1
|
Zhang N, Zhou Z, Wang Y, Zhou S, Ma J, Sun J, Chen K. Vertical Stratification Reduces Microbial Network Complexity and Disrupts Nitrogen Balance in Seasonally Frozen Ground at Qinghai Lake in Tibet. Microorganisms 2025; 13:459. [PMID: 40005823 PMCID: PMC11858239 DOI: 10.3390/microorganisms13020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Global climate change has accelerated the reduction of permafrost regions across different altitude gradients, shortening the duration of the freezing period to varying extents. However, the response of the soil microorganisms of frozen soils along altitude gradients remains unclear. In this study, we employed 16S rRNA sequencing and LC-MS metabolomics to investigate the response of soil microbial communities and soil metabolites to vertical stratification in the permafrost soils of the Qinghai Lake region. The results indicated that Proteobacteria, Firmicutes, and Actinobacteria were key soil bacterial phyla in the permafrost soils of Qinghai Lake during the freezing period, with Proteobacteria and Firmicutes showing significant sensitivity to vertical stratification (p < 0.05). The majority of the physicochemical factors exhibited a trend of initially increasing and then decreasing with increasing altitude, whereas pH showed the opposite trend. pH and moisture content were identified as the most important environmental factors influencing soil bacterial community structure. Deterministic processes dominated the assembly of bacterial communities of frozen soils in the Qinghai Lake basin. Co-occurrence network analysis showed that increasing altitude gradients led to a higher average degree of the bacterial network, while reducing network complexity and inter-species connectivity. Soil metabolomics analysis revealed that vertical stratification altered the metabolic profiles of 27 metabolites, with the significantly changed metabolites primarily associated with carbohydrate and amino acid metabolism. In conclusion, the characteristics of the Qinghai Lake permafrost were regulated by regional vertical stratification, which further influenced microbial community structure and soil metabolic characteristics, thereby altering carbon and nitrogen stocks. Specifically, higher altitudes were more favorable for the retention of the carbon and nitrogen stocks of frozen soils in the Qinghai Lake basin.
Collapse
Affiliation(s)
- Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhiyun Zhou
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Yijun Wang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Shijia Zhou
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jing Ma
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jianqing Sun
- Qinghai Lake National Nature Reserve Administration, Xining 810008, China;
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| |
Collapse
|
2
|
Feng WL, Yang JL, Xu LG, Zhang GL. The spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil in the terrestrial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175543. [PMID: 39153619 DOI: 10.1016/j.scitotenv.2024.175543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Carbon(C), nitrogen(N), and phosphorus(P) are crucial elements in the element cycling in the terrestrial ecosystems. In the past decades, the spatial patterns and driving mechanisms of plant and soil ecological stoichiometry have been hot topics in ecological geography. So far, many studies at different spatial and ecological scales have been conducted, but systematic review has not been reported to summarize the research status. In this paper, we tried to fill this gap by reviewing both the spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil at regional to large scale. Additionally, we synthesized researches on the relationships between plant and soil C, N and P stoichiometric characteristics. At the global scale, plant C, N, P stoichiometric characteristics exhibited some trends along latitude and temperature gradient. Plant taxonomic classification was the main factor controlling the spatial variations of plant C, N and P stoichiometric characteristics. Climate factor and soil properties showed varying impacts on the spatial variations of plant C, N, P stoichiometric characteristics across different spatial scales. Soil C, N, P stoichiometric characteristics also varied along climate gradient at large scale. Their spatial variations resulted from the combined effects of climate, topography, soil properties, and vegetation characteristics at regional scale. The spatial pattern of soil C, N, P stoichiometric characteristics and the driving effects from environmental factors could be notably different among different ecosystems and vegetation types. Plant C:N:P was obviously higher than that of soil, and there existed a positive correlation between plant and soil C:N:P. Their trends along longitude and latitude were similar, but this correlation varied significantly among different vegetation types. Finally, based on the issues identified in this paper, we highlighted eight potential research themes for the future studies.
Collapse
Affiliation(s)
- Wen-Lan Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Gang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
4
|
Pivková I, Kukla J, Hnilička F, Hniličková H, Krupová D, Kuklová M. Relationship of selected properties of Cambisols to altitude and forest ecosystems of four vegetation grades. Heliyon 2024; 10:e31153. [PMID: 38807865 PMCID: PMC11130668 DOI: 10.1016/j.heliyon.2024.e31153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, little is known about the spatial variability of significant soil properties and their relationships to forest ecosystems of different vegetation grades. This work evaluates the variability of the properties of the upper layer of Cambisol taxa and their relationship to altitude and forest ecosystems of 2nd to 5th forest vegetation grades selected in the Western Carpathians using PCA and regression analysis. The content of clay, total carbon and total nitrogen, humus, energy, and ash in the soils varied between 5.43 and 11.53 %, 21-65 mg g-1, 1.9-4.7 mg g-1, 36-112 mg g-1, 438.4-5845.7 J g-1 and 852.9-946.3 mg g-1, and C/N, pHH2O, and pHKCl values ranged between 11.2 and 16.7, 4.0-5.8 and 3.1-4.6. PCA showed that EAC in the 3rd oak-beech vegetation grade had significantly higher pH values and significantly lower energy content, ESC in the 4th beech vegetation grade had a significantly higher ash content and a significantly lower energy content, and DC in the 5th fir-beech vegetation grade had a significantly higher content of Ct, Nt, and humus. Linear regression revealed a strong negative correlation between the energy content and soil reaction (R2 for pHH2O = 0.48; R2 for pHKCl = 0.38) for all Cambisol taxa. Ct content and ash show a strong negative correlation (R2 = 0.78). The positive relationship between altitude and FVGs was found only for the soil Ct (R2 = 0.87), Nt (R2 = 0.81), and humus content (R2 = 0.87). A strong negative linear relationship between altitude and FVGs showed the ash content (R2 = 0.77). In turn, the oscillatory, polynomial course had a relationship between the clay content (R2 = 0.65) and energy (R2 = 0.75) to altitude and FVGs. Recognizing significant soil variables and better understanding their impact on the development of forest ecosystems is a prerequisite for distinguishing areas with the highest risk of their damage under conditions of various anthropogenic interventions and climate change. Therefore, this topic continues to require increased research efforts. For this reason, a better understanding of the relationships between soil properties and ecologically differentiated communities of forest ecosystems will allow us to identify areas with the highest risk of ecological changes that could lead to the degradation of European forests in the future.
