1
|
Suhardi VJ, Oktarina A, Hammad M, Niu Y, Li Q, Thomson A, Lopez J, McCormick J, Ayturk UM, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat Biomed Eng 2024; 8:1285-1307. [PMID: 39085645 DOI: 10.1038/s41551-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
Collapse
Affiliation(s)
- Vincentius Jeremy Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Juan Lopez
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Ugur M Ayturk
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mathias P G Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Yang Z, Wu H, Wang Z, Bian E, Zhao B. The role and application of small extracellular vesicles in glioma. Cancer Cell Int 2024; 24:229. [PMID: 38951882 PMCID: PMC11218314 DOI: 10.1186/s12935-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-derived, nanometer-sized particles enclosed by a lipid bilayer. All kinds of biological molecules, including proteins, DNA fragments, RNA, lipids, and metabolites, can be selectively loaded into sEVs and transmitted to recipient cells that are near and distant. Growing shreds of evidence show the significant biological function and the clinical significance of sEVs in cancers. Numerous recent studies have validated that sEVs play an important role in tumor progression and can be utilized to diagnose, stage, grading, and monitor early tumors. In addition, sEVs have also served as drug delivery nanocarriers and cancer vaccines. Although it is still infancy, the field of basic and translational research based on sEVs has grown rapidly. In this review, we summarize the latest research on sEVs in gliomas, including their role in the malignant biological function of gliomas, and the potential of sEVs in non-invasive diagnostic and therapeutic approaches, i.e., as nanocarriers for drug or gene delivery and cancer vaccines.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - HaoYuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - ZhiWei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - ErBao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
3
|
Sadlecki P, Walentowicz-Sadlecka M. Molecular landscape of borderline ovarian tumours: A systematic review. Open Med (Wars) 2024; 19:20240976. [PMID: 38859878 PMCID: PMC11163159 DOI: 10.1515/med-2024-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Pawel Sadlecki
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| |
Collapse
|
4
|
Nie X, Deng W, Zhou H, Wang Z. Long noncoding RNA MCM3AP-AS1 attenuates sepsis-induced cardiomyopathy by improving inflammation, oxidative stress, and mitochondrial function through mediating the miR-501-3p/CADM1/STAT3 axis. Int Immunopharmacol 2024; 128:111500. [PMID: 38237222 DOI: 10.1016/j.intimp.2024.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Oxidative stress and inflammation are highly important for sepsis-mediated myocardial damage. The long noncoding RNA (lncRNA) MCM3AP-AS1 is involved in inflammatory diseases, but its function in acute myocardial injury during sepsis has not been fully elucidated. LPS and cecal ligation and puncture (CLP) were used to construct in vitro and in vivo sepsis-induced myocardial damage models, respectively. qRT-PCR was used to evaluate alterations in MCM3AP-AS1 and miR-501-3p alterations. After the MCM3AP-AS1 and miR-501-3p knockdown or overexpression models were established, the viability, apoptosis, inflammation, oxidative stress, and mitochondrial function of the myocardial cells were examined. Dual luciferase activity assay, RNA immunoprecipitation, and fluorescence in situ hybridization (FISH) confirmed the correlation among MCM3AP-AS1, miR-501-3p, and CADM1. Previous studies revealed that MCM3AP-AS1 was downregulated in sepsis patients, myocardial cells treated with LPS, and in the CLP mouse sepsis model, whereas miR-501-3p expression was increased. MCM3AP-AS1 overexpression hampered myocardial damage mediated by LPS and abated inflammation, oxidative stress, and mitochondrial dysfunction in myocardial cells and THP-1 cells. In contrast, MCM3AP-AS1 knockdown or miR-501-3p overexpression promoted all the effects of LPS. In vivo, MCM3AP-AS1 overexpression increased the survival rate of CLP mice; ameliorated myocardial injury; decreased the levels of TNF-α, IL-1β, IL-6, iNOS, COX2, ICAM1, VCAM1, PGE2, and MDA; and increased the levels of SOD, GSH-PX, Nrf2, and HO-1. Mechanistic studies demonstrated that MCM3AP-AS1 acted as a competitive endogenous RNA to repress miR-501-3p, enhance CADM1 expression, and dampen STAT3/nuclear factor-kappaB (NF-κB) activation. MCM3AP-AS1 suppresses myocardial injury elicited by sepsis by mediating the miR-501-3p/CADM1/STAT3/NF-κB axis.
Collapse
Affiliation(s)
- Xiangbi Nie
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Wu Deng
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Han Zhou
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Zenggeng Wang
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China.
| |
Collapse
|
5
|
Nie J, Li L, Tan F, Wang H, Wang H, Zou L, Wen Z. Effect of CADM1 on TPF-induced chemotherapy in laryngeal squamous cell carcinoma. J Int Med Res 2023; 51:3000605231168017. [PMID: 37114505 DOI: 10.1177/03000605231168017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES To explore the relationship between CADM1 expression and sensitivity to TPF-induced chemotherapy in laryngeal squamous cell carcinoma (LSCC) patients, then investigate its potential mechanisms. METHODS Differential CADM1 expression was examined in chemotherapy-sensitive and chemotherapy-insensitive LSCC patient samples after TPF-induced chemotherapy using microarray analysis. Receiver operating characteristic (ROC) curve analysis and bioinformatics approaches were used to investigate the diagnostic value of CADM1. Small interfering RNAs (siRNAs) were used to knock down CADM1 expression in an LSCC cell line. Differential CADM1 expression was compared by qRT-PCR assays in 35 LSCC patients treated with chemotherapy, including 20 chemotherapy-sensitive and 15 chemotherapy-insensitive patients. RESULTS Public database and primary patient data both suggest that CADM1 mRNA is expressed at lower levels in chemotherapy-insensitive LSCC samples, suggesting its potential usefulness as a biomarker. Knockdown of CADM1 with siRNAs led to decreased sensitivity of LSCC cells to TPF chemotherapy. CONCLUSIONS Upregulation of CADM1 expression can alter the sensitivity of LSCC tumors to TPF induction chemotherapy. CADM1 is a possible molecular marker and therapeutic target for induction chemotherapy in LSCC patients.
Collapse
Affiliation(s)
- Jiani Nie
- Chengde Medical University, Heibei, China
| | - Lianhe Li
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Fuxian Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Hongmei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Hongmin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Liangyu Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| | - Zhenlei Wen
- Department of Otorhinolaryngology Head and Neck Surgery, Central Hospital of Chaoyang, Liaoning, China
| |
Collapse
|
6
|
Qureshy Z, Li H, Zeng Y, Rivera J, Cheng N, Peterson CN, Kim MO, Ryan WR, Ha PK, Bauman JE, Wang SJ, Long SR, Johnson DE, Grandis JR. STAT3 Activation as a Predictive Biomarker for Ruxolitinib Response in Head and Neck Cancer. Clin Cancer Res 2022; 28:4737-4746. [PMID: 35929989 PMCID: PMC10024606 DOI: 10.1158/1078-0432.ccr-22-0744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Increased activity of STAT3 is associated with progression of head and neck squamous cell carcinoma (HNSCC). Upstream activators of STAT3, such as JAKs, represent potential targets for therapy of solid tumors, including HNSCC. In this study, we investigated the anticancer effects of ruxolitinib, a clinical JAK1/2 inhibitor, in HNSCC preclinical models, including patient-derived xenografts (PDX) from patients treated on a window-of-opportunity trial. EXPERIMENTAL DESIGN HNSCC cell lines were treated with ruxolitinib, and the impact on activated STAT3 levels, cell growth, and colony formation was assessed. PDXs were generated from patients with HNSCC who received a brief course of neoadjuvant ruxolitinib on a clinical trial. The impact of ruxolitinib on tumor growth and STAT3 activation was assessed. RESULTS Ruxolitinib inhibited STAT3 activation, cellular growth, and colony formation of HNSCC cell lines. Ruxolitinib treatment of mice bearing an HNSCC cell line-derived xenograft significantly inhibited tumor growth compared with vehicle-treated controls. The response of HNSCC PDXs derived from patients on the clinical trial mirrored the responses seen in the neoadjuvant setting. Baseline active STAT3 (pSTAT3) and total STAT3 levels were lower, and ruxolitinib inhibited STAT3 activation in a PDX from a patient whose disease was stable on ruxolitinib, compared with a PDX from a patient whose disease progressed on ruxolitinib and where ruxolitinib treatment had minimal impact on STAT3 activation. CONCLUSIONS Ruxolitinib exhibits antitumor effects in HNSCC preclinical models. Baseline pSTAT3 or total STAT3 levels in the tumor may serve as predictive biomarkers to identify patients most likely to respond to ruxolitinib.
