1
|
Malcı K, Li IS, Kisseroudis N, Ellis T. Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology. ACS Synth Biol 2024; 13:3857-3875. [PMID: 39509658 DOI: 10.1021/acssynbio.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.
Collapse
Affiliation(s)
- Koray Malcı
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Ivy S Li
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Natasha Kisseroudis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
2
|
Samaniego LVB, Scandelau SL, Silva CR, Pratavieira S, de Oliveira Arnoldi Pellegrini V, Dabul ANG, Esmerino LA, de Oliveira Neto M, Hernandes RT, Segato F, Pileggi M, Polikarpov I. Thermothelomyces thermophilus exo- and endo-glucanases as tools for pathogenic E. coli biofilm degradation. Sci Rep 2024; 14:22576. [PMID: 39343957 PMCID: PMC11439960 DOI: 10.1038/s41598-024-70144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
The escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics. Here, we characterized three recombinant cellulases from Thermothelomyces thermophilus: a cellobiohydrolase I (TthCel7A), an endoglucanase (TthCel7B), and a cellobiohydrolase II (TthCel6A) as tools for hydrolysis of E. coli and Gluconacetobacter hansenii biofilms. Using a design mixture approach, we optimized the composition of cellulases, enhancing their synergistic activity to degrade the biofilms and significantly reducing the enzymatic dosage. In line with the crystalline and ordered structure of bacterial cellulose, the mixture of exo-glucanases (0.5 TthCel7A:0.5 TthCel6A) is effective in the hydrolysis of G. hansenii biofilm. Meanwhile, a mixture of exo- and endo-glucanases is required for the eradication of E. coli 042 and clinical E. coli biofilms with significantly different proportions of the enzymes (0.56 TthCel7B:0.44 TthCel6A and 0.6 TthCel7A:0.4 TthCel7B, respectively). X-ray diffraction pattern and crystallinity index of E. coli cellulose are comparable to those of carboxymethyl cellulose (CMC) substrate. Our results illustrate the complexity of E. coli biofilms and show that successful hydrolysis is achieved by a specific combination of cellulases, with consistent recurrence of TthCel7B endoglucanase.
Collapse
Affiliation(s)
| | - Samuel Luis Scandelau
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | | | - Andrei Nicoli Gebieluca Dabul
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Luís Antônio Esmerino
- Microbiology Laboratory, Clinical Analysis Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Mario de Oliveira Neto
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Rodrigo Tavanelli Hernandes
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Fernando Segato
- Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP, 12602-810, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology, and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
3
|
Ryngajłło M, Cielecka I, Daroch M. Complete genome sequence and transcriptome response to vitamin C supplementation of Novacetimonas hansenii SI1 - producer of highly-stretchable cellulose. N Biotechnol 2024; 81:57-68. [PMID: 38531507 DOI: 10.1016/j.nbt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/28/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Novacetimonas hansenii SI1, previously known as Komagataeibacter hansenii, produces bacterial nanocellulose (BNC) with unique ability to stretch. The addition of vitamin C in the culture medium increases the porosity of the membranes and their stretchability making them highly moldable. To better understand the genetic background of this strain, we obtained its complete genome sequence using a hybrid sequencing and assembly strategy. We described the functional regions in the genome which are important for the synthesis of BNC and acetan-like II polymer. We next investigated the effect of 1% vitamin C supplementation on the global gene expression profile using RNA sequencing. Our transcriptomic readouts imply that vitamin C functions mainly as a reducing agent. We found that the changes in cellular redox status are balanced by strong repression of the sulfur assimilation pathway. Moreover, in the reduced conditions, glucose oxidation is decreased and alternative pathways for energy generation, such as acetate accumulation, are activated. The presence of vitamin C negatively influences acetan-like II polymer biosynthesis, which may explain the lowered yield and changed mechanical properties of BNC. The results of this study enrich the functional characteristics of the genomes of the efficient producers of the N. hansenii species. Improved understanding of the adaptation to the presence of vitamin C at the molecular level has important guiding significance for influencing the biosynthesis of BNC and its morphology.
Collapse
Affiliation(s)
- Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, B. Stefanowskiego 2/22, Lodz 90-537, Poland.
| | - Izabela Cielecka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, B. Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
4
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
5
|
Wu QZ, Lin WQ, Wu JY, Cao LW, Li HH, Gao R, Du WZ, Sheng GP, Chen YG, Li WW. Transcriptomic Insights into Metabolism-Dependent Biosynthesis of Bacterial Nanocellulose. ACS APPLIED BIO MATERIALS 2024; 7:1801-1809. [PMID: 38416780 DOI: 10.1021/acsabm.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.
Collapse
Affiliation(s)
- Qi-Zhong Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Wei-Qiang Lin
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Yu Wu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Wen Cao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Rui Gao
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Wen-Zheng Du
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Guang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wen-Wei Li
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
7
|
Bimmer M, Reimer M, Klingl A, Ludwig C, Zollfrank C, Liebl W, Ehrenreich A. Analysis of cellulose synthesis in a high-producing acetic acid bacterium Komagataeibacter hansenii. Appl Microbiol Biotechnol 2023; 107:2947-2967. [PMID: 36930278 PMCID: PMC10106347 DOI: 10.1007/s00253-023-12461-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Bacterial cellulose (BC) represents a renewable biomaterial with unique properties promising for biotechnology and biomedicine. Komagataeibacter hansenii ATCC 53,582 is a well-characterized high-yield producer of BC used in the industry. Its genome encodes three distinct cellulose synthases (CS), bcsAB1, bcsAB2, and bcsAB3, which together with genes for accessory proteins are organized in operons of different complexity. The genetic foundation of its high cellulose-producing phenotype was investigated by constructing chromosomal in-frame deletions of the CSs and of two predicted regulatory diguanylate cyclases (DGC), dgcA and dgcB. Proteomic characterization suggested that BcsAB1 was the decisive CS because of its high expression and its exclusive contribution to the formation of microcrystalline cellulose. BcsAB2 showed a lower expression level but contributes significantly to the tensile strength of BC and alters fiber diameter significantly as judged by scanning electron microscopy. Nevertheless, no distinct extracellular polymeric substance (EPS) from this operon was identified after static cultivation. Although transcription of bcsAB3 was observed, expression of the protein was below the detection limit of proteome analysis. Alike BcsAB2, deletion of BcsAB3 resulted in a visible reduction of the cellulose fiber diameter. The high abundance of BcsD and the accessory proteins CmcAx, CcpAx, and BglxA emphasizes their importance for the proper formation of the cellulosic network. Characterization of deletion mutants lacking the DGC genes dgcA and dgcB suggests a new regulatory mechanism of cellulose synthesis and cell motility in K. hansenii ATCC 53,582. Our findings form the basis for rational tailoring of the characteristics of BC. KEY POINTS: • BcsAB1 induces formation of microcrystalline cellulose fibers. • Modifications by BcsAB2 and BcsAB3 alter diameter of cellulose fibers. • Complex regulatory network of DGCs on cellulose pellicle formation and motility.