Collapse
Affiliation(s)
- Ivica Pivková
- Institute of Forest Ecology of the Slovak Academy of Sciences, Ľ. Štúra 2, 960 53, Zvolen, Slovakia
| | - Ján Kukla
- Institute of Forest Ecology of the Slovak Academy of Sciences, Ľ. Štúra 2, 960 53, Zvolen, Slovakia
| | - František Hnilička
- Czech University of Life Sciences Prague, Department of Botany and Plant Physiology, Kamýcka 129, 165 00, Prague, Czech Republic
| | - Helena Hniličková
- Czech University of Life Sciences Prague, Department of Botany and Plant Physiology, Kamýcka 129, 165 00, Prague, Czech Republic
| | - Danica Krupová
- National Forest Centre—Forest Research Institute, T. G. Masaryka 22, 960 92, Zvolen, Slovakia
| | - Margita Kuklová
- Institute of Forest Ecology of the Slovak Academy of Sciences, Ľ. Štúra 2, 960 53, Zvolen, Slovakia
| |
Collapse
|
5
|
Kumar S, Prabhakar M, Bhardwaj DR, Thakur CL, Kumar J, Sharma P. Altitudinal and aspect-driven variations in soil carbon storage potential in sub-tropical Himalayan forest ecosystem: assisting nature to combat climate change. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:126. [PMID: 38196071 DOI: 10.1007/s10661-024-12297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
Forest soils serve as the greatest sink of terrestrial carbon (C) and have a significant impact on worldwide or regional C cycling. By reducing emissions and enhancing the C storage in forests, the environmental monitoring function of a forest ecosystem may be ensured. The study focused on measuring the densities of major nutrients in soil to gain insight into the C and nitrogen dynamics of the Himalayan sub-tropical forest ecosystem of India besides supplementing the information about the C storage potential of these forest soils. The study examined the physico-chemical properties and nutrient densities across three altitudinal ranges viz., 600-800 m (A1), 800-1000 m (A2) and 1000-1200 m (A3) and two aspects, i.e. Northern (N) and Southern (S) in a randomized complete block design and data collection was done from 24 main sample plots (3 altitudinal ranges × 2 aspects × 4 replications). The soil pH, electrical conductivity, and bulk density observed a decreasing pattern with an increase in altitude, whereas a reverse trend was observed in soil organic C (SOC), total nitrogen and available phosphorus. The SOC and total nitrogen densities ranged from 20.08 to 48.35 Mg ha-1 and 2.56 to 4.01 Mg ha-1, respectively in an increasing trend from A1 to A3. The northern aspect exhibited significantly higher SOC and nitrogen densities than the southern aspects. The C storage potential of forest soils followed the order A1 < A2 < A3 with significantly higher potential (nearly 1.5 times) compared to those on the southern aspect. There was a consistently significant increase in the C:N ratio (CNR) with a maximum value (10.51) at A3 and minimum value (8.37) at A1, however the effect of aspect remained insignificant. This research underscores the importance of considering altitude and aspect when planning forest restoration efforts, as these factors have a substantial influence on soil properties, C storage potential and CNR. Understanding the significance of CNR is critical, as it serves as a key indicator of greenhouse gas (GHG) emissions from forest soils. Ultimately, these findings empower policymakers and conservationists to make informed decisions that can contribute to the sustainable management of Himalayan forests and the global fight against climate change.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Silviculture and Agroforestry, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Mukesh Prabhakar
- Department of Silviculture and Agroforestry, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - D R Bhardwaj
- Department of Silviculture and Agroforestry, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India.
| | - C L Thakur
- Department of Silviculture and Agroforestry, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Jatin Kumar
- Department of Silviculture and Agroforestry, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India.
| | - Prashant Sharma
- Department of Silviculture and Agroforestry, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| |
Collapse
|
6
|
You C, Li J, Yang K, Tan B, Yin R, Li H, Zhang L, Cui X, Liu S, Wang L, Liu Y, Chen L, Yuan Y, Li J, Sardans J, Zhang J, Xu Z, Peñuelas J. Variations and patterns of C and N stoichiometry in the first five root branch orders across 218 woody plant species. THE NEW PHYTOLOGIST 2023; 238:1838-1848. [PMID: 36891665 DOI: 10.1111/nph.18870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/27/2023] [Indexed: 05/04/2023]
Abstract
Despite the vital role in carbon (C) sequestration and nutrient retention, variations and patterns in root C and nitrogen (N) stoichiometry of the first five root orders across woody plant species remains unclear. We compiled a dataset to explore variations and patterns of root C and N stoichiometry in the first five orders of 218 woody plant species. Across the five orders, root N concentrations were greater in deciduous, broadleaf, and arbuscular mycorrhizal species than in evergreen, coniferous species, and ectomycorrhizal association species, respectively. Contrasting trends were found for root C : N ratios. Most root branch orders showed clear latitudinal and altitudinal trends in root C and N stoichiometry. There were opposite patterns in N concentrations between latitude and altitude. Such variations were mainly driven by plant species, and climatic factors together. Our results indicate divergent C and N use strategies among plant types and convergence and divergence in the patterns of C and N stoichiometry between latitude and altitude across the first five root orders. These findings provide important data on the root economics spectrum and biogeochemical models to improve understanding and prediction of climate change effects on C and nutrient dynamics in terrestrial ecosystems.
Collapse
Affiliation(s)
- Chengming You
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jihong Li
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaijun Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Bo Tan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Yin
- Department of Community Ecology, Helmholtz-Centre for Environmental Research-UFZ, Theodor-Lieser-Strasse 4, 06110, Halle (Saale), Germany
| | - Han Li
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinglei Cui
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sining Liu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Wang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaling Yuan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiao Li
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jordi Sardans
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Jian Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenfeng Xu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Sun N, Fan B, Yang F, Zhao L, Wang M. Effects of adding corn steep liquor on bacterial community composition and carbon and nitrogen transformation during spent mushroom substrate composting. BMC Microbiol 2023; 23:156. [PMID: 37237262 DOI: 10.1186/s12866-023-02894-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Carbon and nitrogen are essential energy and nutrient substances in the composting process. Corn steep liquor (CSL) is rich in soluble carbon and nitrogen nutrients and active substances and is widely used in the biological industry. Nonetheless, limited research has been done on the effect of CSL on composting. This work firstly reveals the effect of adding CSL to bacterial community composition and carbon and nitrogen conversion during composting. This study provides the choice of auxiliary materials for the spent mushroom substrate compost (SMS) and some novel knowledge about the effect of bacterial community on C and N cycling during composting of SMS and CSL. Two treatments were set up in the experiment: 100% spent mushroom substrate (SMS) as CK and SMS + 0.5% CSL (v/v) as CP. RESULTS The results showed that the addition of CSL enhanced the initial carbon and nitrogen content of the compost, altered the bacterial community structure, and increased the bacterial diversity and relative abundance, which might be beneficial to the conversion and retention of carbon and nitrogen in the composting process. In this paper, network analysis was used to screen the core bacteria involved in carbon and nitrogen conversion. In the CP network, the core bacteria were divided into two categories, synthesizing and degrading bacteria, and there were more synthesizing bacteria than degrading bacteria, so the degradation and synthesis of organic matter were carried out simultaneously, while only degrading bacteria were found in the CK network. Functional prediction by Faprotax identified 53 groups of functional bacteria, among which 20 (76.68% abundance) and 14 (13.15% abundance) groups of functional bacteria were related to carbon and nitrogen conversion, respectively. Adding CSL stimulated the compensatory effect of core and functional bacteria, enhanced the carbon and nitrogen transformation ability, stimulated the activity of low-abundance bacteria, and reduced the competitive relationship between the bacterial groups. This may be why the addition of CSL accelerated the organic matter degradation and increased carbon and nitrogen preservation. CONCLUSIONS These findings indicate that the addition of CSL promoted the cycling and preservation of carbon and nitrogen in the SMS composts, and the addition of CSL to the compost may be an effective way to dispose of agricultural waste.
Collapse
Affiliation(s)
- Ning Sun
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mengmeng Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
8
|
Nie K, Xu M, Zhang J. Changes in soil carbon, nitrogen, and phosphorus in Pinus massoniana forest along altitudinal gradients of subtropical karst mountains. PeerJ 2023; 11:e15198. [PMID: 37016678 PMCID: PMC10066882 DOI: 10.7717/peerj.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Changes in altitude have a long-term and profound impact on mountain forest ecosystems. However, there have been few reports on changes in soil carbon, nitrogen, and phosphorus contents (SCNPC) along altitudinal gradients in subtropical karst mountain forests, as well as on the factors influencing such changes. We selected five Pinus massoniana forests with an altitudinal gradient in the karst mountain area of Southwest China as research objects and analyzed the changes in SCNPC along the altitudinal gradient, as well as the influencing factors behind these changes. Soil organic carbon, total nitrogen, and available nitrogen contents first increased and then decreased with increasing altitude, whereas the contents of total phosphorus and available phosphorus showed no obvious trend. In the karst mountain P. massoniana forest, SCNPC in the topsoil is most significantly affected by total glomalin-related soil protein (TG) and soil moisture content (SMC) (cumulative explanatory rate was 45.28–77.33%), indicating that TG and SMC are important factors that affect SCNPC in the karst mountain P. massoniana forest. In addition, the main environmental factors that affect SCNPC in the subsoil showed significant differences. These results may provide a better scientific reference for the sustainable management of the subtropical mountain P. massoniana forest.