Collapse
Affiliation(s)
- Zoya Qureshy
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jose Rivera
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Ning Cheng
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Christopher N Peterson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Mi-Ok Kim
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - William R Ryan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Julie E Bauman
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, Arizona
| | - Steven J Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Steven R Long
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
7
|
Birknerová N, Kovaříková H, Baranová I, Přikrylová A, Laco J, Vošmiková H, Gajdošová B, Hodek M, Vošmik M, Palička V, Chmelařová M. DNA hypermethylation of CADM1, PAX5, WT1, RARβ, and PAX6 genes in oropharyngeal cancer associated with human papillomavirus. Epigenetics 2022; 17:1301-1310. [PMID: 34974810 PMCID: PMC9624252 DOI: 10.1080/15592294.2021.2018812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently, an increasing incidence of HPV-induced oropharyngeal squamous cell carcinoma (OPSCC) has been observed. Moreover, locoregionally advanced stages require a combined modal approach, and the prognosis is poor. Therefore, it is essential to find early diagnostic and prognostic biomarkers. DNA methylation changes play a crucial role in the process of carcinogenesis and are often investigated as promising biomarkers in many types of cancer. For analysis of DNA methylation levels of selected tumour suppressor genes in HPV-positive and HPV-negative samples (including primary tumours and corresponding metastases of metastasizing OPSCCs, primary tumours of non-metastasizing OPSCCs, and control samples), methylation-specific MLPA and methylation-specific high-resolution melting analyses were used. A significant difference in methylation between OPSCCs and the control group was observed in WT1, PAX6 (P < 0.01) and CADM1, RARβ (P < 0.05) genes. CADM1 and WT1 hypermethylation was detected mostly in HPV-positive samples; all but one HPV-negative samples were unmethylated. Moreover, hypermethylation of PAX5 gene was observed in metastases compared with control samples and was also associated with shorter overall survival of all patients (P < 0.05). Associations described herein between promoter methylation of selected genes and clinicopathological data could benefit OPSCC patients in the future by improvement in screening, early detection, and prognosis of the disease.
Collapse
Affiliation(s)
- Natália Birknerová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Helena Kovaříková
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic,Correspondence to Helena Kovaříková Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Ivana Baranová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Albína Přikrylová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Barbora Gajdošová
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Miroslav Hodek
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Milan Vošmik
- Department of Oncology and Radiotherapy, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Vladimír Palička
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Marcela Chmelařová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front Immunol 2022; 13:835997. [PMID: 35844493 PMCID: PMC9277720 DOI: 10.3389/fimmu.2022.835997] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication. When deregulated, the JAK-STAT and the TNF receptor signaling pathways can induce chronic inflammatory phenotypes by promoting more cytokine production. Furthermore, these signaling pathways can promote replication, survival and metastasis of cancer cells. This review will summarize the essentials of the JAK/STAT and TNF signaling pathways and their regulation and the molecular mechanisms that lead to the dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained from founding work in haematopoietic malignancies to more recent research in solid oral-gastrointestinal cancers, will also be discussed. Finally, this review will highlight the development and future of therapeutic applications which modulate the JAK-STAT or the TNF signaling pathways in cancers.
Collapse
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun T. Low
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A. O’Reilly
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Lafage-Pochitaloff M, Gerby B, Baccini V, Largeaud L, Fregona V, Prade N, Juvin PY, Jamrog L, Bories P, Hébrard S, Lagarde S, Mansat-De Mas V, Dovey OM, Yusa K, Vassiliou GS, Jansen JH, Tekath T, Rombaut D, Ameye G, Barin C, Bidet A, Boudjarane J, Collonge-Rame MA, Gervais C, Ittel A, Lefebvre C, Luquet I, Michaux L, Nadal N, Poirel HA, Radford-Weiss I, Ribourtout B, Richebourg S, Struski S, Terré C, Tigaud I, Penther D, Eclache V, Fontenay M, Broccardo C, Delabesse, E. The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11. Blood Adv 2022; 6:386-398. [PMID: 34638130 PMCID: PMC8791575 DOI: 10.1182/bloodadvances.2021005311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies.
Collapse
Affiliation(s)
- Marina Lafage-Pochitaloff
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique Hématologique, Centre Hospitalier Universitaire (CHU) de Marseille, Aix-Marseille University, Marseille, France
| | - Bastien Gerby
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Véronique Baccini
- Groupe Francophone d’Hématologie Cellulaire (GFHC) and
- Laboratoire d’hématologie, CHU de Guadeloupe, Inserm Unité Mixte de Recherche 1134, Pointe à Pitre, France
| | - Laetitia Largeaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Department of Hematology, University Toulouse III, Toulouse, France
| | - Vincent Fregona
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Naïs Prade
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Pierre-Yves Juvin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Laura Jamrog
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Pierre Bories
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Sylvie Hébrard
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Stéphanie Lagarde
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Véronique Mansat-De Mas
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 8, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Oliver M. Dovey
- Gene Editing, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - George S. Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, UK
- Wellcome-Medical Research Council Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - David Rombaut
- Institut Cochin, Université de Paris, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Paris, France
| | - Geneviève Ameye
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Belgium Cancer Registry, Brussels, Belgium
- Department of Human Genetics, Katholieke Universiteit Leuven and Universitair Ziekenhuis, Leuven, Belgium
| | - Carole Barin
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Tours, France
| | - Audrey Bidet
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, CHU de Bordeaux, Bordeaux, France
| | - John Boudjarane
- Laboratoire de Cytogénétique Hématologique, Centre Hospitalier Universitaire (CHU) de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Agnès Collonge-Rame
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Besançon, Besançon, France
| | - Carine Gervais
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Strasbourg, Strasbourg, France
| | - Antoine Ittel
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Département de Biopathologie, Institut Paoli-Calmettes, Marseille, France
| | - Christine Lefebvre
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Grenoble, Grenoble, France
| | - Isabelle Luquet
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
- Laboratoire de Cytogénétique, CHU de Reims, Reims, France
| | - Lucienne Michaux
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Department of Human Genetics, Katholieke Universiteit Leuven and Universitair Ziekenhuis, Leuven, Belgium
| | - Nathalie Nadal
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Saint-Etienne, Saint-Etienne, France
| | - Hélène A. Poirel
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Belgium Cancer Registry, Brussels, Belgium
| | - Isabelle Radford-Weiss
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Paris-Necker, Paris, France
| | - Bénédicte Ribourtout
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d'Hématologie, CHU d'Angers, Angers, France
| | - Steven Richebourg
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Nantes, Nantes, France
| | - Stéphanie Struski
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| | - Christine Terré
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CH de Versailles, Le Chesnay, France
| | - Isabelle Tigaud
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, CHU de Lyon, Lyon, France
| | - Dominique Penther
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire de Cytogénétique, Centre Henri-Becquerel, Rouen, France
| | - Virginie Eclache
- Groupe Francophone de Cytogénétique Hématologique (GFCH)
- Laboratoire d’Hématologie, CHU Avicenne, Bobigny, France
- Groupe Francophone des Myélodysplasies (GFM); and
| | - Michaela Fontenay
- Institut Cochin, Université de Paris, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Paris, France
- Groupe Francophone des Myélodysplasies (GFM); and
- Laboratoire d’hématologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Cyril Broccardo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Eric Delabesse,
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Team 16, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Laboratoire d’Hématologie, Institut Universitaire de Cancérologie de Toulouse, CHU Toulouse, France
| |
Collapse
|
10
|
Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development? Cancers (Basel) 2021; 13:cancers13205204. [PMID: 34680353 PMCID: PMC8533841 DOI: 10.3390/cancers13205204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Prostate Cancer (PC) is currently estimated to affect 1 in 9 men and is the second leading cause of cancer in men in the US. While androgen deprivation therapy, which targets the androgen receptor, is one of the front-line therapies for advanced PC and for recurrence of organ-confined PC treated with surgery, lethal castrate-resistant PC develops consistently in patients. PC is a multi-focal cancer with different grade carcinoma areas presenting simultaneously. Jak2-Stat5 signaling pathway has emerged as a potentially highly effective molecular target in PCs with positive areas for activated Stat5 protein. Activated Jak2-Stat5 signaling can be readily targeted by the second-generation Jak2-inhibitors that have been developed for myeloproliferative and autoimmune disorders and hematological malignancies. In this review, we analyze and summarize the Jak2 inhibitors that are currently in preclinical and clinical development. Abstract Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.
