independent fashion. The rs17735770 genetic variant led to increased expression of CCL7, a potential antagonist of CCR2 at inflammatory sites, where it could play a meaningful role during the evolution of atherosclerosis.
Collapse
Affiliation(s)
- José María Medina-Gil
- Servicio de Cardiología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Pedro Saavedra-Santana
- Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Efrén Martínez-Quintana
- Servicio de Cardiología, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Fayna Rodríguez-González
- Servicio de Oftalmología, Hospital Universitario Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | | | - Marta Riaño
- Servicio de Bioquímica Clínica y Análisis Clínicos, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Paloma Garay-Sánchez
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Antonio Tugores
- Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
- *Correspondence: Antonio Tugores
| |
Collapse
|
25
|
Nashine S, Cohen P, Wan J, Kenney C. Effect of Humanin G (HNG) on inflammation in age-related macular degeneration (AMD). Aging (Albany NY) 2022; 14:4247-4269. [PMID: 35576057 PMCID: PMC9186758 DOI: 10.18632/aging.204074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Inflammation plays a crucial role in the etiology and pathogenesis of AMD (Age-related Macular Degeneration). Humanin G (HNG) is a Mitochondrial Derived Peptide (MDP) that is cytoprotective in AMD and can protect against mitochondrial and cellular stress induced by damaged AMD mitochondria. The goal of this study was to test our hypothesis that inflammation-associated marker protein levels are increased in AMD and treatment with HNG leads to reduction in their protein levels. Humanin protein levels were measured in the plasma of AMD patients and normal subjects using ELISA assay. Humanin G was added to AMD and normal (control) cybrids which had identical nuclei from mitochondria-deficient ARPE-19 cells but differed in mitochondrial DNA (mtDNA) content derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal cybrids, and the Luminex XMAP multiplex assay was used to measure the levels of inflammatory proteins. AMD plasma showed reduced Humanin protein levels, but higher protein levels of inflammation markers compared to control plasma samples. In AMD RPE cybrid cells, Humanin G reduced the CD62E/ E-Selectin, CD62P/ P-Selectin, ICAM-1, TNF-α, MIP-1α, IFN–γ, IL-1β, IL-13, and IL-17A protein levels, thereby suggesting that Humanin G may rescue from mtDNA-mediated inflammation in AMD cybrids. In conclusion, we present novel findings that: A) show reduced Humanin protein levels in AMD plasma vs. normal plasma; B) suggest the role of inflammatory markers in AMD pathogenesis, and C) highlight the positive effects of Humanin G in reducing inflammation in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Pinchas Cohen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Junxiang Wan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Distasio N, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. Design and development of Branched Poly(ß-aminoester) nanoparticles for Interleukin-10 gene delivery in a mouse model of atherosclerosis. Acta Biomater 2022; 143:356-371. [PMID: 35257950 DOI: 10.1016/j.actbio.2022.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
Abstract
Atherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque. The anionic coating affords NP-VHPK with significantly lower toxicity than uncoated NPs in both endothelial cells and red blood cells (RBCs). Following injection of NP-VHPK in ApoE-/- mice, Cy5-labelled IL-10 significantly accumulates in both whole aortas and aortic sinus sections containing plaque compared to injection with a non-targeted control. Furthermore, IL-10 gene delivery results in an attenuation of inflammation locally at the plaque site. NP-VHPK may thus have the potential to reduce the inflammatory component of atherosclerosis in a safe and effective manner. STATEMENT OF SIGNIFICANCE: Atherosclerosis is a chronic inflammatory disease that results in the formation of lipid-laden plaques within vascular walls. Although treatments using drugs and antibodies are now beginning to address the inflammation in atherosclerosis, neither is sufficient for long-term therapy. In this paper, we introduce a strategy to deliver genes encoding the anti-inflammatory protein interleukin-10 (IL-10) in vivo. We showed that Branched Poly(ß-aminoester) carrying the IL-10 gene are able to localize specifically at the plaque via surface-functionalized targeting moieties against inflamed VCAM-1 and/or ICAM-1 and to facilitate gene transcription by ECs to increase the local concentration of the IL-10 within the plaque. To date, there is no report involving non-viral nanotechnology to provide gene-based therapies for atherosclerosis.