Collapse
Affiliation(s)
- Martin Bimmer
- School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Martin Reimer
- Technical University of Munich, Campus Straubing, Schulgasse 16, 94315, Straubing, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilans-Universität München, Großhaderner Str.2, 82152, BiozentrumPlanegg-Martinsried, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Cordt Zollfrank
- Technical University of Munich, Campus Straubing, Schulgasse 16, 94315, Straubing, Germany
| | - Wolfgang Liebl
- School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
8
|
Guimarães DT, de Oliveira Barros M, de Araújo E Silva R, Silva SMF, de Almeida JS, de Freitas Rosa M, Gonçalves LRB, Brígida AIS. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. Int J Biol Macromol 2023; 242:124405. [PMID: 37100327 DOI: 10.1016/j.ijbiomac.2023.124405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The industrial residue of cashew apple juice processing (MRC) was evaluated as an alternative medium for bacterial cellulose (BC) production by Komagataeibacter xylinus ATCC 53582 and Komagataeibacter xylinus ARS B42. The synthetic Hestrin-Schramm medium (MHS) was used as a control for growing and BC production. First, BC production was assessed after 4, 6, 8, 10, and 12 days under static culture. After 12 days of cultivation, K. xylinus ATCC 53582 produced the highest BC titer in MHS (3.1 g·L-1) and MRC (3 g·L-1), while significant productivity was attained at 6 days of fermentation. To understand the effect of culture medium and fermentation time on the properties of the obtained films, BC produced at 4, 6, or 8 days were submitted to infrared spectroscopy with Fourier transform, thermogravimetry, mechanical tests, water absorption capacity, scanning electron microscopy, degree of polymerization and X-ray diffraction. The properties of BC synthesized in MRC were identical to those of BC from MHS, according to structural, physical, and thermal studies. MRC, on the other hand, allows the production of BC with a high water absorption capacity when compared to MHS. Despite the lower titer (0.88 g·L-1) achieved in MRC, the BC from K. xylinus ARS B42 presented a high thermal resistance and a remarkable absorption capacity (14664 %), suggesting that it might be used as a superabsorbent biomaterial.
Collapse
Affiliation(s)
- Darlyson Tavares Guimarães
- Rede Nordeste de Biotecnologia, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Matheus de Oliveira Barros
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Renata de Araújo E Silva
- Universidade Estadual do Ceará, Departamento de Ciência e Tecnologia, Av. Dr. Silas Munguba, 1700, Bairro Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Sarah Maria Frota Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Jessica Silva de Almeida
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Morsyleide de Freitas Rosa
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil
| | - Luciana Rocha Barros Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Ana Iraidy Santa Brígida
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil.
| |
Collapse
|
9
|
Characterization, genome analysis and genetic tractability studies of a new nanocellulose producing Komagataeibacter intermedius isolate. Sci Rep 2022; 12:20520. [PMID: 36443480 PMCID: PMC9705422 DOI: 10.1038/s41598-022-24735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial nanocellulose (BC) is a highly versatile biopolymer currently pursued as a material of choice in varied themes of biomedical and material science research fields. With the aim to extend the biotechnological applications, the genetic tractability of the BC producers within the Komagataeibacter genus and its potential as an alternative host chassis in synthetic biology have been extensively studied. However, such studies have been largely focused on the model Komagataeibacter spp. Here, we present a novel K. intermedius strain capable of utilizing glucose, and glycerol sources for biomass and BC synthesis. Genome assembly identified one bacterial cellulose synthetase (bcs) operon containing the complete gene set encoding the BC biogenesis machinery (bcsI) and three additional copies (bcsII-IV). Investigations on the genetic tractability confirmed plasmid transformation, propagation of vectors with pBBR1 and p15A origin of replications and constitutive and inducible induction of recombinant protein in K. intermedius ENS15. This study provides the first report on the genetic tractability of K. intermedius, serving as starting point towards future genetic engineering of this strain.
Collapse
|
10
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Szymczak I, Pietrzyk-Brzezińska AJ, Duszyński K, Ryngajłło M. Characterization of the Putative Acylated Cellulose Synthase Operon in Komagataeibacter xylinus E25. Int J Mol Sci 2022; 23:ijms23147851. [PMID: 35887199 PMCID: PMC9318390 DOI: 10.3390/ijms23147851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose is a natural polymer with an expanding array of applications. Because of this, the main cellulose producers of the Komagataeibacter genus have been extensively studied with the aim to increase its synthesis or to customize its physicochemical features. Up to now, the genetic studies in Komagataeibacter have focused on the first cellulose synthase operon (bcsI) encoding the main enzyme complex. However, the role of other accessory cellulose operons has been understudied. Here we aimed to fill this gap by performing a detailed analysis of the second cellulose synthase operon (bcsII), which is putatively linked with cellulose acylation. In this study we harnessed the genome sequence, gene expression and protein structure information of K. xylinus E25 and other Komagataeibacter species to discuss the probable features of bcsII and the biochemical function of its main protein products. The results of our study support the previous hypothesis that bcsII is involved in the synthesis of the acylated polymer and expand it by presenting the evidence that it may also function in the regulation of its attachment to the cell surface and to the crystalline cellulose fibers.