Collapse
|
11
|
Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang J, Jiao J, Shao J, Zhang X. Noncoding RNAs involved in the STAT3 pathway in glioma. Cancer Cell Int 2021; 21:445. [PMID: 34425834 PMCID: PMC8381529 DOI: 10.1186/s12935-021-02144-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
Glioma is the most common malignant primary brain tumour in adults. Despite improvements in neurosurgery and radiotherapy, the prognosis of glioma patients remains poor. One of the main limitations is that there are no proper clinical therapeutic targets for glioma. Therefore, it is crucial to find one or more effective targets. Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family of genes. Abnormal expression of STAT3 is involved in the process of cell proliferation, migration, invasion, immunosuppression, angiogenesis, dryness maintenance, and resistance to radiotherapy and chemotherapy in glioma. Therefore, STAT3 has been considered an ideal therapeutic target in glioma. Noncoding RNAs (ncRNAs) are a group of genes with limited or no protein-coding capacity that can regulate gene expression at the epigenetic, transcriptional and posttranscriptional level. In this review, we summarized the ncRNAs that are correlated with the ectopic expression of STAT3 in glioma.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China.
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China.
| |
Collapse
|
12
|
Li H, Gao J, Zhang S. Functional and Clinical Characteristics of Cell Adhesion Molecule CADM1 in Cancer. Front Cell Dev Biol 2021; 9:714298. [PMID: 34395444 PMCID: PMC8361327 DOI: 10.3389/fcell.2021.714298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The cell adhesion molecule CADM1, which participates in cell adhesion and signal transduction, has a regulatory effect on the development of tumors. CADM1 is often involved in malignant tumors of multiple organ systems, such as the respiratory and digestive systems. Upregulated CADM1 promotes tumor cell apoptosis and inhibits malignant proliferation. Along with cell cycle-related proteins, it participates in regulating signaling pathways, such as EMT, STAT3, and AKT, and plays an important role in inhibiting invasion and migration. Considering clinical characteristics, low CADM1 expression is associated with aggressive tumors and poor prognosis. In addition, some long non-coding RNAs (lncRNAs) or miRNAs directly or indirectly act on CADM1 to regulate tumor growth and motility. Interestingly, CADM1 function differs in adult T-cell leukemia/lymphoma (ATLL), and NF-κB is thought to be involved in this process. Taken together, CADM1 could be a potential biomarker for early diagnosis and a target for cancer treatment in future clinical practices.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
13
|
Duraivelan K, Samanta D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochim Biophys Acta Rev Cancer 2021; 1876:188589. [PMID: 34237351 DOI: 10.1016/j.bbcan.2021.188589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Tumour cells achieve maximum survival by modifying cellular machineries associated with processes such as cell division, migration, survival, and apoptosis, resulting in genetically complex and heterogeneous populations. While nectin and nectin-like cell adhesion molecules control development and maintenance of multicellular organisation in higher vertebrates by mediating cell-cell adhesion and related signalling processes, recent studies indicate that they also critically regulate growth and development of different types of cancers. In this review, we detail current knowledge about the role of nectin family members in various tumours. Furthermore, we also analyse the seemingly opposing roles of some members of nectin family in tumour-associated pathways, as they function as both tumour suppressors and oncogenes. Understanding this functional duality of nectin family in tumours will further our knowledge of molecular mechanisms regulating tumour development and progression, and contribute to the advancement of tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
14
|
Wu D, Lei Y, Liu Q, Hu H, Li H, Xie L, Zhou J. Characterization and clinical significance of the CADM1/HER2/STAT3 axis in serous ovarian tumors. Medicine (Baltimore) 2021; 100:e23777. [PMID: 33663040 PMCID: PMC7909124 DOI: 10.1097/md.0000000000023777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/16/2020] [Indexed: 01/05/2023] Open
Abstract
The subtypes of serous ovarian tumors (SOTs), including benign serous cystadenoma, serous borderline tumor (SBT), low-grade serous ovarian carcinoma (LGSC), and high-grade serous ovarian carcinoma (HGSC), remain poorly understood. Herein, we aimed to characterize the cell adhesion molecule 1 (CADM1)/signal transducer and activator of transcription 3 (STAT3)/human epidermal growth factor receptor 2 (HER2) axis and identify its clinical significance in patients with serous cystadenoma, SBT, LGSC, and HGSC.The immunohistochemical expression of CADM1, HER2, and STAT3 was assessed in 180 SOT specimens, and its association with clinical data was determined.High levels of CADM1 expression were detected in 100% of serous cystadenomas and 83.33% of SBTs, while a loss of CADM1 expression was observed in 44% of LGSCs and 72.5% of HGSCs. Relative to the levels in benign cystadenomas and SBTs, higher levels of HER2 and STAT3 expression were observed in LGSCs and aggressive HGSCs. Furthermore, the expression profile of the CADM1/HER2/STAT3 axis was significantly associated with histologic type, International Federation of Gynecology and Obstetrics stage, and lymph node metastasis in patients with SOT.Our study identified the changes in the CADM1/HER2/STAT3 axis that were closely associated with the clinical behavior of SOTs. These molecular data may provide new insights into SOT carcinogenesis and aid in the diagnosis and treatment of patients with SOT.