Collapse
|
27
|
Milošević N, Rütter M, David A. Endothelial Cell Adhesion Molecules- (un)Attainable Targets for Nanomedicines. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:846065. [PMID: 35463298 PMCID: PMC9021548 DOI: 10.3389/fmedt.2022.846065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Endothelial cell adhesion molecules have long been proposed as promising targets in many pathologies. Despite promising preclinical data, several efforts to develop small molecule inhibitors or monoclonal antibodies (mAbs) against cell adhesion molecules (CAMs) ended in clinical-stage failure. In parallel, many well-validated approaches for targeting CAMs with nanomedicine (NM) were reported over the years. A wide range of potential applications has been demonstrated in various preclinical studies, from drug delivery to the tumor vasculature, imaging of the inflamed endothelium, or blocking immune cells infiltration. However, no NM drug candidate emerged further into clinical development. In this review, we will summarize the most advanced examples of CAM-targeted NMs and juxtapose them with known traditional drugs against CAMs, in an attempt to identify important translational hurdles. Most importantly, we will summarize the proposed strategies to enhance endothelial CAM targeting by NMs, in an attempt to offer a catalog of tools for further development.
Collapse
|
28
|
Amiri P, Hosseini SA, Ghaffari S, Tutunchi H, Ghaffari S, Mosharkesh E, Asghari S, Roshanravan N. Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular Diseases: A comprehensive narrative review. Front Pharmacol 2022; 12:837509. [PMID: 35185553 PMCID: PMC8847574 DOI: 10.3389/fphar.2021.837509] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVD) are major causes of death worldwide. Recently, new roles for intestinal microbiota in pathology and treatment of CVD have been proposed. Butyrate, a bacterial metabolite, is synthesized in the gut and performs most of its functions in there. However, researchers have discovered that butyrate could enter to portal vein and interact with various organs. Butyrate exhibits a broad range of pharmacological activities, including microbiome modulator, anti-inflammatory, anti-obesity, metabolic pathways regulator, anti-angiogenesis, and antioxidant. In this article we review evidence supporting a potentially therapeutic role for butyrate in CVD and the mechanisms and pathways involved in the cardio-protective effects of butyrate from the gut and circulation to the nervous system. In summary, although butyrate exhibits a wide variety of biological activities in different pathways including energy homeostasis, glucose and lipid metabolism, inflammation, oxidative stress, neural signaling, and epigenetic modulation in experimental settings, it remains unclear whether these findings are clinically relevant and whether the molecular pathways are activated by butyrate in humans.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamsi Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
30
|
Chen J, Zhang X, Millican R, Lynd T, Gangasani M, Malhotra S, Sherwood J, Hwang PT, Cho Y, Brott BC, Qin G, Jo H, Yoon YS, Jun HW. Recent Progress in in vitro Models for Atherosclerosis Studies. Front Cardiovasc Med 2022; 8:790529. [PMID: 35155603 PMCID: PMC8829969 DOI: 10.3389/fcvm.2021.790529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is the primary cause of hardening and narrowing arteries, leading to cardiovascular disease accounting for the high mortality in the United States. For developing effective treatments for atherosclerosis, considerable efforts have been devoted to developing in vitro models. Compared to animal models, in vitro models can provide great opportunities to obtain data more efficiently, economically. Therefore, this review discusses the recent progress in in vitro models for atherosclerosis studies, including traditional two-dimensional (2D) systems cultured on the tissue culture plate, 2D cell sheets, and recently emerged microfluidic chip models with 2D culture. In addition, advanced in vitro three-dimensional models such as spheroids, cell-laden hydrogel constructs, tissue-engineered blood vessels, and vessel-on-a-chip will also be covered. Moreover, the functions of these models are also summarized along with model discussion. Lastly, the future perspectives of this field are discussed.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Tyler Lynd
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Manas Gangasani
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shubh Malhotra
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Younghye Cho
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Family Medicine Clinic, Obesity, Metabolism, and Nutrition Center and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Brigitta C. Brott
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- Endomimetics, LLC., Birmingham, AL, United States
- *Correspondence: Ho-Wook Jun
| |
Collapse
|
31
|
Ganesh D, Jain P, Shanthamurthy CD, Toraskar S, Kikkeri R. Targeting Selectins Mediated Biological Activities With Multivalent Probes. Front Chem 2021; 9:773027. [PMID: 34926401 PMCID: PMC8677667 DOI: 10.3389/fchem.2021.773027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Selectins are type-I transmembrane glycoproteins that are ubiquitously expressed on activated platelets, endothelial cells, and leukocytes. They bind to cell surface glycoproteins and extracellular matrix ligands, regulate the rolling of leukocytes in the blood capillaries, and recruit them to inflammatory sites. Hence, they are potential markers for the early detection and inhibition of inflammatory diseases, thrombosis, cardiovascular disorders, and tumor metastasis. Fucosylated and sialylated glycans, such as sialyl Lewisx, its isoform sialyl Lewisa, and heparan sulfate, are primary selectin ligands. Functionalization of these selectin-binding ligands on multivalent probes, such as nanoparticles, liposomes, and polymers, not only inhibits selectin-mediated biological activity but is also involved in direct imaging of the inflammation site. This review briefly summarizes the selectin-mediated various diseases such as thrombosis, cancer and recent progress in the different types of multivalent probes used to target selectins.