Collapse
|
12
|
Chiolerio A, Dehshibi MM, Manfredi D, Adamatzky A. Living wearables: Bacterial reactive glove. Biosystems 2022; 218:104691. [PMID: 35595195 DOI: 10.1016/j.biosystems.2022.104691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
A reactive bacterial glove is a cotton glove colonised by Acetobacter aceti, an example of biofabrication of a living electronic sensing device. The bacterial colony, supported by a cellulose-based hydrogel, forms a several millimetres-thick living coating on the surface of the glove. This paper proposes a novel method for analysing the complex electrical activity of trains of spikes generated by a living colony. The proposed method, which primarily focuses on dynamic entropy analysis, shows that the bacterial glove responds to mechanical triaxial stimuli by producing travelling patterns of electrical activity. Kolmogorov complexity further supports our investigation into the evolution of dynamic patterns of such waves in the hydrogel and shows how stimuli initiate electrical activity waves across the glove. These waves are diffractive and ultimately are suppressed by depression. Our experiments demonstrate that living substrates could be used to enable reactive sensing wearable by means of living colonies of bacteria, once the paradigm of excitation wave propagation and reflection is implemented.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center for Converging Technologies, Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 10163 Genova, Italy; Unconventional Computing Laboratory, University of the West England, Bristol, UK.
| | - Mohammad Mahdi Dehshibi
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain; Unconventional Computing Laboratory, University of the West England, Bristol, UK
| | - Diego Manfredi
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West England, Bristol, UK
| |
Collapse
|
13
|
Hsu CY, Lin SC, Wu YH, Hu CY, Chen YT, Chen YC. The Antimicrobial Effects of Bacterial Cellulose Produced by Komagataeibacter intermedius in Promoting Wound Healing in Diabetic Mice. Int J Mol Sci 2022; 23:ijms23105456. [PMID: 35628265 PMCID: PMC9142012 DOI: 10.3390/ijms23105456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
As a conventional medical dressing, medical gauze does not adequately protect complex and hard-to-heal diabetic wounds and is likely to permit bacterial entry and infections. Therefore, it is necessary to develop novel dressings to promote wound healing in diabetic patients. Komagataeibacter intermedius was used to produce unmodified bacterial cellulose, which is rarely applied directly to diabetic wounds. The produced cellulose was evaluated for wound recovery rate, level of inflammation, epidermal histopathology, and antimicrobial activities in treated wounds. Diabetic mices' wounds treated with bacterial cellulose healed 1.63 times faster than those treated with gauze; the values for the skin indicators in bacterial cellulose treated wounds were more significant than those treated with gauze. Bacterial cellulose was more effective than gauze in promoting tissue proliferation with more complete epidermal layers and the formation of compact collagen in the histological examination. Moreover, wounds treated with bacterial cellulose alone had less water and glucose content than those treated with gauze; this led to an increase of 6.82 times in antimicrobial protection, lower levels of TNF-α and IL-6 (39.6% and 83.2%), and higher levels of IL-10 (2.07 times) than in mice wounds treated with gauze. The results show that bacterial cellulose produced using K. intermedius beneficially affects diabetic wound healing and creates a hygienic microenvironment by preventing inflammation. We suggest that bacterial cellulose can replace medical gauze as a wound dressing for diabetic patients.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Sheng-Che Lin
- Department of Surgery, Tainan Municipal An-Nan Hospital, China Medical University, Tainan 709204, Taiwan;
| | - Yi-Hsuan Wu
- Department of Cardiovascular Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan;
| | - Chun-Yi Hu
- Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan;
| | - Yung-Tsung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung City 202301, Taiwan;
| | - Yo-Chia Chen
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: ; Tel.: +88-68-7703-202 (ext. 5181); Fax: 88-68-7740-550
| |
Collapse
|
14
|
A turning point in the bacterial nanocellulose production employing low doses of gamma radiation. Sci Rep 2022; 12:7012. [PMID: 35488046 PMCID: PMC9054840 DOI: 10.1038/s41598-022-11010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
In the recent years, huge efforts have been conducted to conceive a cost-effective production process of the bacterial nanocellulose (BNC), thanks to its marvelous properties and broadening applications. Herein, we unveiled the impact of gamma irradiation on the BNC yield by a novel bacterial strain Komagataeibacter hansenii KO28 which was exposed to different irradiation doses via a designed scheme, where the productivity and the structural properties of the BNC were inspected. After incubation for 240 h, the highest BNC yield was perceived from the culture treated twice with 0.5 kGy, recording about 475% higher than the control culture. Furthermore, almost 92% of its BNC yield emerged in the first six days. The physicochemical characteristics of the BNCs were investigated adopting scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Additionally, the water holding capacity, water release rate, surface area (BET), and mechanical properties were configured for the BNC generated from the control and the irradiated cultures. As a whole, there were no significant variations in the properties of the BNC produced by the irradiated cultures versus the control, proposing the strain irradiation as a valuable, facile, and cheap route to augment the BNC yield.
Collapse
|
15
|
Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology. Polym J 2022. [DOI: 10.1038/s41428-021-00606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Li G, Wang L, Deng Y, Wei Q. Research progress of the biosynthetic strains and pathways of bacterial cellulose. J Ind Microbiol Biotechnol 2022; 49:kuab071. [PMID: 34549273 PMCID: PMC9113090 DOI: 10.1093/jimb/kuab071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022]
Abstract
Bacterial cellulose is a glucose biopolymer produced by microorganisms and widely used as a natural renewable and sustainable resource in the world. However, few bacterial cellulose-producing strains and low yield of cellulose greatly limited the development of bacterial cellulose. In this review, we summarized the 30 cellulose-producing bacteria reported so far, including the physiological functions and the metabolic synthesis mechanism of bacterial cellulose, and the involved three kinds of cellulose synthases (type I, type II, and type III), which are expected to provide a reference for the exploration of new cellulose-producing microbes.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Li Wang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Singhania RR, Patel AK, Tseng YS, Kumar V, Chen CW, Haldar D, Saini JK, Dong CD. Developments in bioprocess for bacterial cellulose production. BIORESOURCE TECHNOLOGY 2022; 344:126343. [PMID: 34780908 DOI: 10.1016/j.biortech.2021.126343] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) represents a novel bio-origin nonomaterial with its unique properties having diverse applications. Increased market demand and low yield are the major reason for its higher cost. Bacteria belonging to Komagataeibacter sp are the most exploited ones for BC production. Development of a cost-effective bioprocess for higher BC production is desirable. Though static fermentation modes have been majorly employed for BC production using tray fermenters, agitated mode has also been employed successfully with air-lift fermenters as well as stirred tank reactors. Bioprocess advances in recent years has led BC production to an upper level; however, challenges of aeration requirement and labor cost towards the higher end is associated with static cultivation at large scale. We have discussed the bioprocess development for BC production in recent years along with the challenges associated and the path forward.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
18
|
Goosens VJ, Walker KT, Aragon SM, Singh A, Senthivel VR, Dekker L, Caro-Astorga J, Buat MLA, Song W, Lee KY, Ellis T. Komagataeibacter Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria. ACS Synth Biol 2021; 10:3422-3434. [PMID: 34767345 DOI: 10.1021/acssynbio.1c00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community.