Collapse
Affiliation(s)
- Kun Nie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Ming Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| | - Jian Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Effects of Forest Gaps on Abies faxoniana Rehd. Leaf Litter Mass Loss and Carbon Release along an Elevation Gradient in a Subalpine Forest. FORESTS 2022. [DOI: 10.3390/f13081201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the microenvironment induced by forest gaps may affect litter decomposition, yet it is unclear how the gap effects respond to altitudinal and seasonal differences. Here, a four-year litterbag decomposition experiment along an elevation gradient (3000, 3300, 3600 m) was conducted in an Abies faxoniana Rehd. subalpine forest of southwestern China, to assess the potential seasonal effects of forest gaps (large: ≈250 m2, middle: ≈125 m2, small: ≈40 m2 vs. closed canopy) on litter mass loss and carbon release at different elevations. We found that the A. faxoniana litter mass loss and carbon release reached 50~53 and 58~64% after four years of decomposition, respectively. Non-growing seasons (November to April) had a greater decline than the growing seasons (May to October). Litter in the forest gaps exhibited significantly higher mass loss than that under the closed canopy, and the decomposition constant (k) exhibited a gradually declining trend from large gaps, middle gaps, small gaps to closed canopy. Moreover, more significant differences of gap on both carbon content and release were observed at the 3600 m site than the other two elevations. Our findings indicate that (i) a rather high mass loss and carbon release during the decomposition of A. faxoniana litter was observed at high elevations of the subalpine forest subjected to low temperatures in the non-growing seasons and (ii) there were stimulative effects of forest gaps on litter mass loss and carbon release in early decomposition, especially in the non-growing seasons, driven by fewer freeze–thaw cycles when compared to the closed canopy, which diminished at the end of the experiment. The results will provide crucial ecological data for further understanding how opening gaps as a main regeneration method would induce changes in carbon cycling in subalpine forest ecosystems.
Collapse
|
10
|
Ding H, Hu W, Zhu H, Bi R. Spatial Scaling Effects to Enhance the Prediction for the Temporal Changes of Soil Nitrogen Density From 2007 to 2017 in Different Climatic Basins. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.848865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil nitrogen density (SND), which is influenced by environmental factors operating at different spatial scales and intensities, is critical for agricultural production and soil quality. Although the spatiotemporal distribution of top-layer SND has been well explored, the scale effects of environmental factors on the temporal changes of SND (SNDT) are poorly studied, which might promote the predictive accuracy of SNDT. Thus, SNDT during a certain period was calculated to explore the multiscale effects of environmental factors on it. In the study, three sampling transects under the basins of warm-temperate, mid-temperate, and warm-temperate zones were established with 200 km long and 1 km intervals to explore the spatial variation of SNDT, examine the multiscale effect of environmental factors on it, construct the predicting models based on its scale-specific relations with environmental factors, and validate the models in each basin or in other climate-zone basins. The results indicated that the increment of SND during a certain period was the greatest in the mid-temperate basin, and the variation of SNDT was ranked as cool-temperate > mid-temperate > warm-temperate basins. Under different soil types, the spatial characteristics of SNDT were different in different climate-zone basins, but the average SNDT under cropland was the greatest in each basin. Considering the influencing factors (climatic, topographic, and vegetation factors), they had controls on SNDT operating at different spatial scales. In regard to the prediction of SNDT, the method of partial least square regression (PLSR) combined with a multiscale analysis was found to be more preferable for dependent SNDT prediction than the traditional method of stepwise multiple linear regression but could not be validated for the independent validation data in other basins. Thus, the spatial multiscale relations of SNDT with environmental factors could provide more information for each basin, and the integration of the extra information decomposed by wavelet transform into the method of PLSR could enhance the SNDT prediction for dependent datasets. These findings are of great significance for future studies in the spatial modeling of SND temporal dynamics under the influence of environmental changes.
Collapse
|
11
|
Yang Q, Wang S, Zhao C, Nan Z. Risk assessment of trace elements accumulation in soil-herbage systems at varied elevation in subalpine grassland of northern Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27636-27650. [PMID: 34982386 DOI: 10.1007/s11356-021-18366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Ecological environment of remote grassland has become a problem in many countries due to mining, tourism, grazing, and other human activities. In this study, a total of 15 pairs of soil-herbage samples were collected in the northeast of the Tibet Plateau to study the relationship between physicochemical properties and content of trace elements in soils at different elevation, and to examine the accumulation and fractionation of heavy metals in soil-herbage systems. In addition, the ecological risk of the subalpine grassland was also assessed. The average concentrations of Hg, As, Cu, Zn, Pb, Cd, Cr, and Mn in soil were higher than their background values of Gansu soil, but the average concentrations of these heavy metals in herbage satisfied Hygienical Standard for Feeds. The speciation analysis of heavy metals in soil indicated that the exchangeable content of heavy metal was very low, except Pb, Cd, and Mn. There was a linear relationship between pH, CaCO3, total phosphorus (TP), organic matter (OM), concentrations of Hg, As, Zn, Pb, Cr, and Mn in soils, dry weight of herbage, and elevation, while there was a quadratic curve trend between Cu, Cd in soils, and elevation. The results of risk assessment showed that there was no obvious ecological risk in the study area.
Collapse
Affiliation(s)
- Qianfang Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuicui Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongren Nan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
12
|
C:N:P Stoichiometry of Plant, Litter and Soil along an Elevational Gradient in Subtropical Forests of China. FORESTS 2022. [DOI: 10.3390/f13030372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The internal correlation of plant, litter and soil stoichiometric characteristics and their responses to the environment are helpful for revealing nutrient cycling mechanisms. However, few studies have assessed the nutrient relationship between plant, litter and soil and nutrient stock along elevational gradients, which limit the understanding of nutrient relationships in the ecosystem. To gain insight into the forces of nutrient stock and its stoichiometric ecological characteristics along the elevational gradients in forest ecosystem, we investigated the carbon (C), nitrogen (N) phosphorus (P) contents and stoichiometric ratios of dominant plants, litter and soil layers at different elevations (900–1600 m) in Daiyun Mountain. The results showed the following: (1) C, N and P contents showed an increasing order as plant > litter > soil in each elevation of Daiyun Mountain. Dominant plants were limited by N each elevation. C, N and P contents of plants at high elevation were higher than those at low elevation and significant correlations were found between plant and litter TN, TP and air and soil temperature (negative), which conforms to the Temperature-Plant Physiological Hypothesis (TPPH). (2) Significant correlations were found between plant C:N and litter C:N (positive); between litter C:P and soil N:P (positive); and between litter C:P and soil C:N (negative). (3) Elevation and slope were essential environmental factors to the stoichiometric ratio of plant and litter, and pH was the main factor that correlated negatively to soil stoichiometry ratio. Litter provided a link between plant and soil, and there was a coupling among plant, litter and soil nutrients. The results could provide a theoretical basis for understanding the nutrient cycling for the subtropical forest ecosystem of China.
Collapse
|
13
|
Yang Y, Shi Y, Kerfahi D, Ogwu MC, Wang J, Dong K, Takahashi K, Moroenyane I, Adams JM. Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149368. [PMID: 34352461 DOI: 10.1016/j.scitotenv.2021.149368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Soil fungi play an important role in promoting nutrient cycling and maintaining ecosystem stability. Yet, there has been little understanding of how fungal co-occurrence networks differ along elevational climate gradients, a topic of interest to both macroecology and climate change studies. Based on high-throughput sequencing technology, we investigated the trend in co-occurrence network structure of soil fungal communities at 11 elevation levels along a 2300 m elevation gradient on Mt. Norikura, Japan, and identified the keystone taxa in the network, hypothesizing a progressive decline in network connectivity with elevation due to decreased plant diversity and enhanced environmental stress caused by changes in climate and soil characteristics. Our results demonstrated that network-level topological features such as network size, average degree, clustering coefficient, and modularity decreased significantly with increasing elevation, indicating that the fungal OTUs at low elevation were more closely associated and the network structure was more compact at low elevations. This conclusion was verified by the negative correlation between positive cohesion, negative cohesion and elevation. Moreover, the negative/positive cohesion ratio reached its peak value in mid-elevations with moderate environmental stress, indicating that the fungal community structure in mid-elevations was more stable than that at other elevations. We also found that the keystone taxa were more abundant at lower elevations. Furthermore, statistical analysis revealed that against a background of uniform geology, climate may play a dominant role in determining the properties and intensity of soil fungal networks, and significantly affect the abundance distribution of keystone taxa. These findings enhance understanding of the pattern and mechanism of the fungal community co-occurrence network along elevation, as well as the responses of microorganisms to climate change on a vertical scale in montane ecosystems. IMPORTANCE: Exploration of the elevational distribution of microbial networks and their driving factors and mechanisms may provide opportunities for predicting potential impacts of environmental changes, on ecosystem functions and biogeographic patterns at a broad scale. Although many studies have explored patterns of fungal community diversity and composition along various environmental gradients, it is unclear how the topological structure of co-occurrence networks shifts along elevational temperature gradients. In this study, we found that the connectivity of the fungal community decreased with increasing elevation and that climate was the dominant factor regulating co-occurrence patterns, apparently acting indirectly through soil characteristics. Our results also suggest that higher elevations on mountains have fewer keystone taxa than low elevations. These patterns may be related to the decrease of plant diversity and the increase of environmental stress along elevation gradients.