Collapse
Affiliation(s)
- Deepak Ganesh
- Indian Institute of Science Education and Research, Pune, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Pune, India
| | | | - Suraj Toraskar
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
32
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
33
|
Barutta F, Corbetta B, Bellini S, Guarrera S, Matullo G, Scandella M, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Durazzo M, Gruden G. MicroRNA 146a is associated with diabetic complications in type 1 diabetic patients from the EURODIAB PCS. J Transl Med 2021; 19:475. [PMID: 34823560 PMCID: PMC8614036 DOI: 10.1186/s12967-021-03142-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNA-146a-5p (miR-146a-5p) is a key regulator of inflammatory processes. Expression of miR-146a-5p is altered in target organs of diabetic complications and deficiency of miR-146a-5p has been implicated in their pathogenesis. We investigated if serum miR-146a-5p levels were independently associated with micro/macrovascular complications of type 1 diabetes (DM1). Methods A nested case–control study from the EURODIAB PCS of 447 DM1 patients was performed. Cases (n = 294) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication. Total RNA was isolated from all subjects and miR-146a-5p levels measured by qPCR. Both the endogenous controls U6 snRNA and the spike (Cel-miR-39) were used to normalize the results. Logistic regression analysis was carried out to investigate the association of miR-146a-5p with diabetes complications. Results MiR-146a-5p levels were significantly lower in cases [1.15 (0.32–3.34)] compared to controls [1.74 (0.44–6.74) P = 0.039]. Logistic regression analysis showed that levels of miR-146a-5p in the upper quartile were inversely associated with reduced odds ratio (OR) of all complications (OR 0.34 [95% CI 0.14–0.76]) and particularly with cardiovascular diseases (CVD) (OR 0.31 [95% CI 0.11–0.84]) and diabetic retinopathy (OR 0.40 [95% CI 0.16–0.99]), independently of age, sex, diabetes duration, A1c, hypertension, AER, eGFR, NT-proBNP, and TNF-α. Conclusions In this large cohort of DM1 patients, we reported an inverse and independent association of miR-146a-5p with diabetes chronic complications and in particular with CVD and retinopathy, suggesting that miR-146a-5p may be a novel candidate biomarker of DM1 complications. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03142-4.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.
| | - Beatrice Corbetta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Stefania Bellini
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Matullo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.,Medical Genetics Unit, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Michela Scandella
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sabita S Soedamah-Muthu
- Center of Research On Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.,Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Marilena Durazzo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
34
|
Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021; 12:755569. [PMID: 34867370 PMCID: PMC8633109 DOI: 10.3389/fphar.2021.755569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
35
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
36
|
Sisk LJ, Patel RK, Stevens KK. A descriptive analysis of non-human leukocyte antigens present in renal transplant donor-recipient pairs. Transpl Immunol 2021; 69:101474. [PMID: 34582968 DOI: 10.1016/j.trim.2021.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION End stage renal disease (ESRD) is the irreversible deterioration of renal function requiring renal replacement therapy by dialysis or transplant. Human leucocyte antigens (HLA) have been well examined however research still is required into the non-HLA antibodies. Antibody mediated rejection (AMR) can be seen in the absence of HLA antibodies on biopsies of patients who have received identical transplants; anti-endothelial cell antibodies may explain this. Investigation into endothelial cell antigens on donor and recipient endothelium may elucidate and stratify the degree of risk of any given transplant and may guide towards the best matched donor. METHODS Protein array analysis was carried out on 8 patient pairs using nitro-cellulose membranes and biotinylated detection antibodies. The fluorescence emitted was captured by X-Ray film and results were recorded with ImageJ software. A fold increase of more than 2 was considered to be positive. RESULTS 11 proteins identified had a fold increase of increase ≥2 and were present in ≥2 patient pairs which may point to potential clinical utility. Nectin2/CD112 may be measured in order analyse graft survival time in transplant recipients. Prognosticating renal failure has clinical importance and potential markers that have been identified to aid which include MEPE, CRELD2, and TIMP-4. Novel pharmacological therapies for specific biomarkers identified in this study include JAM-A, E-Selectin, CD147, Galectin-3, JAM-C, PAR-1, and TNFR2. CONCLUSION Protein analysis showed differences in expression of antigens between patients with and without Chronic Kidney Disease (CKD). This information could be used at the matching stage of renal transplantation and also in the treatment of rejection episodes. The results highlight biomarkers that potentially prognosticate and pharmacological therapies that may ameliorate kidney disease and rejection in ESRD and transplant recipients.