Collapse
Affiliation(s)
- Dan Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of University of South China, Hunan
| | - Yuzhou Lei
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang
| | - Qin Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of University of South China, Hunan
| | - Hua Hu
- Department of Pathology, the Second Affiliated Hospital of University of South China, Hunan, China
| | - Huanhuan Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of University of South China, Hunan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jianbin Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of University of South China, Hunan
| |
Collapse
|
15
|
Wullweber A, Strick R, Lange F, Sikic D, Taubert H, Wach S, Wullich B, Bertz S, Weyerer V, Stoehr R, Breyer J, Burger M, Hartmann A, Strissel PL, Eckstein M. Bladder Tumor Subtype Commitment Occurs in Carcinoma In Situ Driven by Key Signaling Pathways Including ECM Remodeling. Cancer Res 2021; 81:1552-1566. [PMID: 33472889 DOI: 10.1158/0008-5472.can-20-2336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Basal and luminal subtypes of invasive bladder tumors have significant prognostic and predictive impacts for patients. However, it remains unclear whether tumor subtype commitment occurs in noninvasive urothelial lesions or in carcinoma in situ (CIS) and which gene pathways are important for bladder tumor progression. To understand the timing of this commitment, we used gene expression and protein analysis to create a global overview of 36 separate tissues excised from a whole bladder encompassing urothelium, noninvasive urothelial lesions, CIS, and invasive carcinomas. Additionally investigated were matched CIS, noninvasive urothelial lesions, and muscle-invasive bladder cancers (MIBC) from 22 patients. The final stage of subtype commitment to either a luminal or basal MIBC occurred at the CIS transition. For all tissues combined, hierarchical clustering of subtype gene expression revealed three subtypes: "luminal," "basal," and a "luminal p53-/extracellular matrix (ECM)-like" phenotype of ECM-related genes enriched in tumor-associated urothelium, noninvasive urothelial lesions, and CIS, but rarely invasive, carcinomas. A separate cohort of normal urothelium from noncancer patients showed significantly lower expression of ECM-related genes compared with tumor-associated urothelium, noninvasive urothelial lesions, and CIS. A PanCancer Progression Panel of 681 genes unveiled pathways specific for the luminal p53-/ECM-like cluster, for example, ECM remodeling, angiogenesis, epithelial-to-mesenchymal transition, cellular discohesion, cell motility involved in tumor progression, and cell proliferation and oncogenic ERBB2/ERBB3 signaling for invasive carcinomas. In conclusion, this study provides insights into bladder cancer subtype commitment and associated signaling pathways, which could help predict therapy response and enhance our understanding of therapy resistance. SIGNIFICANCE: This study demonstrates that CIS is the stage of commitment for determining MIBC tumor subtype, which is relevant for patient prognosis and therapy response.
Collapse
Affiliation(s)
- Adrian Wullweber
- Department of Internal Medicine, Evangelisches Krankenhaus Düsseldorf, Düsseldorf, Germany.,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Strick
- Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabienne Lange
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Danijel Sikic
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johannes Breyer
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas Hospital St. Josef, University of Regensburg, Regensburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Translational Research Centre (TRC), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
16
|
Sanders LM, Cheney A, Seninge L, van den Bout A, Chen M, Beale HC, Kephart ET, Pfeil J, Learned K, Lyle AG, Bjork I, Haussler D, Salama SR, Vaske OM. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3-mutant diffuse midline glioma. Gigascience 2020; 9:giaa136. [PMID: 33319914 PMCID: PMC7736793 DOI: 10.1093/gigascience/giaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas with histone H3 K27M (H3K27M) mutations occur in early childhood and are marked by an invasive phenotype and global decrease in H3K27me3, an epigenetic mark that regulates differentiation and development. H3K27M mutation timing and effect on early embryonic brain development are not fully characterized. RESULTS We analyzed multiple publicly available RNA sequencing datasets to identify differentially expressed genes between H3K27M and non-K27M pediatric gliomas. We found that genes involved in the epithelial-mesenchymal transition (EMT) were significantly overrepresented among differentially expressed genes. Overall, the expression of pre-EMT genes was increased in the H3K27M tumors as compared to non-K27M tumors, while the expression of post-EMT genes was decreased. We hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT required for early brain development, and evaluated this hypothesis by using another publicly available dataset of single-cell and bulk RNA sequencing data from developing cerebral organoids. This analysis revealed similarities between H3K27M tumors and pre-EMT normal brain cells. Finally, a previously published single-cell RNA sequencing dataset of H3K27M and non-K27M gliomas revealed subgroups of cells at different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage compared to H3.3K27M tumors. CONCLUSIONS Our data analyses indicate that this mutation may be associated with a differentiation stall evident from the failure to proceed through the EMT-like developmental processes, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This study demonstrates how novel biological insights could be derived from combined analysis of several previously published datasets, highlighting the importance of making genomic data available to the community in a timely manner.
Collapse
Affiliation(s)
- Lauren M Sanders
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Allison Cheney
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anouk van den Bout
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Marissa Chen
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Holly C Beale
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ellen Towle Kephart
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Katrina Learned
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - A Geoffrey Lyle
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Isabel Bjork
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Olena M Vaske
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
17
|
Kong F, Li X, Li S, Sheng D, Li W, Song M. MicroRNA-15a-5p promotes the proliferation and invasion of T98G glioblastoma cells via targeting cell adhesion molecule 1. Oncol Lett 2020; 21:103. [PMID: 33376536 PMCID: PMC7751353 DOI: 10.3892/ol.2020.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a type of malignant tumor occurring in the brain that severely influences the life of affected individuals. GBM cells are highly infiltrative, which is one of the main obstacles in the treatment of the disease. Numerous microRNAs (miRNAs/miRs) are associated with the development of GBM. However, the effects of miR-15a-5p on GBM remain elusive. In the present study, reverse transcription-quantitative PCR and western blot analysis were applied for the detection of RNA and protein levels, respectively. Cell Counting Kit-8 and Transwell assays were performed to examine cell proliferation and invasion, respectively. TargetScan 7.1 and dual-luciferase reporter assay were utilized for the prediction and verification of the association between miRNAs and mRNAs. The present study revealed that miR-15a-5p expression was upregulated in the GBM T98G cell line. The results further demonstrated that, through the inhibition of cell adhesion molecule 1 expression and the promotion of Akt phosphorylation, miR-15a-5p was able to promote GBM cell proliferation and invasion. Overall, the present findings revealed a novel mechanism responsible for the development of GBM and provided an experimental basis for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Fanqiang Kong
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaoqing Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Shuhong Li
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dan Sheng
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenhu Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Mingming Song
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
18
|
Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. BIOLOGY 2020; 9:biology9110390. [PMID: 33182552 PMCID: PMC7697807 DOI: 10.3390/biology9110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.
Collapse
|
19
|
Alizadeh A, Jebelli A, Baradaran B, Amini M, Oroojalian F, Hashemzaei M, Mokhtarzadeh A, Hamblin MR. Crosstalk between long non-coding RNA DLX6-AS1, microRNAs and signaling pathways: A pivotal molecular mechanism in human cancers. Gene 2020; 769:145224. [PMID: 33059027 DOI: 10.1016/j.gene.2020.145224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-protein coding RNA, which have been found to play multiple roles in various molecular and cellular processes by epigenetic regulation of gene expression at post transcriptional levels. LncRNAs may act either as an oncogene or as a tumor suppressor gene in different cancers. Aberrant expression and dysregulation of lncRNAs has been correlated with cancer development and tumor growth via several different signaling pathways. Therefore, lncRNAs could serve as diagnostic biomarkers and as therapeutic targetes in many human cancers. Previous studies have reported that dysregulated expression of the lncRNA called DLX6-AS1 in various cancer types, such as lung, colorectal, bladder, ovarian, hepatocellular, pancreatic and gastric. DLX6-AS1 plays an important role in tumorigenesis by affecting cell proliferation, migration, invasion, EMT, and apoptosis. DLX6-AS1 exerts these regulatory effects by interfering with various microRNA axes and signaling pathways including, Wnt/βcatenin, Notch, P13/AKT/mTOR, and STAT3. This review focuses on the possible mechanisms by which DLX6-AS1 regulates tumor initiation and progression. Accordingly, DLX6-AS1 may act as a novel potential biomarker for cancer diagnosis or therapy in future.