Collapse
Affiliation(s)
- Ying Yang
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Henan, China
| | - Dorsaf Kerfahi
- School of Natural Sciences, Department of Biological Sciences, Keimyung University, Daegu, Republic of Korea
| | - Matthew C Ogwu
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Marche - Floristic Research Center of the Apennines, Gran Sasso and Monti della Laga National Park, San Colombo, Barisciano, L'Aquila, Italy
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Dong
- Life Science Major, Kyonggi University, Suwon, South Korea
| | - Koichi Takahashi
- Department of Biological Sciences, Shinsu University, Matsumoto, Japan
| | - Itumeleng Moroenyane
- Institut National Recherche Scientifique Centre, Institut Armand Frappier Santé Biotechnologie, Quebéc, Canada
| | - Jonathan M Adams
- School of Geography and Oceanography, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Luambua NK, Hubau W, Salako KV, Amani C, Bonyoma B, Musepena D, Rousseau M, Bourland N, Nshimba HS, Ewango C, Beeckman H, Hardy OJ. Spatial patterns of light-demanding tree species in the Yangambi rainforest (Democratic Republic of Congo). Ecol Evol 2021; 11:18691-18707. [PMID: 35003702 PMCID: PMC8717288 DOI: 10.1002/ece3.8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/25/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Most Central African rainforests are characterized by a remarkable abundance of light-demanding canopy species: long-lived pioneers (LLP) and non-pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash-and-burn farming activities, which abruptly ended in the 19th century. This "human disturbance" hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one-ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short-lived pioneers (SLP) and a single abundant shade-tolerant species (Gilbertiodendron dewevrei) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses (G. dewevrei). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one-time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the "human disturbance" hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long-term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei, which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present-day forest composition is a result of adaptation to late-Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.
Collapse
Affiliation(s)
- Nestor K. Luambua
- Faculty of Renewable Natural Resources ManagementUniversity of KisanganiKisanganiDemocratic Republic of Congo
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Faculté des sciences AgronomiquesUniversité Officielle de MbujimayiMbujimayiDemocratic Republic of Congo
| | - Wannes Hubau
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Department of EnvironmentLaboratory of Wood TechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
- School of GeographyUniversity of LeedsLeedsUK
| | - Kolawolé Valère Salako
- Laboratoire de Biomathématiques et d’Estimations ForestièresFaculty of Agronomic SciencesUniversity of Abomey‐CalaviCotonouBenin
- Service d'Évolution Biologique et ÉcologieUniversité Libre de BruxellesBrusselsBelgium
| | - Christian Amani
- Faculty of Sciences and Applied SciencesUniversité Officielle de Bukavu Departement de la BiologieBukavuDemocratic Republic of Congo
- Center for International Forestry ResearchBogor (Barat)Indonesia
| | - Bernard Bonyoma
- Section de la ForesterieInstitut National pour l'Etude et la Recherche AgronomiqueYangambiDemocratic Republic of Congo
| | - Donatien Musepena
- Section de la ForesterieInstitut National pour l'Etude et la Recherche AgronomiqueYangambiDemocratic Republic of Congo
| | - Mélissa Rousseau
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
| | - Nils Bourland
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
- Center for International Forestry ResearchBogor (Barat)Indonesia
- Resources & Synergies Development Pte LtdSingaporeSingapore
| | - Hippolyte S.M. Nshimba
- Department of Ecology and Flora Resources ManagementFaculty of SciencesUniversity of KisanganiKisanganiDemocratic Republic of Congo
| | - Corneille Ewango
- Faculty of Renewable Natural Resources ManagementUniversity of KisanganiKisanganiDemocratic Republic of Congo
| | - Hans Beeckman
- Service of Wood BiologyRoyal Museum for Central AfricaTervurenBelgium
| | - Olivier J. Hardy
- Service d'Évolution Biologique et ÉcologieUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
15
|
Impacts of slope aspects on altitudinal species richness and species composition of Narapani-Masina landscape, Arghakhanchi, West Nepal. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2021. [DOI: 10.1016/j.japb.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Navarro T, Hidalgo-Triana N. Variations in Leaf Traits Modulate Plant Vegetative and Reproductive Phenological Sequencing Across Arid Mediterranean Shrublands. FRONTIERS IN PLANT SCIENCE 2021; 12:708367. [PMID: 34497623 PMCID: PMC8420881 DOI: 10.3389/fpls.2021.708367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Structural and nutrient traits of a leaf are important for understanding plant ecological strategies (e.g., drought avoidance). We studied the specific leaf area (SLA), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorous content (LPC), and the phenophase sequence index (PSI) in 126 Mediterranean perennial species from predesert (SMS) and semiarid (SaMS) to subalpine (SAS), alpine cushion (AcS), and oro-Mediterranean (AjS) shrublands, which represent eight functional groups (evergreen and deciduous trees, evergreen large and half shrubs, deciduous large and half shrubs, succulents and perennial herbs). We analyzed the variation and relationships between leaf traits and PSI among shrublands, functional groups, and within species with drought-avoidance mechanisms. SLA variation of 20-60% could be ascribed to differences between functional groups and only 38-48% to different shrublands increasing from the predesert to the alpine. Alpine species display low PSI and N:P and high SLA, LNC, LPC, LCC, and C:N. On the contrary, predesert and semiarid showed high PSI and low SLA. SLA mediates the vegetative and reproductive phenological plant sequencing, high SLA is often associated with the overlapping in growth and reproductive phenophases with a seasonal reduction of vegetative growth, whereas low SLA is associated with vegetative and reproductive sequencing and a seasonal extension of vegetative growth. Species with drought-avoidance mechanisms (e.g., semideciduous species) contribute to an increase in the mean values of the SLA and LNC because these species show similar leaf and phenological patterns as the deciduous (high SLA and LNC and low PSI). The N:P indicates that only the alpine shrublands could present P limitations. The positive correlations between SLA and LPC and LNC and LPC (leaf economic spectrum) and the negative correlation between SLA and C:N were consistently maintained in the studied arid Mediterranean shrublands.