Collapse
Affiliation(s)
- Louis J Sisk
- University of Glasgow, United Kingdom; British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom.
| | - Rajan K Patel
- University of Glasgow, United Kingdom; British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom
| | - Kathryn K Stevens
- University of Glasgow, United Kingdom; British Heart Foundation Cardiovascular Research Centre, University of Glasgow, United Kingdom
| |
Collapse
|
37
|
Márquez AB, van der Vorst EPC, Maas SL. Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. J Clin Med 2021; 10:3825. [PMID: 34501271 PMCID: PMC8432216 DOI: 10.3390/jcm10173825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
38
|
Targeting the chemokine network in atherosclerosis. Atherosclerosis 2021; 330:95-106. [PMID: 34247863 DOI: 10.1016/j.atherosclerosis.2021.06.912] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 01/31/2023]
Abstract
Chemokines and their receptors represent a potential target for immunotherapy in chronic inflammation. They comprise a large family of cytokines with chemotactic activity, and their cognate receptors are expressed on all cells of the body. This network dictates leukocyte recruitment and activation, angiogenesis, cell proliferation and maturation. Dysregulation of chemokine and chemokine receptor expression as well as function participates in many pathologies including cancer, autoimmune diseases and chronic inflammation. In atherosclerosis, a lipid-driven chronic inflammation of middle-sized and large arteries, chemokines and their receptors participates in almost all stages of the disease from initiation of fatty streaks to mature atherosclerotic plaque formation. Atherosclerosis and its complications are the main driver of mortality and morbidity in cardiovascular diseases (CVD). Hence, exploring new fields of therapeutic targeting of atherosclerosis is of key importance. This review gives an overview of the recent advances on the role of key chemokines and chemokine receptors in atherosclerosis, addresses chemokine-based biomarkers at biochemical, imaging and genetic level in human studies, and highlights the clinial trials targeting atherosclerosis.
Collapse
|
39
|
Tian Q, Leung FP, Chen FM, Tian XY, Chen Z, Tse G, Ma S, Wong WT. Butyrate protects endothelial function through PPARδ/miR-181b signaling. Pharmacol Res 2021; 169:105681. [PMID: 34019979 DOI: 10.1016/j.phrs.2021.105681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023]
Abstract
Reports of the beneficial roles of butyrate in cardiovascular diseases, such as atherosclerosis and ischemic stroke, are becoming increasingly abundant. However, the mechanisms of its bioactivities remain largely unknown. In this study, we explored the effects of butyrate on endothelial dysfunction and its potential underlying mechanism. In our study, ApoE-/- mice were fed with high-fat diet (HFD) for ten weeks to produce atherosclerosis models and concurrently treated with or without sodium butyrate daily. Thoracic aortas were subsequently isolated from C57BL/6 wild-type (WT), PPARδ-/-, endothelial-specific PPARδ wild-type (EC-specific PPARδ WT) and endothelial-specific PPARδ knockout (EC-specific PPARδ KO) mice were stimulated with interleukin (IL)-1β with or without butyrate ex vivo. Our results demonstrated that butyrate treatment rescued the impaired endothelium-dependent relaxations (EDRs) in thoracic aortas of HFD-fed ApoE-/- mice. Butyrate also rescued impaired EDRs in IL-1β-treated thoracic aorta ring ex vivo. Global and endothelial-specific knockout of PPARδ eliminated the protective effects of butyrate against IL-1β-induced impairment to EDRs. Butyrate abolished IL-1β-induced reactive oxygen species (ROS) production in endothelial cells while the inhibitory effect was incapacitated by genetic deletion of PPARδ or pharmacological inhibition of PPARδ. IL-1β increased NADPH oxidase 2 (NOX2) mRNA and protein expressions in endothelial cells, which were prevented by butyrate treatment, and the effects of butyrate were blunted following pharmacological inhibition of PPARδ. Importantly, butyrate treatment upregulated the miR-181b expression in atherosclerotic aortas and IL-1β-treated endothelial cells. Moreover, transfection of endothelial cells with miR-181b inhibitor abolished the suppressive effects of butyrate on NOX2 expressions and ROS generation in endothelial cells. To conclude, butyrate prevents endothelial dysfunction in atherosclerosis by reducing endothelial NOX2 expression and ROS production via the PPARδ/miR-181b pathway.