Collapse
Affiliation(s)
- Anita Alizadeh
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Aptameology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
20
|
CADM1 enhances intestinal barrier function in a rat model of mild inflammatory bowel disease by inhibiting the STAT3 signaling pathway. J Bioenerg Biomembr 2020; 52:343-354. [PMID: 32929607 DOI: 10.1007/s10863-020-09850-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecule 1 (CADM1) is frequently silenced in lung, prostate, liver, stomach, pancreatic and breast carcinomas and other forms of human carcinomas. However, it is unclear regarding the role of CADM1 in irritable bowel syndrome with diarrhoea (IBS-D) that is the most common gastrointestinal diagnosis and may contribute to impaired intestinal barrier function. The aim of the present study is to explore the potential mechanism of CADM1 in regulating intestinal barrier function in IBS-D. A rat model with IBS-D induced by the combination method of mother-infant separation, acetic acid and restraint stress was initially established. The defecation frequency, faecal water content (FWC), total intestinal permeability, sIgA, endotoxin, D-lactic acid and diamine oxidase (DAO) were then measured. Next, positive expression of CADM1 protein was detected in distal colonic tissue of rats by immunohistochemistry. The expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in distal colonic mucosa, CADM1, Janus kinase 1 (JAK1), STAT3, p-JAK1, p-STAT3, Claudin-1and Claudin-2 were evaluated using ELISA, RT-qPCR and western blot analysis. IBS-D rats exhibited low CADM1 expression and activated STAT3 signaling pathway. Overexpression of CADM1 in rats was shown to increase Claudin-1 expression, while decreasing expression of STAT3, Claudin-2, TNF-α and IL-6. In addition, silencing of CADM1 or inhibition of the STAT3 signaling pathway was demonstrated to improve the intestinal barrier function. Our study provides evidence that CADM1 can potentially improve intestinal barrier function in rats with IBS-D by inhibiting the STAT3 signaling pathway.
Collapse
|
21
|
Qureshy Z, Johnson DE, Grandis JR. Targeting the JAK/STAT pathway in solid tumors. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6:27. [PMID: 33521321 PMCID: PMC7845926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aberrant activation of signal transducer and activator of transcription (STAT) proteins is associated with the development and progression of solid tumors. However, as transcription factors, these proteins are difficult to target directly. In this review, we summarize the role of targeting Janus kinases (JAKs), upstream activators of STATs, as a strategy for decreasing STAT activation in solid tumors. Preclinical studies in solid tumor cell line models show that JAK inhibitors decrease STAT activation, cell proliferation, and cell survival; in in vivo models, they also inhibit tumor growth. JAK inhibitors, particularly the JAK1/2 inhibitor ruxolitinib, sensitize cell lines and murine models to chemotherapy, immunotherapy, and oncolytic viral therapy. Ten JAK inhibitors have been or are actively being tested in clinical trials as monotherapy or in combination with other agents in patients with solid tumors; two of these inhibitors are already Food and Drug Administration (FDA) approved for the treatment of myeloproliferative disorders and rheumatoid arthritis, making them attractive agents for use in patients with solid tumors as they are known to be well-tolerated. Four JAK inhibitors (two of which are FDA approved for other indications) have exhibited promising anti-cancer effects in preclinical studies; however, clinical studies specifically assessing their activity against the JAK/STAT pathway in solid tumors have not yet been conducted. In summary, JAK inhibition is a viable option for targeting the JAK/STAT pathway in solid tumors and merits further testing in clinical trials.
Collapse
Affiliation(s)
- Zoya Qureshy
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco 94158, USA
| |
Collapse
|
22
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
23
|
Mohanty BP, Mahanty A, Mitra T, Mohanty S, Naik AK, Parija SC. Proteomic and transcriptomic changes in rat liver following oral feeding of formaldehyde. CHEMOSPHERE 2020; 245:125599. [PMID: 31855752 DOI: 10.1016/j.chemosphere.2019.125599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Formaldehyde (FA), a ubiquitous volatile organic compound present in a wide range of resources, is a hazardous chemical and human carcinogen. Contamination of FA in food, especially perishable commodities like fish and meat, is a major source of exposure, although it is not recommended for use in food and food products owing to its carcinogenicity. Effects of oral feeding of FA have been studied by evaluating general health, haematology and clinical chemistry in rat. Recent studies have shown that FA exposure leads to detrimental cardiovascular effects. It regulates vascular tensions through nitric oxide-cGMP signalling pathway and ion channels in rats. Although FA is an established carcinogen, molecular studies on carcinogenic potential with dose dependency are meagre. In this context, the present study was undertaken to investigate the toxicogenomic and proteomic alterations in liver of rats fed FA through drinking water. By proteomic analysis, 621 proteins/protein-subunits showed differential abundance (proteome data available via ProteomeXchange with identifier PXD010534), whereas 536 differentially-expressed-genes were identified by transcriptome analysis (data available via Sequence Read Archive with identifier SRR7974113). Gene ontology analysis showed that binding, catalysis, signal transduction were affected in formaldehyde-fed rats. Pathway analysis revealed that formaldehyde-exposure activated PI3K-AKT pathway that leads to inhibition of caspase activity thereby assisting cells to survive against apoptosis. Decreased abundance/down-regulation of ANGPT, eNOS, STAT3 proteins/transcripts and increased abundance of EDN1 indicated decrease in angiogenesis and vasodilatation that restricted hepatic cells from becoming tumorigenic; thus, indicating FA could be less toxic and non-tumorigenic at low concentrations.
Collapse
Affiliation(s)
- Bimal Prasanna Mohanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division, Biochemistry Laboratory- Proteomics Unit, Barrackpore, Kolkata, 700120, West Bengal, India.