Collapse
Affiliation(s)
- Vivianne J. Goosens
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Silvia M. Aragon
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Vivek R. Senthivel
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Linda Dekker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Joaquin Caro-Astorga
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | | | - Wenzhe Song
- Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K
| | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
19
|
Jacek P, Silva FASD, Dourado F, Bielecki S, Gama M. Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Moradi M, Jacek P, Farhangfar A, Guimarães JT, Forough M. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review. Int J Biol Macromol 2021; 183:635-650. [PMID: 33957199 DOI: 10.1016/j.ijbiomac.2021.04.173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
Natural polysaccharides are well-known biomaterials because of their availability and low-cost, with applications in diverse fields. Cellulose, a renowned polysaccharide, can be obtained from different sources including plants, algae, and bacteria, but recently much attention has been paid to the microorganisms due to their potential of producing renewable compounds. In this regard, bacterial nanocellulose (BNC) is a novel type of nanocellulose material that is commercially synthesized mainly by Komagataeibacter spp. Characteristics such as purity, porosity, and remarkable mechanical properties made BNC a superior green biopolymer with applications in pharmacology, biomedicine, bioprocessing, and food. Genetic manipulation of BNC-producing strains and in situ modifications of the culturing conditions can lead to BNC with enhanced yield/productivity and properties. This review mainly highlights the role of genetic engineering of Komagataeibacter strains and co-culturing of bacterial strains with additives such as microorganisms and nanomaterials to synthesize BNC with improved functionality and productivity rate.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Paulina Jacek
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany.
| | | | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| |
Collapse
|
21
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
22
|
Chiolerio A, Adamatzky A. Acetobacter Biofilm: Electronic Characterization and Reactive Transduction of Pressure. ACS Biomater Sci Eng 2021; 7:1651-1662. [PMID: 33780232 PMCID: PMC8153400 DOI: 10.1021/acsbiomaterials.0c01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
The bacterial skin studied here is a several centimeter-wide colony of Acetobacter aceti living on a cellulose-based hydrogel. We demonstrate that the colony exhibits trains of spikes of extracellular electrical potential, with amplitudes of the spikes varying from 1 to 17 mV. The bacterial pad responds to mechanical stimulation with distinctive changes in its electrical activity. While studying the passive electrical properties of the bacterial pad, we found that the pad provides an open-circuit voltage drop (between 7 and 25 mV) and a small short-circuit current (1.5-4 nA). We also observed by pulsed tomography and spatially resolved impedance spectroscopy that the conduction occurs along preferential paths, with the peculiar side-effect of having a higher resistance between closer electrodes. We speculate that the Acetobacter biofilms could be utilized in the development of living skin for soft robots: such skin will act as an electrochemical battery and a reactive tactile sensor. It could even be used for wearable devices.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, Torino 10144, Italy
- Unconventional
Computing Laboratory, University of the
West of England, Coldharbour
Lane, Bristol BS16 1QY, United Kingdom
| | - Andrew Adamatzky
- Unconventional
Computing Laboratory, University of the
West of England, Coldharbour
Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
23
|
Li Z, Chen SQ, Cao X, Li L, Zhu J, Yu H. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Komagataeibacter hansenii ATCC 53582. J Microbiol Biotechnol 2021; 31:429-438. [PMID: 33323677 PMCID: PMC9705897 DOI: 10.4014/jmb.2010.10054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.
Collapse
Affiliation(s)
- Zhaofeng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Si-Qian Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Xiao Cao
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Lin Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, P.R. China,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology, Dongguan 523808, P.R. China,Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, P.R. China,Corresponding authors J. Zhu Phone: +86-769-22862195 Fax: +86-769-22861680 E-mail:
| | - Hongpeng Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China,H. Yu E-mail:
| |
Collapse
|
24
|
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. Int J Mol Sci 2021; 22:2836. [PMID: 33799554 PMCID: PMC8000719 DOI: 10.3390/ijms22062836] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the skin care field, bacterial nanocellulose (BNC), a versatile polysaccharide produced by non-pathogenic acetic acid bacteria, has received increased attention as a promising candidate to replace synthetic polymers (e.g., nylon, polyethylene, polyacrylamides) commonly used in cosmetics. The applicability of BNC in cosmetics has been mainly investigated as a carrier of active ingredients or as a structuring agent of cosmetic formulations. However, with the sustainability issues that are underway in the highly innovative cosmetic industry and with the growth prospects for the market of bio-based products, a much more prominent role is envisioned for BNC in this field. Thus, this review provides a comprehensive overview of the most recent (last 5 years) and relevant developments and challenges in the research of BNC applied to cosmetic, aiming at inspiring future research to go beyond in the applicability of this exceptional biotechnological material in such a promising area.