Collapse
Affiliation(s)
- Qinqin Tian
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis M Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhenyu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Tse
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MICH, USA
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
40
|
Zhu R, Zhao Y, Tian D, Guo N, Zhang C, Liu X. GWAS-linked hot loci predict short-term functional outcome and recurrence of ischemic stroke in Chinese population. Am J Transl Res 2021; 13:4521-4534. [PMID: 34150032 PMCID: PMC8205681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In the past decade, an increasing number of genome-wide association studies (GWASs) have been applied to ischemic stroke (IS) susceptibility and recovery. In our study, six GWAS-linked hot loci (ALDH2 rs10744777, HDAC9 rs2107595, ABO rs532436, PATJ rs76221407, LOC105372028 rs1842681 and PTCH1 rs2236406) were selected, genotyped and analyzed in 982 IS patients from northern Chinese population, in order to explore their roles in stroke functional outcome and recurrence risk. We found that PTCH1 rs2236406 was significantly associated with functional outcome after stroke. Further logistic regression analysis revealed the variant genotype TC/CC of rs2236406 as an independent prognostic factor for poor stroke recovery in Chinese population. Meanwhile, we observed that GA/AA genotype of ABO rs532436 was statistically correlated with the increased risk of stroke recurrence, especially for patients with large-artery atherosclerosis. Moreover, multivariate Cox analysis identified ABO rs12342 as an independent predictor for IS recurrence. Further functional annotation analysis demonstrated that rs2236406 and rs2043211 were located in the transcriptionally active region, and could change the regulatory motif, transcription factor binding capacity and expression level of RP11-435O5.5 (antisense to PTCH1) and ABO, respectively. In summary, our results suggested that PTCH1 rs2236406 and ABO rs532436 may be novel genetic markers and potential therapeutic targets for stroke prognosis. More studies are required to confirm our findings and clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University Shenyang, Liaoning, China
| | - Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University Shenyang, Liaoning, China
| | - Na Guo
- Department of Neurology, First Affiliated Hospital of China Medical University Shenyang, Liaoning, China
| | - Chenguang Zhang
- Department of Neurology, First Affiliated Hospital of China Medical University Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University Shenyang, Liaoning, China
| |
Collapse
|
41
|
Van Guilder GP, Preston CC, Munce TA, Faustino RS. Impacts of circulating microRNAs in exercise-induced vascular remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H2401-H2415. [PMID: 33989080 DOI: 10.1152/ajpheart.00894.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular adaptation underlies all athletic training modalities, with a variety of factors contributing to overall response during exercise-induced stimulation. In this regard the role of circulating biomarkers is a well-established and invaluable tool for monitoring cardiovascular function. Specifically, novel biomarkers such as circulating cell free DNA and RNA are now becoming attractive tools for monitoring cardiovascular function with the advent of next generation technologies that can provide unprecedented precision and resolution of these molecular signatures, paving the way for novel diagnostic and prognostic avenues to better understand physiological remodeling that occurs in trained versus untrained states. In particular, microRNAs are a species of regulatory RNAs with pleiotropic effects on multiple pathways in tissue-specific manners. Furthermore, the identification of cell free microRNAs within peripheral circulation represents a distal signaling mechanism that is just beginning to be explored via a diversity of molecular and bioinformatic approaches. This article provides an overview of the emerging field of sports/performance genomics with a focus on the role of microRNAs as novel functional diagnostic and prognostic tools, and discusses present knowledge in the context of athletic vascular remodeling. This review concludes with current advantages and limitations, touching upon future directions and implications for applying contemporary systems biology knowledge of exercise-induced physiology to better understand how disruption can lead to pathology.
Collapse
Affiliation(s)
- Gary P Van Guilder
- Vascular Protection Research Laboratory, Exercise & Sport Science Department, Western Colorado University, Gunnison, Colorado
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Thayne A Munce
- Environmental Influences on Health & Disease Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
42
|
Martin NJ, Chami B, Vallejo A, Mojadadi AA, Witting PK, Ahmad G. Efficacy of the Piperidine Nitroxide 4-MethoxyTEMPO in Ameliorating Serum Amyloid A-Mediated Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22094549. [PMID: 33925294 PMCID: PMC8123591 DOI: 10.3390/ijms22094549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular redox imbalance in endothelial cells (EC) can lead to endothelial dysfunction, which underpins cardiovascular diseases (CVD). The acute phase serum amyloid A (SAA) elicits inflammation through stimulating production of reactive oxygen species (ROS). The cyclic nitroxide 4-MethoxyTEMPO (4-MetT) is a superoxide dismutase mimetic that suppresses oxidant formation and inflammation. The aim of this study was to investigate whether 4-MetT inhibits SAA-mediated activation of cultured primary human aortic EC (HAEC). Co-incubating cells with 4-MetT inhibited SAA-mediated increases in adhesion molecules (VCAM-1, ICAM-1, E-selectin, and JAM-C). Pre-treatment of cells with 4-MetT mitigated SAA-mediated increases in transcriptionally activated NF-κB-p65 and P120 Catenin (a stabilizer of Cadherin expression). Mitochondrial respiration and ROS generation (mtROS) were adversely affected by SAA with decreased respiratory reserve capacity, elevated maximal respiration and proton leakage all characteristic of SAA-treated HAEC. This altered respiration manifested as a loss of mitochondrial membrane potential (confirmed by a decrease in TMRM fluorescence), and increased mtROS production as assessed with MitoSox Red. These SAA-linked impacts on mitochondria were mitigated by 4-MetT resulting in restoration of HAEC nitric oxide bioavailability as confirmed by assessing cyclic guanosine monophosphate (cGMP) levels. Thus, 4-MetT ameliorates SAA-mediated endothelial dysfunction through normalising EC redox homeostasis. Subject to further validation in in vivo settings; these outcomes suggest its potential as a therapeutic in the setting of cardiovascular pathologies where elevated SAA and endothelial dysfunction is linked to enhanced CVD.