| | - Arabinda Mahanty
- ICAR-Central Inland Fisheries Research Institute, FREM Division, Biochemistry Laboratory- Proteomics Unit, Barrackpore, Kolkata, 700120, West Bengal, India; ICAR-National Rice Research Institute, Crop Protection Division, Cuttack, 753006, India
| | - Tandrima Mitra
- ICAR-Central Inland Fisheries Research Institute, FREM Division, Biochemistry Laboratory- Proteomics Unit, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Sasmita Mohanty
- Department of Biotechnology, Faculty of Science and Technology, Rama Devi Women's' University, Bhubabeswar, 751022, India
| | - Ajit Kumar Naik
- Department of Pharmacology & Toxicology, Faculty of Veterinary Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Subas Chandra Parija
- Department of Pharmacology & Toxicology, Faculty of Veterinary Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
24
|
Li Y, Liu J, Hu W, Zhang Y, Sang J, Li H, Ma T, Bo Y, Bai T, Guo H, Lu Y, Xue X, Niu M, Ge S, Wen S, Wang B, Gao W, Wu Y. miR-424-5p Promotes Proliferation, Migration and Invasion of Laryngeal Squamous Cell Carcinoma. Onco Targets Ther 2019; 12:10441-10453. [PMID: 31819525 PMCID: PMC6890199 DOI: 10.2147/ott.s224325] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies revealed that miR-424-5p regulates the malignant behavior of multiple cancer types. However, the expression and function of miR-424-5p in laryngeal squamous cell carcinoma (LSCC) is unclear. Purpose This study aimed to evaluate the association of miR-424-5p level with clinical features of LSCC and investigate the effect and potential mechanism of miR-424-5p on LSCC progression. Methods The expression of miR-424-5p in LSCC and paired adjacent normal margin (ANM) tissues from 106 patients with LSCC were analyzed by quantitative PCR (qPCR), and clinical significance was analyzed. Target genes of miR-424-5p were predicted, followed by functional annotation. The functional role of miR-424-5p in LSCC was investigated by molecular and cellular experiments with LSCC cell lines, with flow cytometry used for cell cycle analysis. In addition, miR-424-5p regulation of the predicted target gene cell adhesion molecule 1 (CADM1) was validated by qPCR, Western blot analysis and luciferase reporter assay. Results miR-424-5p was upregulated in LSCC versus ANM tissues. High miR-424-5p level was significantly associated with poor differentiation, advanced tumor stage and cervical lymph node metastasis. Bioinformatics analysis showed that miR-424-5p target genes are mainly enriched in biological processes of the cell cycle, cell division, and negative regulation of cell migration, and were involved in multiple cancer-related pathways. Overexpression of miR-424-5p promoted proliferation, migration, invasion, and adhesion of LSCC cells and affected the cell cycle progression. Additionally, CADM1 was a direct target of miR-424-5p in LSCC cells. Conclusion miR-424-5p functions as an oncogene to promote the aggressive progression of LSCC, and CADM1 is a direct downstream target of miR-424-5p in LSCC cells. miR-424-5p may be a potential therapeutic target in LSCC.
Collapse
Affiliation(s)
- Yujun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wanglai Hu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230027, People's Republic of China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jiangwei Sang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, Dalian, Liaoning 116001, People's Republic of China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, People's Republic of China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Tao Bai
- Department of Pathology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, People's Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shanshan Ge
- Health Management Center, the First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shuxin Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| |
Collapse
|
25
|
Wu DM, Zheng ZH, Zhang YB, Fan SH, Zhang ZF, Wang YJ, Zheng YL, Lu J. Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:237. [PMID: 31171015 PMCID: PMC6554918 DOI: 10.1186/s13046-019-1239-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Background Liver cancer stem cells (LCSCs) are a small subset of cells characterized by unlimited self-renewal, cell differentiation, and uncontrollable cellular growth. LCSCs are also resistant to conventional therapies and are thus believed to be held responsible for causing treatment failure of hepatocellular carcinoma (HCC). It has been recently found that long non-coding RNAs (lncRNAs) are important regulators in HCC. This present study aims to explore the underlying mechanism of how lncRNA DLX6-AS1 influences the development of LCSCs and HCC. Methods A microarray-based analysis was performed to initially screen differentially expressed lncRNAs associated with HCC. We then analyzed the lncRNA DLX6-AS1 levels as well as CADM1 promoter methylation. The mRNA and protein expression of CADM1, STAT3, CD133, CD13, OCT-4, SOX2, and Nanog were then detected. We quantified our results by evaluating the spheroid formation, proliferation, and tumor formation abilities, as well as the proportion of tumor stem cells, and the recruitment of DNA methyltransferase (DNMT) in LCSCs when lncRNA DLX6-AS1 was either overexpressed or silenced. Results LncRNA DLX6-AS1 was upregulated in HCC. The silencing of lncRNA DLX6-AS1 was shown to reduce and inhibit spheroid formation, colony formation, proliferation, and tumor formation abilities, as well as attenuate CD133, CD13, OCT-4, SOX2, and Nanog expression in LCSCs. Furthermore, downregulation of lncRNA DLX6-AS1 contributed to a reduction in CADM1 promoter methylation via suppression of DNMT1, DNMT3a, and DNMT3b in LCSCs and inactivating the STAT3 signaling pathway. Conclusion This study demonstrated that down-regulated lncRNA DLX6-AS1 may inhibit the stem cell properties of LCSCs through upregulation of CADM1 by suppressing the methylation of the CADM1 promoter and inactivation of the STAT3 signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13046-019-1239-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zi-Hui Zheng
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar, 161006, People's Republic of China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China. .,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China. .,College of Health Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
26
|
Rong G, Zhang M, Xia W, Li D, Miao J, Wang H. Plasma CADM1 promoter hypermethylation and D-dimer as novel metastasis predictors of cervical cancer. J Obstet Gynaecol Res 2019; 45:1251-1259. [PMID: 30945386 DOI: 10.1111/jog.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/09/2019] [Indexed: 12/28/2022]
Abstract
AIM Cervical cancer (CC) is the fourth malignant tumor in women worldwide. The metastasis is still the major reason for the treatment failures of most CC patients. Cell adhesion molecule 1 (CADM1) promoter methylation and plasma D-dimer levels have been reported to be increased in many types of cancers. The purpose of this study was to investigate the value of combinatorial assay of plasma CADM1 promoter hypermethylation and D-dimer as a metastasis marker in CC. METHODS Two hundred and ninety-two patients with newly diagnosed cervical diseases and 70 healthy women were enrolled. A validation set comprised 36 Stage I CC patients and followed for 3 years. Plasma CADM1 promoter methylation and D-dimer levels were detected. RESULTS The total coincidence rate of CADM1 promoter methylation status was 93.3% between 45 pair-matched tissue and plasma samples. Plasma CADM1 methylation levels in CC patients were higher than other benign disease groups (P = 0.000). Plasma CADM1 methylation levels had statistically differences between CC patients with and without lymph node metastasis (P = 0.049) or in CC patients with and without distant metastasis (P = 0.000). Similarly, plasma D-dimer levels in CC patients were higher than other benign disease groups (P < 0.05). D-dimer levels were only statistically different between CC patients with and without distant metastasis (P = 0.003). Combined assay of the two parameters for metastasis prediction has high sensitivity (80.4%) and specificity (90.5%). CONCLUSION Combinatorial assay of plasma CADM1 methylation and D-dimer is a promising metastasis marker in cervical cancer.