Collapse
|
17
|
Badraghi A, Ventura M, Polo A, Borruso L, Giammarchi F, Montagnani L. Soil respiration variation along an altitudinal gradient in the Italian Alps: Disentangling forest structure and temperature effects. PLoS One 2021; 16:e0247893. [PMID: 34403412 PMCID: PMC8370607 DOI: 10.1371/journal.pone.0247893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
On the mountains, along an elevation gradient, we generally observe an ample variation in temperature, with the associated difference in vegetation structure and composition and soil properties. With the aim of quantifying the relative importance of temperature, vegetation and edaphic properties on soil respiration (SR), we investigated changes in SR along an elevation gradient (404 to 2101 m a.s.l) in the southern slopes of the Alps in Northern Italy. We also analysed soil physicochemical properties, including soil organic carbon (SOC) and nitrogen (N) stocks, fine root C and N, litter C and N, soil bulk densities and soil pH at five forest sites, and also stand structural properties, including vegetation height, age and basal area. Our results indicated that SR rates increased with temperature in all sites, and 55–76% of SR variability was explained by temperature. Annual cumulative SR, ranging between 0.65–1.40 kg C m-2 yr-1, decreased along the elevation gradient, while temperature sensitivity (Q10) of SR increased with elevation. However, a high SR rate (1.27 kg C m-2 yr-1) and low Q10 were recorded in the mature conifer forest stand at 1731 m a.s.l., characterized by an uneven-aged structure and high dominant tree height, resulting in a nonlinear relationship between elevation and temperature. Reference SR at 10°C (SRref) was unrelated to elevation, but was related to tree height. A significant negative linear relationship was found between bulk density and elevation. Conversely, SOC, root C and N stock, pH, and litter mass were best fitted by nonlinear relationships with elevation. However, these parameters were not significantly correlated with SR when the effect of temperature was removed (SRref). These results demonstrate that the main factor affecting SR in forest ecosystems along this Alpine elevation gradient is temperature, but its regulating role can be strongly influenced by site biological characteristics, particularly vegetation type and structure, affecting litter quality and microclimate. This study also confirms that high elevation sites are rich in SOC and more sensitive to climate change, being prone to high C losses as CO2. Furthermore, our data indicate a positive relationship between Q10 and dominant tree height, suggesting that mature forest ecosystems characterized by an uneven-age structure, high SRref and moderate Q10, may be more resilient.
Collapse
Affiliation(s)
- Aysan Badraghi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Andrea Polo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Francesco Giammarchi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Leonardo Montagnani
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- Forest Services, Autonomous Province of Bolzano, Bolzano, Italy
- * E-mail:
| |
Collapse
|
18
|
Wang YQ, Ni MY, Zeng WH, Huang DL, Xiang W, He PC, Ye Q, Cao KF, Zhu SD. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species. ANNALS OF BOTANY 2021; 128:183-191. [PMID: 33930116 PMCID: PMC8324032 DOI: 10.1093/aob/mcab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/24/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Leaf biomechanical resistance protects leaves from biotic and abiotic damage. Previous studies have revealed that enhancing leaf biomechanical resistance is costly for plant species and leads to an increase in leaf drought tolerance. We thus predicted that there is a functional correlation between leaf hydraulic safety and biomechanical characteristics. METHODS We measured leaf morphological and anatomical traits, pressure-volume parameters, maximum leaf hydraulic conductance (Kleaf-max), leaf water potential at 50 % loss of hydraulic conductance (P50leaf), leaf hydraulic safety margin (SMleaf), and leaf force to tear (Ft) and punch (Fp) of 30 co-occurring woody species in a sub-tropical evergreen broadleaved forest. Linear regression analysis was performed to examine the relationships between biomechanical resistance and other leaf hydraulic traits. KEY RESULTS We found that higher Ft and Fp values were significantly associated with a lower (more negative) P50leaf and a larger SMleaf, thereby confirming the correlation between leaf biomechanical resistance and hydraulic safety. However, leaf biomechanical resistance showed no correlation with Kleaf-max, although it was significantly and negatively correlated with leaf outside-xylem hydraulic conductance. In addition, we also found that there was a significant correlation between biomechanical resistance and the modulus of elasticity by excluding an outlier. CONCLUSIONS The findings of this study reveal leaf biomechanical-hydraulic safety correlation in sub-tropical woody species.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Ming-Yuan Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Dong-Liu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Wei Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Peng-Cheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Liu D, Zheng D, Xu Y, Chen Y, Wang H, Wang K, Liao X, Chen C, Xia J, Jin S. Changes in the stoichiometry of Castanopsis fargesii along an elevation gradient in a Chinese subtropical forest. PeerJ 2021; 9:e11553. [PMID: 34131527 PMCID: PMC8176907 DOI: 10.7717/peerj.11553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Elevation is important for determining the nutrient biogeochemical cycle in forest ecosystems. Changes in the ecological stoichiometry of nutrients along an elevation gradient can be used to predict how an element cycle responds in the midst of global climate change. We investigated changes in concentrations of and relationships between nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) in the leaves and roots of the dominant tree species, Castanopsis fargesii, along an elevation gradient (from 500 to 1,000 m above mean sea level) in a subtropical natural forest in China. We analyzed correlations between C. fargesii's above-ground biomass and stoichiometry with environmental factors. We also analyzed the soil and plant stoichiometry of this C. fargesii population. Our results showed that leaf N decreased while leaf K and Ca increased at higher elevations. Meanwhile, leaf P showed no relationship with elevation. The leaf N:P indicated that C. fargesii was limited by N. Elevation gradients contributed 46.40% of the total variance of ecological stoichiometry when assessing environmental factors. Our research may provide a theoretical basis for the biogeochemical cycle along with better forest management and fertilization for this C. fargesii population.
Collapse
Affiliation(s)
- Danping Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dexiang Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaoyao Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifei Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hesong Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ku Wang
- Department of Geography, Minjiang University, Fuzhou, China
| | - Xiaoli Liao
- Department of Geography, Minjiang University, Fuzhou, China
| | - Changxiong Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangjiang Xia
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, China
- Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Feng J, Tang M, Zhu B. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. GLOBAL CHANGE BIOLOGY 2021; 27:2793-2806. [PMID: 33683768 DOI: 10.1111/gcb.15587] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Priming plays important roles in terrestrial carbon cycling, but the patterns and drivers of priming and its responses to nutrient addition in tropical forests remain unclear. By collecting soils along a tropical forest elevation gradient, we conducted an incubation experiment with 13 C-labeled glucose and nutrient (N and/or P) additions. Results showed that priming effects increased soil organic matter decomposition by 44 ± 12% across elevations, and priming intensity decreased significantly with elevation. Among soil and microbial properties, soil organic carbon (SOC) content and pH were two key factors negatively and positively regulating priming, respectively. Across elevations, the additions of N, P, or both of them (NP) did not significantly change priming. However, the variations in the effects of nutrient (N and/or P) addition on priming significantly correlated with initial soil nutrient (N or P) availability. The intensity for the effects of N addition on priming decreased significantly with initial soil N availability, and that for the effects of P and NP addition on priming decreased with initial soil P availability. Based on these relationships, we proposed a conceptual framework linking stoichiometric decomposition and nutrient mining hypotheses, in which the former dominates in low-nutrient availability soils and the latter dominates in high-nutrient availability soils. This conceptual framework can help to explain the contrasting effects of nutrient addition on priming. Collectively, our findings highlight the roles of SOC content and soil pH in regulating priming intensity, and the role of initial soil nutrient availability in regulating the effects of nutrient addition on priming.
Collapse
Affiliation(s)
- Jiguang Feng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Mao Tang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
21
|
Zhu J, Wu A, Zhou G. Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China's forest ecosystems. Sci Rep 2021; 11:5357. [PMID: 33686087 PMCID: PMC7940475 DOI: 10.1038/s41598-021-84166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Phosphorus (P) is an important element in terrestrial ecosystems and plays a critical role in soil quality and ecosystem productivity. Soil total P distributions have undergone large spatial changes as a result of centuries of climate change. It is necessary to study the characteristics of the horizontal and vertical distributions of soil total P and its influencing factors. In particular, the influence of climatic factors on the spatial distribution of soil total P in China's forest ecosystems remain relatively unknown. Here, we conducted an intensive field investigation in different forest ecosystems in China to assess the effect of climatic factors on soil total P concentration and distribution. The results showed that soil total P concentration significantly decreased with increasing soil depth. The spatial distribution of soil total P increased with increasing latitude and elevation gradient but decreased with increasing longitude gradient. Random forest models and linear regression analyses showed that the explanation rate of bioclimatic factors and their relationship with soil total P concentration gradually decreased with increasing soil depths. Variance partitioning analysis demonstrated that the most important factor affecting soil total P distribution was the combined effect of temperature and precipitation factor, and the single effect of temperature factors had a higher explanation rate compare with the single effect of precipitation factors. This work provides a new farmework for the geographic distribution pattern of soil total P and the impact of climate variability on P distribution in forest ecosystems.