Collapse
|
43
|
Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
45
|
Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102387. [PMID: 33753283 DOI: 10.1016/j.nano.2021.102387] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
A large majority of cardiovascular nanomedicine research has focused on fabricating designer nanoparticles for improved targeting as a means to overcome biological barriers. For cardiac related disorders, such as atherosclerosis, hypertension, and myocardial infarction, designer micro or nanoparticles are often administered into the vasculature or targeted vessel with the hope to circumvent problems associated with conventional drug delivery, including negative systemic side effects. Additionally, novel nano-drug carriers that enter circulation can be selectively uptaken by immune cells with the intended purpose that they modulate inflammatory processes and migrate locally to plaque for therapeutic payload delivery. Indeed, innovative design in nanoparticle composition, formulation, and functionalization has advanced the field as a means to achieve therapeutic efficacy for a variety of cardiac disease indications. This perspective aims to discuss these advances and provide new interpretations of how nanotechnology can be best applied to aid in cardiovascular disease treatment. In an effort to spark discussions on where the field of research should go, we share our outlook in new areas of nanotechnological inclusion and integration, such as in vascular, implantable, or wearable device technologies as well as nanocomposites and nanocoatings. Further, as cardiovascular diseases (CVD) increasingly claim a number of lives globally, we propose more attention should be placed by researchers on nanotechnological approaches for risk factor treatment to aid in early prevention and treatment of CVD.
Collapse
|
46
|
Brewster LM, Bain AR, Garcia VP, Fandl HK, Stone R, DeSouza NM, Greiner JJ, Tymko MM, Vizcardo-Galindo GA, Figueroa-Mujica RJ, Villafuerte FC, Ainslie PN, DeSouza CA. Global REACH 2018: dysfunctional extracellular microvesicles in Andean highlander males with excessive erythrocytosis. Am J Physiol Heart Circ Physiol 2021; 320:H1851-H1861. [PMID: 33710927 DOI: 10.1152/ajpheart.00016.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High altitude-related excessive erythrocytosis (EE) is associated with increased cardiovascular risk. The experimental aim of this study was to determine the effects of microvesicles isolated from Andean highlanders with EE on endothelial cell inflammation, oxidative stress, apoptosis, and nitric oxide (NO) production. Twenty-six male residents of Cerro de Pasco, Peru (4,340 m), were studied: 12 highlanders without EE (age: 40 ± 4 yr; BMI: 26.4 ± 1.7; Hb: 17.4 ± 0.5 g/dL, Spo2: 86.9 ± 1.0%) and 14 highlanders with EE (43 ± 4 yr; 26.2 ± 0.9; 24.4 ± 0.4 g/dL; 79.7 ± 1.6%). Microvesicles were isolated, enumerated, and collected from plasma by flow cytometry. Human umbilical vein endothelial cells were cultured and treated with microvesicles from highlanders without and with EE. Microvesicles from highlanders with EE induced significantly higher release of interleukin (IL)-6 (89.8 ± 2.7 vs. 77.1 ± 1.9 pg/mL) and IL-8 (62.0 ± 2.7 vs. 53.3 ± 2.2 pg/mL) compared with microvesicles from healthy highlanders. Although intracellular expression of total NF-κB p65 (65.3 ± 6.0 vs. 74.9 ± 7.8.9 AU) was not significantly affected in cells treated with microvesicles from highlanders without versus with EE, microvesicles from highlanders with EE resulted in an ∼25% higher (P < 0.05) expression of p-NF-κB p65 (173.6 ± 14.3 vs. 132.8 ± 12.2 AU). Cell reactive oxygen species production was significantly higher (76.4.7 ± 5.4 vs. 56.7 ± 1.7% of control) and endothelial nitric oxide synthase (p-eNOS) activation (231.3 ± 15.5 vs. 286.6 ± 23.0 AU) and NO production (8.3 ± 0.6 vs. 10.7 ± 0.7 μM/L) were significantly lower in cells treated with microvesicles from highlanders with versus without EE. Cell apoptotic susceptibility was not significantly affected by EE-related microvesicles. Circulating microvesicles from Andean highlanders with EE increased endothelial cell inflammation and oxidative stress and reduced NO production.NEW & NOTEWORTHY In this study, we determined the effects of microvesicles isolated from Andean highlanders with excessive erythrocytosis (EE) on endothelial cell inflammation, oxidative stress, apoptosis, and NO production. Microvesicles from highlanders with EE induced a dysfunctional response from endothelial cells characterized by increased cytokine release and expression of active nuclear factor-κB and reduced nitric oxide production. Andean highlanders with EE exhibit dysfunctional circulating extracellular microvesicles that induce a proinflammatory, proatherogenic endothelial phenotype.