Collapse
Affiliation(s)
| | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (T.A.); (A.J.D.S.); (C.V.)
| |
Collapse
|
25
|
Structure of the Bacterial Cellulose Ribbon and Its Assembly-Guiding Cytoskeleton by Electron Cryotomography. J Bacteriol 2021; 203:JB.00371-20. [PMID: 33199282 PMCID: PMC7811197 DOI: 10.1128/jb.00371-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
This work’s relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus Gluconacetobacter secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused-ion-beam milling of native bacterial biofilms to image cellulose-synthesizing Gluconacetobacter hansenii and Gluconacetobacter xylinus bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several micrometers in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, which we have named the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We found that this structure is not present in other cellulose-synthesizing bacterial species, Agrobacterium tumefaciens and Escherichia coli 1094, which do not produce organized cellulose ribbons. We therefore propose that the cortical belt holds the cellulose synthase complexes in a line to form higher-order cellulose structures, such as sheets and ribbons. IMPORTANCE This work’s relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. It puts forward a noncharacterized cytoskeleton element associated with the side of the cell where the cellulose synthesis occurs. This represents a step forward in the understanding of the cell-guided process of crystalline cellulose synthesis, studied specifically in the Gluconacetobacter genus and still not fully understood. Additionally, our successful attempt to use cryo-focused-ion-beam milling through biofilms to image the cells in their native environment will drive the community to use this tool for the morphological characterization of other studied biofilms.
Collapse
|
26
|
Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering Bacterial Cellulose by Synthetic Biology. Int J Mol Sci 2020; 21:E9185. [PMID: 33276459 PMCID: PMC7730232 DOI: 10.3390/ijms21239185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.
Collapse
Affiliation(s)
- Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
27
|
Yu K, Balasubramanian S, Pahlavani H, Mirzaali MJ, Zadpoor AA, Aubin-Tam ME. Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50748-50755. [PMID: 33112612 PMCID: PMC7662910 DOI: 10.1021/acsami.0c15886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 05/10/2023]
Abstract
Natural materials, such as nacre and silk, exhibit both high strength and toughness due to their hierarchical structures highly organized at the nano-, micro-, and macroscales. Bacterial cellulose (BC) presents a hierarchical fibril structure at the nanoscale. At the microscale, however, BC nanofibers are distributed randomly. Here, BC self-assembles into a highly organized spiral honeycomb microstructure giving rise to a high tensile strength (315 MPa) and a high toughness value (17.8 MJ m-3), with pull-out and de-spiral morphologies observed during failure. Both experiments and finite-element simulations indicate improved mechanical properties resulting from the honeycomb structure. The mild fabrication process consists of an in situ fermentation step utilizing poly(vinyl alcohol), followed by a post-treatment including freezing-thawing and boiling. This simple self-assembly production process is highly scalable, does not require any toxic chemicals, and enables the fabrication of light, strong, and tough hierarchical composite materials with tunable shape and size.
Collapse
Affiliation(s)
- Kui Yu
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Srikkanth Balasubramanian
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Helda Pahlavani
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J. Mirzaali
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department
of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
28
|
Chen SQ, Cao X, Li Z, Zhu J, Li L. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin. Carbohydr Polym 2020; 246:116632. [DOI: 10.1016/j.carbpol.2020.116632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
|
29
|
Revin VV, Liyas’kina EV, Sapunova NB, Bogatyreva AO. Isolation and Characterization of the Strains Producing Bacterial Cellulose. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Genome sequencing and phylogenetic analysis of K1G4: a new Komagataeibacter strain producing bacterial cellulose from different carbon sources. Biotechnol Lett 2020; 42:807-818. [PMID: 31983038 DOI: 10.1007/s10529-020-02811-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the ability of a new Komagataeibacter xylinus strain in producing bacterial cellulose from glucose, mannitol and glycerol, and to assess the genome sequencing with special focus on bacterial cellulose related genes. RESULTS Bacterial cellulose production during 9 days of cultivation was tested in glucose, mannitol and glycerol, respectively. Differences in the bacterial cellulose kinetic formation was observed, with a final yield of 9.47 g/L in mannitol, 8.30 g/L in glycerol and 7.57 g/L in glucose, respectively. The draft genome sequencing of K1G4 was produced, revealing a genome of 3.09 Mbp. Two structurally completed cellulose synthase operons and a third copy of the catalytic subunit of cellulose synthase were found. By using phylogenetic analysis, on the entire rRNA operon sequence, K1G4 was found to be closely related to Komagataeibacter xylinus LMG 1515T and K. xylinus K2G30. CONCLUSIONS The different yields of bacterial cellulose produced on glucose, mannitol and glycerol can be correlated with the third copy of bcsAB operon harboured by K1G4, making it a versatile strain for industrial applications.
Collapse
|
31
|
Raghavendran V, Asare E, Roy I. Bacterial cellulose: Biosynthesis, production, and applications. Adv Microb Physiol 2020; 77:89-138. [PMID: 34756212 DOI: 10.1016/bs.ampbs.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a natural polymer produced by the acetic acid producing bacterium and has gathered much interest over the last decade for its biomedical and biotechnological applications. Unlike the plant derived cellulose nanofibres, which require pretreatment to deconstruct the recalcitrant lignocellulosic network, BC are 100% pure, and are extruded by cells as nanofibrils. Moreover, these nanofibrils can be converted to macrofibers that possess excellent material properties, surpassing even the strength of steel, and can be used as substitutes for fossil fuel derived synthetic fibers. The focus of the review is to present the fundamental long-term research on the influence of environmental factors on the organism's BC production capabilities, the production methods that are available for scaling up/scaled-up processes, and its use as a bulk commodity or for biomedical applications.