Collapse
Affiliation(s)
- Jie Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anchi Wu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoyi Zhou
- Institute of Ecology, School of Applied Meteorology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
22
|
Hamid M, Khuroo AA, Malik AH, Ahmad R, Singh CP. Elevation and aspect determine the differences in soil properties and plant species diversity on Himalayan mountain summits. Ecol Res 2021. [DOI: 10.1111/1440-1703.12202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maroof Hamid
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | - Akhtar Hussain Malik
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | - Rameez Ahmad
- Centre for Biodiversity and Taxonomy, Department of Botany University of Kashmir Srinagar India
| | | |
Collapse
|
23
|
Weemstra M, Freschet GT, Stokes A, Roumet C. Patterns in intraspecific variation in root traits are species‐specific along an elevation gradient. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13723] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monique Weemstra
- CEFE University of MontpellierCNRSEPHEIRDUniversity Paul Valéry Montpellier 3 Montpellier France
- AMAP INRAE CIRAD IRD CNRS University of Montpellier Montpellier France
| | - Grégoire T. Freschet
- CEFE University of MontpellierCNRSEPHEIRDUniversity Paul Valéry Montpellier 3 Montpellier France
- Station d'Ecologie Théorique et Expérimentale CNRS Moulis France
| | - Alexia Stokes
- AMAP INRAE CIRAD IRD CNRS University of Montpellier Montpellier France
| | - Catherine Roumet
- CEFE University of MontpellierCNRSEPHEIRDUniversity Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
24
|
Fichaux M, Vleminckx J, Courtois EA, Delabie J, Galli J, Tao S, Labrière N, Chave J, Baraloto C, Orivel J. Environmental determinants of leaf litter ant community composition along an elevational gradient. Biotropica 2020. [DOI: 10.1111/btp.12849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mélanie Fichaux
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
| | - Jason Vleminckx
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
- Institute of Environment, Department of Biological Sciences Florida International University Miami FL USA
| | - Elodie A. Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA) CNRS IFREMER Université de Guyane Cayenne France
- Department of Biology Centre of Excellence PLECO (Plant and Vegetation Ecology) University of Antwerp Wilrijk Belgium
| | - Jacques Delabie
- Laboratório de Mirmecologia CEPEC CEPLAC Itabuna Brazil
- Departamento de Ciências Agrárias e Ambientais Universidade Estadual de Santa Cruz Ilheus Brazil
| | - Jordan Galli
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
- Naturalia Environnement Site Agroparc Avignon Cedex 9 France
| | - Shengli Tao
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS IRD Université Paul Sabatier Toulouse France
| | - Nicolas Labrière
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS IRD Université Paul Sabatier Toulouse France
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS IRD Université Paul Sabatier Toulouse France
| | - Christopher Baraloto
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
- Institute of Environment, Department of Biological Sciences Florida International University Miami FL USA
| | - Jérôme Orivel
- CNRS UMR Ecologie des Forêts de Guyane (EcoFoG) AgroParisTech CIRAD INRA Université de Guyane Université des Antilles Kourou cedex France
| |
Collapse
|
25
|
Comparing Machine Learning Models and Hybrid Geostatistical Methods Using Environmental and Soil Covariates for Soil pH Prediction. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9040276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the current paper we assess different machine learning (ML) models and hybrid geostatistical methods in the prediction of soil pH using digital elevation model derivates (environmental covariates) and co-located soil parameters (soil covariates). The study was located in the area of Grevena, Greece, where 266 disturbed soil samples were collected from randomly selected locations and analyzed in the laboratory of the Soil and Water Resources Institute. The different models that were assessed were random forests (RF), random forests kriging (RFK), gradient boosting (GB), gradient boosting kriging (GBK), neural networks (NN), and neural networks kriging (NNK) and finally, multiple linear regression (MLR), ordinary kriging (OK), and regression kriging (RK) that although they are not ML models, they were used for comparison reasons. Both the GB and RF models presented the best results in the study, with NN a close second. The introduction of OK to the ML models’ residuals did not have a major impact. Classical geostatistical or hybrid geostatistical methods without ML (OK, MLR, and RK) exhibited worse prediction accuracy compared to the models that included ML. Furthermore, different implementations (methods and packages) of the same ML models were also assessed. Regarding RF and GB, the different implementations that were applied (ranger-ranger, randomForest-rf, xgboost-xgbTree, xgboost-xgbDART) led to similar results, whereas in NN, the differences between the implementations used (nnet-nnet and nnet-avNNet) were more distinct. Finally, ML models tuned through a random search optimization method were compared with the same ML models with their default values. The results showed that the predictions were improved by the optimization process only where the ML algorithms demanded a large number of hyperparameters that needed tuning and there was a significant difference between the default values and the optimized ones, like in the case of GB and NN, but not in RF. In general, the current study concluded that although RF and GB presented approximately the same prediction accuracy, RF had more consistent results, regardless of different packages, different hyperparameter selection methods, or even the inclusion of OK in the ML models’ residuals.
Collapse
|
26
|
MacTavish R, Anderson JT. Resource availability alters fitness trade-offs: implications for evolution in stressful environments. AMERICAN JOURNAL OF BOTANY 2020; 107:308-318. [PMID: 31943133 DOI: 10.1002/ajb2.1417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade-offs across fitness components constrain or facilitate adaptation under resource stress. METHODS We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499-3530 m a.s.l.), representing disparate soil moisture and nutrient availability. RESULTS Concordant with local adaptation, maternal families from arid, low-elevation populations had enhanced fecundity under severe drought over those from more mesic, high-elevation sites. Furthermore, fitness trade-offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns. CONCLUSIONS Despite high heritabilities in all fitness components across treatments, trade-offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.
Collapse
Affiliation(s)
- Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
27
|
Ahmad R, Khuroo AA, Hamid M, Rashid I. Plant invasion alters the physico-chemical dynamics of soil system: insights from invasive Leucanthemum vulgare in the Indian Himalaya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 191:792. [PMID: 31989263 DOI: 10.1007/s10661-019-7683-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Understanding the impact of plant invasions on the terrestrial ecosystems, particularly below-ground soil system dynamics can be vital for successful management and restoration of invaded landscapes. Here, we report the impacts of a global plant invader, Leucanthemum vulgare Lam. (ox-eye daisy), on the key physico-chemical soil properties across four sites selected along an altitudinal gradient (1600-2550 m) in Kashmir Himalaya, India. At each site, two types of spatially separated but environmentally similar sampling plots: invaded (IN) and uninvaded (UN) were selected for soil sampling. The results revealed that invasion by L. vulgare had a significant impact on key soil properties in the IN plots. The soil pH, water content, organic carbon and total nitrogen were significantly higher in the IN plots as compared with the UN plots. In contrast, the electrical conductivity, phosphorous and micronutrients, viz. iron, copper, manganese and zinc, were significantly lower in the IN plots as compared with the UN plots. These changes in the soil system dynamics associated with L. vulgare invasion were consistent across all the sites. Also, among the sites, soil properties of low-altitude site (1600 m) were different from the rest of the sampling sites. Overall, the results of the present study indicate that L. vulgare, by altering key properties of the soil system, is likely to influence nutrient cycling processes and facilitates positive feedback for itself. Furthermore, the research insights from this study have wide management implications in the effective ecological restoration of the invaded landscapes.