Collapse
Affiliation(s)
- Guodong Rong
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Donghua Li
- Department of obstetrics and gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Miao
- Department of obstetrics and gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
27
|
Biasoli D, Compston-Garnett L, Ricketts SL, Birand Z, Courtay-Cahen C, Fineberg E, Arendt M, Boerkamp K, Melin M, Koltookian M, Murphy S, Rutteman G, Lindblad-Toh K, Starkey M. A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers. PLoS Genet 2019; 15:e1007967. [PMID: 30901340 PMCID: PMC6447235 DOI: 10.1371/journal.pgen.1007967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/03/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer. The combination of various genetic and environmental risk factors makes the understanding of the molecular circuitry behind complex diseases, like cancer, a major challenge. The homogeneous nature of pedigree dog breed genomes makes these dogs ideal for the identification of both simple disease-causing genetic variants and genetic risk factors for complex diseases. Mast cell tumours are the most common type of canine skin cancer, and one of the most common cancers affecting dogs of most breeds. Several breeds, including Labrador Retrievers (which represent one of the most popular dog breeds), have an elevated risk of mast cell tumour development. Here, by using a methodological approach that combined different techniques, we identified a common inherited synonymous variant, that predisposes Labrador Retrievers to mast cell tumour development. Interestingly, we showed that this variant, despite its synonymous nature, appears to have an effect on translation dynamics as it is associated with reduced levels of DSCAM, a cell adhesion molecule. The results presented here reveal dysregulation of cell adhesion to be an important factor in mast cell tumour pathogenesis, and also highlight the important role that synonymous variants can play in complex diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maja Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kim Boerkamp
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Malin Melin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Michele Koltookian
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Sue Murphy
- Animal Health Trust, Newmarket, United Kingdom
| | - Gerard Rutteman
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
- Veterinary Specialist Centre De Wagenrenk, Wageningen, The Netherlands
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Mike Starkey
- Animal Health Trust, Newmarket, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Prasad K, Rao R, Augustine D, Sowmya SV, Haragannavar V, Sagar P, Sreedhar P. Pathway based prognostic gene expression profile of buccal and gingivo-buccal oral squamous cell carcinoma in smokeless tobacco chewers. Head Neck 2018; 41:388-397. [PMID: 30536474 DOI: 10.1002/hed.25494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/14/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The objective was to study comprehensive mRNA expression profiles of buccal mucosa oral squamous cell carcinoma (OSCC-BM) and gingivo-buccal OSCC (OSCC-GB) in smokeless tobacco chewers to understand the biological behavior of OSCC at these specific sites and identify diagnostic and prognostic markers. METHODS High throughput RNA sequencing transcriptome of fresh buccal mucosa (4 samples) and gingivo-buccal (4 samples) OSCC with normal oral mucosa (3 samples) was performed on Illumina NextSeq500 paired end sequencing with 75x2bp. RESULTS In the comparison between OSCC and normal, there were 402 differentially expressed genes (DEGs); between OSCC-BM and normal, there were 467 DEGs; and between OSCC-GB and normal oral tissue, there were 608 DEGs. Pathway-based analysis of gene expression was done. The inflammation mediated by chemokine and cytokine signaling pathway had the maximum gene hits. CONCLUSIONS FZD2 and its interactions with the cadherins have a role in invasion and metastasis. immunosurveillance is evident in OSCC-GB with the downregulation of CADM1.
Collapse
Affiliation(s)
- Kavitha Prasad
- MDS, Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Roopa Rao
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Samudrala Venkatesiah Sowmya
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Vanishri Haragannavar
- MDS, Department of Oral and Maxillofacial Pathology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Parimala Sagar
- MDS, Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Prathibha Sreedhar
- MDS, Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
29
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
30
|
Abikhair Burgo M, Roudiani N, Chen J, Santana AL, Doudican N, Proby C, Felsen D, Carucci JA. Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma. JCI Insight 2018; 3:120750. [PMID: 30185657 PMCID: PMC6171807 DOI: 10.1172/jci.insight.120750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Organ transplant recipients (OTRs) on cyclosporine A (CSA) are prone to catastrophic cutaneous squamous cell carcinoma (SCC). Allograft-sparing, cancer-targeting systemic treatments are unavailable. We have shown increased risk for catastrophic SCC in OTRs via CSA-mediated induction of IL-22. Herein, we found that CSA drives SCC proliferation and tumor growth through IL-22 and JAK/STAT pathway induction. We in turn inhibited SCC growth with an FDA-approved JAK1/2 inhibitor, ruxolitinib. In human SCC cells, the greatest proliferative response to IL-22 and CSA treatment occurred in nonmetastasizing lines. IL-22 treatment upregulated JAK1 and STAT1/3 in A431 SCC cells. JAK/STAT pathway genes were highly expressed in tumors from a cohort of CSA-exposed OTRs and in SCC with high risk for metastasis. Compared with immunocompetent SCC, genes associated with innate immunity, response to DNA damage, and p53 regulation were differentially expressed in SCC from OTRs. In nude mice engrafted with human A431 cells, IL-22 and CSA treatment increased tumor growth and upregulated IL-22 receptor, JAK1, and STAT1/3 expression. Ruxolitinib treatment significantly reduced tumor volume and reversed the accelerated tumor growth. CSA and IL-22 exacerbate aggressive behavior in SCC. Targeting the IL-22 axis via selective JAK/STAT inhibition may reduce the progression of aggressive SCC in OTRs, without compromising immunosuppression.
Collapse
Affiliation(s)
- Melody Abikhair Burgo
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Nazanin Roudiani
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Jie Chen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Alexis L. Santana
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Nicole Doudican
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Charlotte Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, United Kingdom
| | - Diane Felsen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - John A. Carucci
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Hess J, Unger K, Maihoefer C, Schüttrumpf L, Wintergerst L, Heider T, Weber P, Marschner S, Braselmann H, Samaga D, Kuger S, Pflugradt U, Baumeister P, Walch A, Woischke C, Kirchner T, Werner M, Werner K, Baumann M, Budach V, Combs SE, Debus J, Grosu AL, Krause M, Linge A, Rödel C, Stuschke M, Zips D, Zitzelsberger H, Ganswindt U, Henke M, Belka C. A Five-MicroRNA Signature Predicts Survival and Disease Control of Patients with Head and Neck Cancer Negative for HPV Infection. Clin Cancer Res 2018; 25:1505-1516. [PMID: 30171046 DOI: 10.1158/1078-0432.ccr-18-0776] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is associated with unfavorable prognosis, while independent prognostic markers remain to be defined. EXPERIMENTAL DESIGN We retrospectively performed miRNA expression profiling. Patients were operated for locally advanced HPV-negative HNSCC and had received radiochemotherapy in eight different hospitals (DKTK-ROG; n = 85). Selection fulfilled comparable demographic, treatment, and follow-up characteristics. Findings were validated in an independent single-center patient sample (LMU-KKG; n = 77). A prognostic miRNA signature was developed for freedom from recurrence and tested for other endpoints. Recursive-partitioning analysis was performed on the miRNA signature, tumor and nodal stage, and extracapsular nodal spread. Technical validation used qRT-PCR. An miRNA-mRNA target network was generated and analyzed. RESULTS For DKTK-ROG and LMU-KKG patients, the median follow-up was 5.1 and 5.3 years, and the 5-year freedom from recurrence rate was 63.5% and 75.3%, respectively. A five-miRNA signature (hsa-let-7g-3p, hsa-miR-6508-5p, hsa-miR-210-5p, hsa-miR-4306, and hsa-miR-7161-3p) predicted freedom from recurrence in DKTK-ROG [hazard ratio (HR) 4.42; 95% confidence interval (CI), 1.98-9.88, P < 0.001], which was confirmed in LMU-KKG (HR 4.24; 95% CI, 1.40-12.81, P = 0.005). The signature also predicted overall survival (HR 3.03; 95% CI, 1.50-6.12, P = 0.001), recurrence-free survival (HR 3.16; 95% CI, 1.65-6.04, P < 0.001), and disease-specific survival (HR 5.12; 95% CI, 1.88-13.92, P < 0.001), all confirmed in LMU-KKG data. Adjustment for relevant covariates maintained the miRNA signature predicting all endpoints. Recursive-partitioning analysis of both samples combined classified patients into low (n = 17), low-intermediate (n = 80), high-intermediate (n = 48), or high risk (n = 17) for recurrence (P < 0.001). CONCLUSIONS The five-miRNA signature is a strong and independent prognostic factor for disease recurrence and survival of patients with HPV-negative HNSCC.See related commentary by Clump et al., p. 1441.