Collapse
Affiliation(s)
- Vijayendran Raghavendran
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Asare
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
32
|
Marín P, Martirani‐Von Abercron SM, Urbina L, Pacheco‐Sánchez D, Castañeda‐Cataña MA, Retegi A, Eceiza A, Marqués S. Bacterial nanocellulose production from naphthalene. Microb Biotechnol 2019; 12:662-676. [PMID: 31087504 PMCID: PMC6559018 DOI: 10.1111/1751-7915.13399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
Polycyclic aromatic compounds (PAHs) are toxic compounds that are released in the environment as a consequence of industrial activities. The restoration of PAH-polluted sites considers the use of bacteria capable of degrading aromatic compounds to carbon dioxide and water. Here we characterize a new Xanthobacteraceae strain, Starkeya sp. strain N1B, previously isolated during enrichment under microaerophilic conditions, which is capable of using naphthalene crystals as the sole carbon source. The strain produced a structured biofilm when grown on naphthalene crystals, which had the shape of a half-sphere organized over the crystal. Scanning electron microscopy (SEM) and GC-MS analysis indicated that the biofilm was essentially made of cellulose, composed of several micron-long nanofibrils of 60 nm diameter. A cellulosic biofilm was also formed when the cells grew with glucose as the carbon source. Fourier transformed infrared spectroscopy (FTIR) confirmed that the polymer was type I cellulose in both cases, although the crystallinity of the material greatly depended on the carbon source used for growth. Using genome mining and mutant analysis, we identified the genetic complements required for the transformation of naphthalene into cellulose, which seemed to have been successively acquired through horizontal gene transfer. The capacity to develop the biofilm around the crystal was found to be dispensable for growth when naphthalene was used as the carbon source, suggesting that the function of this structure is more intricate than initially thought. This is the first example of the use of toxic aromatic hydrocarbons as the carbon source for bacterial cellulose production. Application of this capacity would allow the remediation of a PAH into such a value-added polymer with multiple biotechnological usages.
Collapse
Affiliation(s)
- Patricia Marín
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Sophie Marie Martirani‐Von Abercron
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Leire Urbina
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Daniel Pacheco‐Sánchez
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Mayra Alejandra Castañeda‐Cataña
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Aloña Retegi
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Arantxa Eceiza
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Silvia Marqués
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| |
Collapse
|
33
|
Jacek P, Dourado F, Gama M, Bielecki S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 2019; 12:633-649. [PMID: 30883026 PMCID: PMC6559022 DOI: 10.1111/1751-7915.13386] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022] Open
Abstract
Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties - e.g. porosity, density of fibres crosslinking, mechanical properties, etc. - will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| | - Fernando Dourado
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Miguel Gama
- Centre of Biological EngineeringUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Stanisław Bielecki
- Institute of Technical BiochemistryLodz University of Technology4/10 Stefanowskiego Str90‐924LodzPoland
| |
Collapse
|
34
|
Teh MY, Ooi KH, Danny Teo SX, Bin Mansoor ME, Shaun Lim WZ, Tan MH. An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae. ACS Synth Biol 2019; 8:708-723. [PMID: 30865830 DOI: 10.1021/acssynbio.8b00168] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage, and biomaterials. One such biomaterial is bacterial cellulose, which is a strong and ultrapure natural polymer used in tissue engineering scaffolds, wound dressings, electronics, food additives, and other products. However, despite the potential of Acetobacteraceae in biotechnology, there has been considerably little effort to fundamentally reprogram the bacteria for enhanced performance. One limiting factor is the lack of a well-characterized, comprehensive toolkit to control expression of genes in biosynthetic pathways and regulatory networks to optimize production and cell viability. Here, we address this shortcoming by building an expanded genetic toolkit for synthetic biology applications in Acetobacteraceae. We characterized the performance of multiple natural and synthetic promoters, ribosome binding sites, terminators, and degradation tags in three different strains, namely, Gluconacetobacter xylinus ATCC 700178, Gluconacetobacter hansenii ATCC 53582, and Komagataeibacter rhaeticus iGEM. Our quantitative data revealed strain-specific and common design rules for the precise control of gene expression in these industrially relevant bacterial species. We further applied our tools to synthesize a biodegradable cellulose-chitin copolymer, adjust the structure of the cellulose film produced, and implement CRISPR interference for ready down-regulation of gene expression. Collectively, our genetic parts will enable the efficient engineering of Acetobacteraceae bacteria for the biomanufacturing of cellulose-based materials and other commercially valuable products.
Collapse
Affiliation(s)
- Min Yan Teh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - Kean Hean Ooi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Shun Xiang Danny Teo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| | | | - Wen Zheng Shaun Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459 Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, 138672 Singapore
| |
Collapse
|
35
|
Hernández-Arriaga AM, Del Cerro C, Urbina L, Eceiza A, Corcuera MA, Retegi A, Auxiliadora Prieto M. Genome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488. Microb Biotechnol 2019; 12:620-632. [PMID: 30793484 PMCID: PMC6559206 DOI: 10.1111/1751-7915.13376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 11/28/2022] Open
Abstract
Komagataeibacter medellinensis ID13488 (formerly Gluconacetobacter medellinensis ID13488) is able to produce crystalline bacterial cellulose (BC) under high acidic growth conditions. These abilities make this strain desirable for industrial BC production from acidic residues (e.g. wastes generated from cider production). To explore the molecular bases of the BC biosynthesis in this bacterium, the genome has been sequenced revealing a sequence of 3.4 Mb containing three putative plasmids of 38.1 kb (pKM01), 4.3 kb (pKM02) and 3.3 Kb (pKM03). Genome comparison analyses of K. medellinensis ID13488 with other cellulose‐producing related strains resulted in the identification of the bcs genes involved in the cellulose biosynthesis. Genes arrangement and composition of four bcs clusters (bcs1, bcs2, bcs3 and bcs4) was studied by RT‐PCR, and their organization in four operons transcribed as four independent polycistronic mRNAs was determined. qRT‐PCR experiments demonstrated that mostly bcs1 and bcs4 are expressed under BC production conditions, suggesting that these operons direct the synthesis of BC. Genomic differences with the close related strain K. medellinensis NBRC 3288 unable to produce BC were also described and discussed.