Collapse
Affiliation(s)
- L Madden Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Anthony R Bain
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Rachel Stone
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado.,Faculty of Health and Social Development, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | | | | | | | | - Philip N Ainslie
- Faculty of Health and Social Development, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
47
|
Wang Q, Zhang L, Ji D, Qu J, Wang J, Zhang H, Li Y. CMTM3 overexpression promotes cell apoptosis while DHT promotes cell proliferation in hair follicle stem cells (HFSCs). Genomics 2021; 113:463-473. [PMID: 33358944 DOI: 10.1016/j.ygeno.2020.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In Yangtze River Delta white goat, hypermethylation of CMTM3 leads to a decreased expression level in high quality brush hair. However, the regulation of CMTM3 expression and its function in hair follicle stem cells (HFSCs) remains largely unknown. In this study, we investigated the regulation of CMTM3 expression, function, and molecular mechanism in HFSCs. The re-expression of CMTM3 significantly suppressed the proliferation of HFSCs by inducing G1 cell cycle arrest and promoting apoptosis. Moreover, the downregulation of CMTM3 promoted HFSC proliferation. Treatment with sh_CMTM3 and incubation in a DHT culture medium had the most significant growth-promoting effect. It was hypothesized that transcriptome analysis using RNA sequencing (RNA-seq) in samples would enable the identification of unique protein-coding and non-coding genes that may help uncover the role of CMTM3. Multiple genes and pathways were involved in this process, including 168 common DEGs, such as CXCL8 and E-selectin, which is reportedly involved in multiple regulatory pathways. These results indicated that CMTM3 can function as HFSCs through the induction of a G1 cell cycle arrest and promoted apoptosis by mediating crosstalk between several pathways and transcription factors. Our data is available in the National Center for Biotechnology Information (NCBI) database with the accession number PRJNA657430.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liuming Zhang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- State-operated Haimen Breeding Goat Farm, Jiangsu 226000, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
48
|
Yang D, Haemmig S, Zhou H, Pérez-Cremades D, Sun X, Chen L, Li J, Haneo-Mejia J, Yang T, Hollan I, Feinberg MW. Methotrexate attenuates vascular inflammation through an adenosine-microRNA-dependent pathway. eLife 2021; 10:58064. [PMID: 33416495 PMCID: PMC7840179 DOI: 10.7554/elife.58064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Endothelial cell (EC) activation is an early hallmark in the pathogenesis of chronic vascular diseases. MicroRNA-181b (Mir181b) is an important anti-inflammatory mediator in the vascular endothelium affecting endotoxemia, atherosclerosis, and insulin resistance. Herein, we identify that the drug methotrexate (MTX) and its downstream metabolite adenosine exert anti-inflammatory effects in the vascular endothelium by targeting and activating Mir181b expression. Both systemic and endothelial-specific Mir181a2b2-deficient mice develop vascular inflammation, white adipose tissue (WAT) inflammation, and insulin resistance in a diet-induced obesity model. Moreover, MTX attenuated diet-induced WAT inflammation, insulin resistance, and EC activation in a Mir181a2b2-dependent manner. Mechanistically, MTX attenuated cytokine-induced EC activation through a unique adenosine-adenosine receptor A3-SMAD3/4-Mir181b signaling cascade. These findings establish an essential role of endothelial Mir181b in controlling vascular inflammation and that restoring Mir181b in ECs by high-dose MTX or adenosine signaling may provide a potential therapeutic opportunity for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Dafeng Yang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Haoyang Zhou
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Lei Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Jorge Haneo-Mejia
- Department of Pathology and Laboratory Medicine, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ivana Hollan
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Lillehammer Hospital for Rheumatic diseases, Lillehammer, Norway.,Norwegian University of Science and Technology, Gjøvik, Norway
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
49
|