Collapse
Affiliation(s)
- Rameez Ahmad
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, J & K, Srinagar, 190006, India.
| | - Anzar A Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, J & K, Srinagar, 190006, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, J & K, Srinagar, 190006, India
| | - Irfan Rashid
- Biological Invasions Laboratory, Department of Botany, University of Kashmir, J & K, Srinagar, 190006, India
| |
Collapse
|
28
|
Elevation Gradient Altered Soil C, N, and P Stoichiometry of Pinus taiwanensis Forest on Daiyun Mountain. FORESTS 2019. [DOI: 10.3390/f10121089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Researches focused on soil carbon (C), nitrogen (N), and phosphorus (P) content and the stoichiometry characteristics along elevation gradients are important for effective management of forest ecosystems. Taking the soil of different elevations from 900 to 1700 m on Daiyun Mountain as the object, the elevation distribution of total C, N, and P in soil and their stoichiometry characteristics were studied. Also, the driving factors resulting in the spatial heterogeneity of soil stoichiometry are presented. The results show the following: (1) The average soil C and N content was 53.03 g·kg−1 and 3.82 g·kg−1, respectively. The content of C and N at high elevation was higher than that of at low elevation. Soil phosphorus fluctuated with elevation. (2) With increasing elevation, soil C:N ratio increased initially to 17.40 at elevation between 900–1000 m, and then decreased to 12.02 at elevation 1600 m. The changing trends of C:P and N:P were similar, and they all fluctuated with elevation. (3) Elevation, soil bulk density, and soil temperature were the main factors influencing the variation of soil C, N, and C:N. Soil pH and slope position were the driving factors for soil P, C:P, and N:P. The soil is rich in C and N, and has less total phosphorus on Daiyun Mountain. Raising the level of phosphate fertilizer appropriately can help to improve soil fertility and promote plant growth as well. In light of this information, in the near future, it will be necessary to conduct separation management of C, N, and P with regular monitoring systems to maintain favorable conditions for soil.
Collapse
|
29
|
Regeneration in the Understory of Declining Overstory Trees Contributes to Soil Respiration Homeostasis along Succession in a Sub-Mediterranean Beech Forest. FORESTS 2019. [DOI: 10.3390/f10090727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: Tree decline can alter soil carbon cycling, given the close relationship between primary production and the activity of roots and soil microbes. Background and Objectives: We studied how tree decline associated to old age and accelerated by land-use change and increased drought in the last decades, affects soil properties and soil respiration (Rs). Materials and Methods: We measured Rs over two years around centennial European beech (Fagus sylvatica L.) trees representing a gradient of decline in a sub-Mediterranean forest stand, where the number of centennial beech trees has decreased by 54% in the last century. Four replicate plots were established around trees (i) with no apparent crown dieback, (ii) less than 40% crown dieback, (iii) more than 50% crown dieback, and (iv) dead. Results: Temporal variations in Rs were controlled by soil temperature (Ts) and soil water content (SWC). The increase in Rs with Ts depended on SWC. The temperature-normalized Rs exhibited a parabolic relationship with SWC, suggesting a reduced root and microbial respiration associated to drought and waterlogging. The response of Rs to SWC did not vary among tree-decline classes. However, the sensitivity of Rs to Ts was higher around vigorous trees than around those with early symptoms of decline. Spatial variations in Rs were governed by soil carbon to nitrogen ratio, which had a negative effect on Rs, and SWC during summer, when drier plots had lower Rs than wetter plots. These variations were independent of the tree vigor. The basal area of recruits, which was three times (although non-significantly) higher under declining and dead trees than under vigorous trees, had a positive effect on Rs. However, the mean Rs did not change among tree-decline classes. These results indicate that Rs and related soil physico-chemical variables are resilient to the decline and death of dominant centennial trees. Conclusions: The development of advanced regeneration as overstory beech trees decline and die contribute to the Rs homeostasis along forest succession.
Collapse
|
30
|
Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 2019; 14:e0213844. [PMID: 30875404 PMCID: PMC6419999 DOI: 10.1371/journal.pone.0213844] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/02/2019] [Indexed: 11/30/2022] Open
Abstract
Altitude is the major factor affecting both biodiversity and soil physiochemical properties of soil ecosystems. In order to understand the effect of altitude on soil physiochemical properties and bacterial diversity across the Himalayan cold desert, high altitude Gangotri soil ecosystem was studied and compared with the moderate altitude Kandakhal soil. Soil physiochemical analysis showed that altitude was positively correlated with soil pH, organic matter and total nitrogen content. However soil mineral nutrients and soil phosphorus were negatively correlated to the altitude. RT-PCR based analysis revealed the decreased bacterial and diazotrophic abundance at high altitude. Metagenomic study showed that Proteobacteria, Acidobacteria and Actinobacteria were dominant bacteria phyla at high altitude soil while Bacteroidetes and Fermicutes were found dominant at low altitude. High ratio of Gram-negative to Gram positive bacteria at Gangotri suggests the selective proliferation of Gram negative bacteria at high altitude with decrease in Gram positive bacteria. Moreover, Alphaproteobacteria was found more abundant at high altitude while the opposite was true for Betaproteobacteria. Abundance of Cytophaga, Flavobacterium and Bacteroides (CFB) were also found comparatively high at high altitude. Presence of many taxonomically unclassified sequences in Gangotri soil indicates the presence of novel bacterial diversity at high altitude. Further, isolation of bacteria through indigenously designed diffusion chamber revealed the existence of bacteria which has been documented in unculturable study of WIH (Western Indian Himalaya) but never been cultivated from WIH. Nevertheless, diverse functional free-living psychrotrophic diazotrophs were isolated only from the high altitude Gangotri soil. Molecular characterization revealed them as Arthrobacter humicola, Brevibacillus invocatus, Pseudomonas mandelii and Pseudomonas helmanticensis. Thus, this study documented the bacterial and psychrophilic diazotrophic diversity at high altitude and is an effort for exploration of low temperature bacteria in agricultural productivity with the target for sustainable hill agriculture.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Microbiology, College of Basic Sciences and Humanities; Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deep Chandra Suyal
- Department of Microbiology, College of Basic Sciences and Humanities; Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, India
| | - Reeta Goel
- Department of Microbiology, College of Basic Sciences and Humanities; Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
31
|
Xu Z, Chang Y, Li L, Luo Q, Xu Z, Li X, Qiao X, Xu X, Song X, Wang Y, Cao Y. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains. PLoS One 2018; 13:e0204130. [PMID: 30383817 PMCID: PMC6211625 DOI: 10.1371/journal.pone.0204130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023] Open
Abstract
Knowledge about soil nitrogen (N) and phosphorus (P) concentrations, stocks, and stoichiometric ratios is crucial for understanding the biogeochemical cycles and ecosystem function in arid mountainous forests. However, the corresponding information is scarce, particularly in arid mountainous forests. To fill this gap, we investigated the depth and elevational patterns of the soil N and P concentrations and the N: P ratios in a Picea schrenkiana forest using data from soil profiles collected during 2012-2017. Our results showed that the soil N and P concentrations and the N: P ratios varied from 0.15 g kg-1 to 0.56 g kg-1 (average of 0.31 g kg-1), from 0.09 g kg-1 to 0.16 g kg-1 (average of 0.12 g kg-1), and from 2.42 g kg-1 to 4.36 g kg-1 (average of 3.42 g kg-1), respectively; additionally, values significantly and linearly decreased with soil depth. We did not observe a significant variation in the soil N and P concentrations and the N: P ratios with the elevational gradient. In contrast, our results revealed that the mean annual temperature and mean annual precipitation exhibited a more significant influence on the soil N and P concentrations and the N: P ratios than did elevation. This finding indicated that climatic variables might have a more direct impact on soil nutrient status than elevation. The observed relationship among the soil N and P concentrations and the N: P ratios demonstrated that the soil N was closely coupled with the soil P in the P. schrenkiana forest.