Collapse
Affiliation(s)
- Ana M Hernández-Arriaga
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carlos Del Cerro
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Leire Urbina
- Materials + Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia - San Sebastián, Spain
| | - Arantxa Eceiza
- Materials + Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia - San Sebastián, Spain
| | - Mª Angeles Corcuera
- Materials + Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia - San Sebastián, Spain
| | - Aloña Retegi
- Materials + Technology' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia - San Sebastián, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
36
|
Gullo M, La China S, Petroni G, Di Gregorio S, Giudici P. Exploring K2G30 Genome: A High Bacterial Cellulose Producing Strain in Glucose and Mannitol Based Media. Front Microbiol 2019; 10:58. [PMID: 30761107 PMCID: PMC6363697 DOI: 10.3389/fmicb.2019.00058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
Demands for renewable and sustainable biopolymers have rapidly increased in the last decades along with environmental issues. In this context, bacterial cellulose, as renewable and biodegradable biopolymer has received considerable attention. Particularly, acetic acid bacteria of the Komagataeibacter xylinus species can produce bacterial cellulose from several carbon sources. To fully exploit metabolic potential of cellulose producing acetic acid bacteria, an understanding of the ability of producing bacterial cellulose from different carbon sources and the characterization of the genes involved in the synthesis is required. Here, K2G30 (UMCC 2756) was studied with respect to bacterial cellulose production in mannitol, xylitol and glucose media. Moreover, the draft genome sequence with a focus on cellulose related genes was produced. A pH reduction and gluconic acid formation was observed in glucose medium which allowed to produce 6.14 ± 0.02 g/L of bacterial cellulose; the highest bacterial cellulose production obtained was in 1.5% (w/v) mannitol medium (8.77 ± 0.04 g/L), while xylitol provided the lowest (1.35 ± 0.05 g/L) yield. Genomic analysis of K2G30 revealed a peculiar gene sets of cellulose synthase; three bcs operons and a fourth copy of bcsAB gene, that encodes the catalytic core of cellulose synthase. These features can explain the high amount of bacterial cellulose produced by K2G30 strain. Results of this study provide valuable information to industrially exploit acetic acid bacteria in producing bacterial cellulose from different carbon sources including vegetable waste feedstocks containing mannitol.
Collapse
Affiliation(s)
- Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
37
|
Ryngajłło M, Kubiak K, Jędrzejczak-Krzepkowska M, Jacek P, Bielecki S. Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers. Microbiologyopen 2018; 8:e00731. [PMID: 30365246 PMCID: PMC6528568 DOI: 10.1002/mbo3.731] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Komagataeibacter species are well-recognized bionanocellulose (BNC) producers. This bacterial genus, formerly assigned to Gluconacetobacter, is known for its phenotypic diversity manifested by strain-dependent carbon source preference, BNC production rate, pellicle structure, and strain stability. Here, we performed a comparative study of nineteen Komagataeibacter genomes, three of which were newly contributed in this work. We defined the core genome of the genus, clarified phylogenetic relationships among strains, and provided genetic evidence for the distinction between the two major clades, the K. xylinus and the K. hansenii. We found genomic traits, which likely contribute to the phenotypic diversity between the Komagataeibacter strains. These features include genome flexibility, carbohydrate uptake and regulation of its metabolism, exopolysaccharides synthesis, and the c-di-GMP signaling network. In addition, this work provides a comprehensive functional annotation of carbohydrate metabolism pathways, such as those related to glucose, glycerol, acetan, levan, and cellulose. Findings of this multi-genomic study expand understanding of the genetic variation within the Komagataeibacter genus and facilitate exploiting of its full potential for bionanocellulose production at the industrial scale.
Collapse
Affiliation(s)
- Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | | | - Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
38
|
Gullo M, La China S, Falcone PM, Giudici P. Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:6885-6898. [PMID: 29926141 DOI: 10.1007/s00253-018-9164-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Bacterial cellulose is an attractive biopolymer for a number of applications including food, biomedical, cosmetics, and engineering fields. In addition to renewability and biodegradability, its unique structure and properties such as chemical purity, nanoscale fibrous 3D network, high water-holding capacity, high degree of polymerization, high crystallinity index, light transparency, biocompatibility, and mechanical features offer several advantages when it is used as native polymer or in composite materials. Structure and properties play a functional role in both the biofilm life cycle and biotechnological applications. Among all the cellulose-producing bacteria, acetic acid bacteria of the Komagataeibacter xylinus species play the most important role because they are considered the highest producers. Bacterial cellulose from acetic acid bacteria is widely investigated as native and modified biopolymer in functionalized materials, as well as in terms of differences arising from the static or submerged production system. In this paper, the huge amount of knowledge on basic and applied aspects of bacterial cellulose is reviewed to the aim to provide a comprehensive viewpoint on the intriguing interplay between the biological machinery of synthesis, the native structure, and the factors determining its nanostructure and applications. Since in acetic acid bacteria biofilm and cellulose production are two main phenotypes with industrial impact, new insights into biofilm production are provided.
Collapse
Affiliation(s)
- Maria Gullo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy.
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy
| | - Pasquale Massimiliano Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 2, Ancona, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola, 2, Pad. Besta, 42122, Reggio Emilia, Italy
| |
Collapse
|
39
|
Molina-Ramírez C, Enciso C, Torres-Taborda M, Zuluaga R, Gañán P, Rojas OJ, Castro C. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. Int J Biol Macromol 2018; 117:735-741. [PMID: 29847783 DOI: 10.1016/j.ijbiomac.2018.05.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/27/2022]
Abstract
Bacterial cellulose (BC) was produced by Komagataeibacter medellinensis using Hestrin and Schramm modified medium in the presence of alternative energy sources (AES), such as ethanol and acetic acid, to explore the effect of AES on the characteristics and properties of the resulting BC. In this study, the physicochemical and structural characteristics of the obtained BC were determined using Fourier-transform infrared spectroscopy, X-ray diffraction spectrometry, thermogravimetric analysis, and mechanical testing analysis. Ethanol and acetic acid (at 0.1 wt%) were proven to improve the BC yield by K. medellinensis by 279% and 222%, respectively. However, the crystallinity index (%), the degree of polymerization, and maximum rate of degradation temperatures decreased by 9.2%, 36%, and 4.96%, respectively, by the addition of ethanol and by 7.2%, 27%, and 4.21%, respectively, by the addition of acetic acid. The significance of this work, lies on the fact that there is not any report about how BC properties change when substances like ethanol or acetic acid are added to culture medium, and which is the mechanism that provokes those changes, that in our case we could demonstrate the relationship of a higher BC production rate (provoked by ethanol and acetic acid adding) and changes in BC properties.