Zhang D, Liu L, Yuan Y, Lv T, Huang X, Tian J. Oxidative Phosphorylation-Mediated E-Selectin Upregulation Is Associated With Endothelia-Monocyte Adhesion in Human Coronary Artery Endothelial Cells Treated With Sera From Patients With Kawasaki Disease. Front Pediatr 2021; 9:618267. [PMID: 33692974 PMCID: PMC7937974 DOI: 10.3389/fped.2021.618267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background and aims: E-selectin is a cell adhesion molecule of the vascular endothelium that mediates leukocyte rolling in the early inflammatory responses in many diseases including Kawasaki disease (KD). Previous studies have demonstrated that the expression levels of E-selectin was significantly increased in the sera of KD patients and in endothelial cells of KD patient's autopsy. In this study, we aimed to examine E-selectin levels in endothelial cells treated with sera from KD patients and explore the underlying mechanisms. Methods: Human coronary artery endothelial cells (HCAECs) were randomly incubated with sera from either healthy children [healthy control (HC group)] or pediatric KD patients [assigned as KD with coronary artery lesion (KD-CAL+ group) and KD without coronary artery lesion (KD-CAL- group)]. E-selectin levels were determined by RT-qPCR, Western blotting, and immunofluorescence. Cell adhesion assay was performed to quantify the role of E-selectin in intercellular adhesion. High-throughput cell RNA sequencing followed by functional validation was performed to explore the underlying mechanism. Results: E-selectin levels were significantly increased in KD-CAL+ group vs. HC group and KD-CAL- group. Compared with the KD-CAL- group, endothelia-monocyte adhesion was increased in the KD-CAL+ group, while E-selectin-specific siRNA could significantly rescue it. High-throughput cell RNA sequencing analysis also found a significant difference in oxidative phosphorylation (OXPHOS) levels between KD-CAL+ group and KD-CAL- group. Functional validation results further confirmed that the OXPHOS was upregulated in the KD-CAL+ group and KD-CAL- group compared to that in the HC group, while the KD-CAL+ group exhibited a higher OXPHOS than the KD-CAL- group. We also found that the E-selectin levels and endothelia-monocyte adhesion were significantly decreased by OXPHOS inhibitor oligomycin in the KD-CAL+ group and KD-CAL- group, respectively. Conclusion: Sera from KD patients stimulate OXPHOS levels and enhance E-selectin expression in HCAECs, which may contribute to the development of CAL in KD patients.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lingjuan Liu
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuxing Yuan
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tiewei Lv
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xupei Huang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jie Tian
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
50
|
Arroyo AB, Águila S, Fernández-Pérez MP, Reyes-García AMDL, Reguilón-Gallego L, Zapata-Martínez L, Vicente V, Martínez C, González-Conejero R. miR-146a in Cardiovascular Diseases and Sepsis: An Additional Burden in the Inflammatory Balance? Thromb Haemost 2020; 121:1138-1150. [PMID: 33352593 DOI: 10.1055/a-1342-3648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The new concept of thrombosis associated with an inflammatory process is called thromboinflammation. Indeed, both thrombosis and inflammation interplay one with the other in a feed forward manner amplifying the whole process. This pathological reaction in response to a wide variety of sterile or non-sterile stimuli eventually causes acute organ damage. In this context, neutrophils, mainly involved in eliminating pathogens as an early barrier to infection, form neutrophil extracellular traps (NETs) that are antimicrobial structures responsible of deleterious side effects such as thrombotic complications. Although NETosis mechanisms are being unraveled, there are still many regulatory elements that have to be discovered. Micro-ribonucleic acids (miRNAs) are important modulators of gene expression implicated in human pathophysiology almost two decades ago. Among the different miRNAs implicated in inflammation, miR-146a is of special interest because: (1) it regulates among others, Toll-like receptors/nuclear factor-κB axis which is of paramount importance in inflammatory processes, (2) it regulates the formation of NETs by modifying their aging phenotype, and (3) it has expression levels that may decrease among individuals up to 50%, controlled in part by the presence of several polymorphisms. In this article, we will review the main characteristics of miR-146a biology. In addition, we will detail how miR-146a is implicated in the development of two paradigmatic diseases in which thrombosis and inflammation interact, cardiovascular diseases and sepsis, and their association with the presence of miR-146a polymorphisms and the use of miR-146a as a marker of cardiovascular diseases and sepsis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Sonia Águila
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - María P Fernández-Pérez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Laura Reguilón-Gallego
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Laura Zapata-Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| |
Collapse
|