Collapse
Affiliation(s)
- Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany. .,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Cornelius Maihoefer
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lars Schüttrumpf
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ludmila Wintergerst
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Theresa Heider
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Marschner
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Herbert Braselmann
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Daniel Samaga
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Sebastian Kuger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Ulrike Pflugradt
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Baumeister
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Christine Woischke
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Werner
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Budach
- Department of Radiooncology and Radiotherapy, Charité University Hospital Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Therapy Center (HIT), University of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-Ligia Grosu
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Annett Linge
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay Dresden, Dresden, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Stuschke
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ute Ganswindt
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Henke
- German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Belka
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer," Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Cai H, Miao M, Wang Z. miR-214-3p promotes the proliferation, migration and invasion of osteosarcoma cells by targeting CADM1. Oncol Lett 2018; 16:2620-2628. [PMID: 30013657 PMCID: PMC6036594 DOI: 10.3892/ol.2018.8927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023] Open
Abstract
Although osteosarcoma (OS) is the most common type of primary bone tumor in adolescents and young adults, its mechanism remains unclear. A previous study by the authors demonstrated that miR-214-3p was upregulated in OS patients. Therefore, the present study aimed to investigate the effect and molecular mechanism of miR-214-3p in OS cells. OS cell lines, U2OS and MNNG/HOS Cl#5, were transiently transfected with miR-214-3p mimics, a control mimic, miR-214-3p inhibitors and a control inhibitor. Subsequent assays revealed that elevated miR-214-3p promoted the proliferative, migratory and invasive abilities of OS cells, while the opposite effects were observed in cells that were transfected with miR-214-3p inhibitors. The interaction between miR-214-3p and cell adhesion molecule 1 (CADM1) 3'untranslated region (UTR) was verified by a dual luciferase assay, which indicated that the relative luciferase activity was decreased in 293T cells that were co-transfected with miR-214-3p mimic and psiCHECK2-CADM1-3'UTR compared with cells that were co-transfected with psiCHECK2-CADM1-3'UTR and control mimic. The knockdown of CADM1 using small-interfering RNA enhanced the proliferative, migratory and invasive abilities of OS cells. Furthermore, downregulated CADM1 expression increased the expression of phosphorylated P44/42 mitogen activated kinase (MAPK). In conclusion, miR-214-3p was able to directly target CADM1 and decrease its expression. This resulted in the activation of the P44/42 MAPK signaling pathway, and thereby promoted the proliferation, migration and invasion of OS cells.
Collapse
Affiliation(s)
- Haiqing Cai
- Pediatric Orthopedic Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200031, P.R. China
| | - Mingyuan Miao
- Pediatric Orthopedic Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200031, P.R. China
| | - Zhigang Wang
- Pediatric Orthopedic Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
33
|
Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer 2018; 105:643-651. [PMID: 29921422 DOI: 10.1016/j.bulcan.2018.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
Abstract
Exosomes are now considered to be involved in mediating cell-to-cell communication to promote or inhibit tumor progression. However, the role and molecular mechanism of exosomes in promoting glioblastoma (GBM) metastasis remains elusive. Here, we found that circulating exosomal miR-148a levels were significantly higher in serum from GBM patients compared with serum from healthy volunteers. In T98G cells, inhibition of miR-148a suppressed cell proliferation and metastasis. In addition, we identified Cell adhesion molecule 1 (CADM1) as a target gene of miR-148a using luciferase reporter assay. Both protein and mRNA levels of CADM1 were decreased in tissues from GBM patients. There was a strong negative correlation between exosomal miR-148a and CADM1 mRNA levels in samples of patients. Moreover, miR-148a antagonist increased p-STAT3 protein level to activate STAT3 pathway. In conclusion, our findings indicated that miR-148a delivered by exosomes may promote cancer cell proliferation and metastasis via targeting CADM1 to activate STAT3 pathway, suggesting a predictor and therapeutic target role of exosomal miR-148a in GBM patients.
Collapse
Affiliation(s)
- Qian Cai
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Anding Zhu
- Department of Neurology, the Third Xiangya Hospital, Central South University, 410013 Changsha, China.
| | - Li Gong
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, 410013 Changsha, China
| |
Collapse
|
34
|
Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:25-34. [PMID: 29208285 DOI: 10.1016/j.msec.2017.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022]
Abstract
Cancer is one of the leading causes of morbidity and mortality Worldwide, 19.3 million new cancer cases are expected to be identified in 2025. Among the therapeutic arsenal to cancer control one could find the Doxycycline and the nano hydroxyapatite. The Doxycycline (Dox) not only shown antibiotic effect but also exhibits a wide range of pleiotropic therapeutic properties as the control of the invasive and metastatic cancer cells characteristics. The purpose of the present study was to evaluate both cytotoxicity in vitro and antibacterial activity of electrospun Dox-loaded hybrid nanofibrous scaffolds composed by hydroxyapatite nanoparticles (nHA), poly-ε-caprolactone (PCL) and gelatin (Gel) polymers. Both nHA and Dox were dispersed into different PCL/Gel ratios (70:30, 60:40, 50:50wt%) solutions to form electrospun nanofibers. The nHA and Dox/nHA/PCL-Gel hybrid nanofibers were characterized by TEM microscopy. In vitro Dox release behavior from all of these Dox-loaded nHA/PCL-Gel nanofibers showed the same burst release profile due to the high solubility of Gel in the release medium. Antibacterial properties of nanofiber composites were evaluated using Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Porphyromonas gingivalis (P. gingivalis) bacteria. The co-delivery of nHA particles and Dox simultaneously exhibited inhibition of bacterial growth more efficiently than the delivery of either Dox or nHA at the same concentrations, indicating a synergistic effect. The results showed that cancer cell tested had different sensibility to co-delivery system. On the whole, A-431 cells were found exhibited the most pronounced synergistic effect compared to CACO-2 and 4T1 cancer cells. Based on the anticancer as well as the antimicrobial results in this study, the developed Dox/nHA/PCL-Gel composite nanofibers are suitable as a drug delivery system with potential applications in the biomedical fields.
Collapse
|
35
|
Cao W, Shi P, Ge JJ. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc Disord 2017; 17:88. [PMID: 28335740 PMCID: PMC5364650 DOI: 10.1186/s12872-017-0520-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 03/11/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cardiac fibrosis play a key role in the atrial fibrillation pathogenesis but the underlying potential molecular mechanism is still understood. However, potential mechanisms for miR-21 upregulation and its role in cardiac fibrosis remain unclear. The controls cell proliferation and processes fundamental to disease progression. Methods In this study, immunohistochemistry, real-time RT-PCR, cell transfection, cell cycle, cell proliferation and Western blot were used, respectively. Results Here we have been demonstrated that the tumor suppressor cell adhesion molecule 1 (CADM1) is the potential target of miR-21. Our study revealed that miR-21 regulation of CADM1 expression, which was decreased in cardiac fibroblasts and fibrosis tissue. The cardiac fibroblasts transfected with miR-21 mimic promoted miR-21 overexpression enhanced STAT3 expression and decreased CADM1 expression. Nevertheless, the cardiac fibroblasts transfected with miR-21 inhibitor obtained the opposite expression result. Furthermore, downexpression of miR-21 suppressed cardiac fibroblast proliferation. Conclusions These results suggested that miR-21 overexpression promotes cardiac fibrosis via STAT3 signaling pathway by decrease CADM1 expression, indicating miR-21 as an important signaling molecule for cardiac fibrotic remodeling and AF.
Collapse
Affiliation(s)
- Wei Cao
- Department of Cardiology, The first Hospital of Anhui Medical University, Hefei, 230031, China.,Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Peng Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jian-Jun Ge
- Department of Cardiology, The first Hospital of Anhui Medical University, Hefei, 230031, China. .,Department of Cardiology, The first Hospital of Anhui Medical University, Ji-Xi Road, Hefei, Anhui Province, 230032, China.
| |
Collapse
|