Collapse
Affiliation(s)
- Carlos Molina-Ramírez
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1°, No 70-01, Medellín 050031, Colombia.
| | - Carla Enciso
- Departamento de Desarrollo e Innovación, Nutreo, Parque empresarial Multicentro, Bodega 9-10, Rionegro, Colombia
| | - Mabel Torres-Taborda
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1°, No 70-01, Medellín 050031, Colombia
| | - Robin Zuluaga
- Departamento de Desarrollo e Innovación, Nutreo, Parque empresarial Multicentro, Bodega 9-10, Rionegro, Colombia
| | - Piedad Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1°, No 70-01, Medellín 050031, Colombia
| | - Orlando J Rojas
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1°, No 70-01, Medellín 050031, Colombia
| | - Cristina Castro
- Biobased Colloids and Materials Group (BiCMat), Department of Bioproducts and Biosystems, Aalto University, School of Chemical Engineering, Espoo 02150, Finland
| |
Collapse
|
40
|
Nguyen PQ, Courchesne NMD, Duraj-Thatte A, Praveschotinunt P, Joshi NS. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704847. [PMID: 29430725 PMCID: PMC6309613 DOI: 10.1002/adma.201704847] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/25/2017] [Indexed: 05/20/2023]
Abstract
Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self-assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio-nanomaterials.
Collapse
Affiliation(s)
- Peter Q. Nguyen
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Noémie-Manuelle Dorval Courchesne
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Anna Duraj-Thatte
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Pichet Praveschotinunt
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Neel S. Joshi
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Sci Rep 2018; 8:6266. [PMID: 29674724 PMCID: PMC5908849 DOI: 10.1038/s41598-018-24559-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/03/2018] [Indexed: 01/04/2023] Open
Abstract
Complete genome sequence of Gluconacetobacter xylinus CGMCC 2955 for fine control of bacterial cellulose (BC) synthesis is presented here. The genome, at 3,563,314 bp, was found to contain 3,193 predicted genes without gaps. There are four BC synthase operons (bcs), among which only bcsI is structurally complete, comprising bcsA, bcsB, bcsC, and bcsD. Genes encoding key enzymes in glycolytic, pentose phosphate, and BC biosynthetic pathways and in the tricarboxylic acid cycle were identified. G. xylinus CGMCC 2955 has a complete glycolytic pathway because sequence data analysis revealed that this strain possesses a phosphofructokinase (pfk)-encoding gene, which is absent in most BC-producing strains. Furthermore, combined with our previous results, the data on metabolism of various carbon sources (monosaccharide, ethanol, and acetate) and their regulatory mechanism of action on BC production were explained. Regulation of BC synthase (Bcs) is another effective method for precise control of BC biosynthesis, and cyclic diguanylate (c-di-GMP) is the key activator of BcsA–BcsB subunit of Bcs. The quorum sensing (QS) system was found to positively regulate phosphodiesterase, which decomposed c-di-GMP. Thus, in this study, we demonstrated the presence of QS in G. xylinus CGMCC 2955 and proposed a possible regulatory mechanism of QS action on BC production.
Collapse
|
42
|
Fuller ME, Andaya C, McClay K. Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J Microbiol Methods 2018; 144:145-151. [DOI: 10.1016/j.mimet.2017.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
43
|
Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production. Sci Rep 2017; 7:7911. [PMID: 28801647 PMCID: PMC5554229 DOI: 10.1038/s41598-017-06918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism leading to BC secretion is unclear. In the present study, a genome-scale metabolic network of cellulose-producing K. nataicola strain RZS01 was reconstructed to understand its metabolic behavior. This model iHZ771 comprised 771 genes, 2035 metabolites, and 2014 reactions. Constraint-based analysis was used to characterize and evaluate the critical intracellular pathways. The analysis revealed that a total of 71 and 30 genes are necessary for cellular growth in a minimal medium and complex medium, respectively. Glycerol was identified as the optimal carbon source for the highest BC production. The minimization of metabolic adjustment algorithm identified 8 genes as potential targets for over-production of BC. Overall, model iHZ771 proved to be a useful platform for understanding the physiology and BC production of K. nataicola.
Collapse
|
44
|
Elayaraja S, Zagorsek K, Li F, Xiang J. In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym 2017; 166:329-337. [DOI: 10.1016/j.carbpol.2017.02.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
45
|
Stumpf TR, Yang X, Zhang J, Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 82:372-383. [PMID: 29025671 DOI: 10.1016/j.msec.2016.11.121] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/04/2016] [Accepted: 11/27/2016] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) is secreted by a few strains of bacteria and consists of a cellulose nanofiber network with unique characteristics. Because of its excellent mechanical properties, outstanding biocompatibilities, and abilities to form porous structures, BC has been studied for a variety of applications in different fields, including the use as a biomaterial for scaffolds in tissue engineering. To extend its applications in tissue engineering, native BC is normally modified to enhance its properties. Generally, BC modifications can be made by either in situ modification during cell culture or ex situ modification of existing BC microfibers. In this review we will first provide a brief introduction of BC and its attributes; this will set the stage for in-depth and up-to-date discussions on modified BC. Finally, the review will focus on in situ and ex situ modifications of BC and its applications in tissue engineering, particularly in bone regeneration and wound dressing.
Collapse
Affiliation(s)
- Taisa Regina Stumpf
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology, 571126 Haikou, China
| | - Jingchang Zhang
- Hainan Institute of Science and Technology, 571126 Haikou, China.
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
46
|
Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, de Arroyo Garcia L, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont PS, Kitney R, Reeve B, Ellis T. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci U S A 2016; 113:E3431-40. [PMID: 27247386 PMCID: PMC4914174 DOI: 10.1073/pnas.1522985113] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.
Collapse
Affiliation(s)
- Michael Florea
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Henrik Hagemann
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabriella Santosa
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Abbott
- Bioinformatics Support Service, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom; Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris N Micklem
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xenia Spencer-Milnes
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Laura de Arroyo Garcia
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Despoina Paschou
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christopher Lazenbatt
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Deze Kong
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Haroon Chughtai
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kirsten Jensen
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard Kitney
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin Reeve
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tom Ellis
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|