Collapse
Affiliation(s)
- Zhonglin Xu
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
- Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi, Xinjiang, China
| | - Yapeng Chang
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Lu Li
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Qinghui Luo
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Zeyuan Xu
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Xiaofei Li
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuewei Qiao
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Xinyi Xu
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Xinni Song
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Yao Wang
- Institute of Desert Meteorology, CMA, Urumqi, Urumqi, Xinjiang, China
| | - Yue’e Cao
- College of Resource and Environmental Science, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
32
|
Seed size in mountain herbaceous plants changes with elevation in a species-specific manner. PLoS One 2018; 13:e0199224. [PMID: 29912939 PMCID: PMC6005539 DOI: 10.1371/journal.pone.0199224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/04/2018] [Indexed: 11/19/2022] Open
Abstract
Research devoted to investigating the relationship between elevation and seed size in alpine plants gives contradictory results. Some studies document a positive correlation between seed size and elevation, whereas in others a negative correlation is reported. We propose a novel approach to the problem by looking at the whole strategy of seed production, including seed number, and by focusing on a range of environmental variables. In the Tatra Mountains (southern Poland), we selected 73 sites at which seeds of six widely occurring mountain herbaceous species were collected. Each site was characterized by 13 parameters that included climatic and physicochemical soil variables. For each parameter, residuals from a linear regression against elevation were calculated and the residuals were used in a factor analysis. The obtained factors, together with elevation, were used as independent variables in a multiple regression analysis. Elevation affected seed size in four species: in two species the correlation was positive, and in two others it was negative. In three species seed number was related to elevation, and the correlation was negative in all cases. Our results indicate that elevation-dependence of seed production is specific to the species and reflects different resource allocation strategies. Diverse correlations of plant characteristics with elevation may also result from area-specific patterns, because different mountain ranges may exhibit different correlations between elevation and environmental factors. Only by attaining a reproductive allocation perspective and thorough assessment of environmental factors, a full understanding of elevational variation in seed size is possible.
Collapse
|
33
|
Wang A, Wang X, Tognetti R, Lei JP, Pan HL, Liu XL, Jiang Y, Wang XY, He P, Yu FH, Li MH. Elevation alters carbon and nutrient concentrations and stoichiometry in Quercus aquifolioides in southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1463-1475. [PMID: 29890611 DOI: 10.1016/j.scitotenv.2017.12.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 05/26/2023]
Abstract
Elevation is a complex environmental factor altering temperature, light, moisture and soil nutrient availability, and thus may affect plant growth and physiology. Such effects of elevation may also depend on seasons. Along an elevational gradient of the Balang Mountain, southwestern China, we sampled soil and 2-year old leaves, 2-year old shoots, stem sapwood and fine roots (diameter<5mm) of Quercus aquifolioides at 2843, 2978, 3159, 3327, 3441 and 3589m a.s.l. in both summer and winter. In summer, the concentrations of tissue non-structural carbohydrates (NSC) did not decrease with increasing elevation, suggesting that the carbon supply is sufficient for plant growth at high altitude in the growing season. The concentration of NSC in fine roots decreased with elevation in winter, and the mean concentration of NSC across tissues in a whole plant showed no significant difference between the two sampling seasons, suggesting that the direction of NSC reallocation among plant tissues changed with season. During the growing season, NSC transferred from leaves to other tissues, and in winter NSC stored in roots transferred from roots to aboveground tissues. Available soil N increased with elevation, but total N concentrations in plant tissues did not show any clear elevational pattern. Both available soil P and total P concentrations in all plant tissues decreased with increasing elevation. Thus, tissue N:P ratio increased with elevation, suggesting that P may become a limiting element for plant growth at high elevation. The present study suggests that the upper limit of Q. aquifolioides on Balang Mountain may be co-determined by winter root NSC storage and P availability. Our results contribute to better understanding of the mechanisms for plants' upper limit formation.
Collapse
Affiliation(s)
- Ao Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; College of Nature Conservation, Beijing Forestry University, Beijing 100083, China; Forest dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Xue Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; Forest dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Roberto Tognetti
- Dipartimento di Agraria, Ambiente e Alimenti, Università del Molise, 86090 Campobasso, Italy - European Forest Institute (EFI) Project Centre on Mountain Forests (MOUNTFOR), 38010 San Michele all'Adige, Italy
| | - Jing-Pin Lei
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Hong-Li Pan
- Sichuan Academy of Forestry, Chengdu 610081, China
| | | | - Yong Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Xiao-Yu Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; Forest dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Peng He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; Forest dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Fei-Hai Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China.
| | - Mai-He Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; Forest dynamics, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland.
| |
Collapse
|
34
|
Collins CG, Stajich JE, Weber SE, Pombubpa N, Diez JM. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol Ecol 2018; 27:2461-2476. [PMID: 29675967 PMCID: PMC7111543 DOI: 10.1111/mec.14694] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change.
Collapse
Affiliation(s)
- Courtney G. Collins
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave. Riverside, CA 92521
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, 900 University Ave. Riverside, CA 92521
| | - Sören E. Weber
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave. Riverside, CA 92521
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology, University of California Riverside, 900 University Ave. Riverside, CA 92521
| | - Jeffrey M. Diez
- Department of Botany and Plant Sciences, University of California Riverside, 900 University Ave. Riverside, CA 92521
| |
Collapse
|
35
|
Orivel J, Klimes P, Novotny V, Leponce M. Resource use and food preferences in understory ant communities along a complete elevational gradient in Papua New Guinea. Biotropica 2018. [DOI: 10.1111/btp.12539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane; AgroParisTech, CIRAD, INRA; Université de Guyane; Université des Antilles; Campus Agronomique, BP316 97379 Kourou cedex France
| | - Petr Klimes
- Institute of Entomology Biology Centre; Czech Academy of Sciences and Faculty of Science; University of South Bohemia; Branisovska 31 370 05 Ceske Budejovice Czech Republic
- The New Binatang Research Center; Nagada Harbour, P.O. Box 604 Madang Papua New Guinea
| | - Vojtech Novotny
- Institute of Entomology Biology Centre; Czech Academy of Sciences and Faculty of Science; University of South Bohemia; Branisovska 31 370 05 Ceske Budejovice Czech Republic
- The New Binatang Research Center; Nagada Harbour, P.O. Box 604 Madang Papua New Guinea
| | - Maurice Leponce
- Biodiversity Monitoring & Assessment Unit; Royal Belgian Institute of Natural Sciences; 29 rue Vautier 1000 Brussels Belgium
- Evolutionary Biology & Ecology; Université Libre de Bruxelles; CP 160/12, 50 av. F.D. Roosevelt 1050 Brussels Belgium
| |
Collapse
|
36
|
Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B. Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2017; 23:3808-3824. [PMID: 28317232 DOI: 10.1111/gcb.13691] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/23/2017] [Indexed: 05/15/2023]
Abstract
Because the capability of terrestrial ecosystems to fix carbon is constrained by nutrient availability, understanding how nutrients limit plant growth is a key contemporary question. However, what drives nutrient limitations at global scale remains to be clarified. Using global data on plant growth, plant nutritive status, and soil fertility, we investigated to which extent soil parent materials explain nutrient limitations. We found that N limitation was not linked to soil parent materials, but was best explained by climate: ecosystems under harsh (i.e., cold and or dry) climates were more N-limited than ecosystems under more favourable climates. Contrary to N limitation, P limitation was not driven by climate, but by soil parent materials. The influence of soil parent materials was the result of the tight link between actual P pools of soils and physical-chemical properties (acidity, P richness) of soil parent materials. Some other ground-related factors (i.e., soil weathering stage, landform) had a noticeable influence on P limitation, but their role appeared to be relatively smaller than that of geology. The relative importance of N limitation versus P limitation was explained by a combination of climate and soil parent material: at global scale, N limitation became prominent with increasing climatic constraints, but this global trend was modulated at lower scales by the effect of parent materials on P limitation, particularly under climates favourable to biological activity. As compared with soil parent materials, atmospheric deposition had only a weak influence on the global distribution of actual nutrient limitation. Our work advances our understanding of the distribution of nutrient limitation at global scale. In particular, it stresses the need to take soil parent materials into account when investigating plant growth response to environment changes.
Collapse
Affiliation(s)
- Laurent Augusto
- UMR 1391 ISPA, Bordeaux Sciences Agro, INRA, Villenave d'Ornon, France
| | - David L Achat
- UMR 1391 ISPA, Bordeaux Sciences Agro, INRA, Villenave d'Ornon, France
| | - Mathieu Jonard
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Vidal
- UMR 1391 ISPA, Bordeaux Sciences Agro, INRA, Villenave d'Ornon, France
| | - Bruno Ringeval
- UMR 1391 ISPA, Bordeaux Sciences Agro, INRA, Villenave d'Ornon, France
| |
Collapse
|
37
|
Zhang X, Yang Y, Zhang C, Niu S, Yang H, Yu G, Wang H, Blagodatskaya E, Kuzyakov Y, Tian D, Tang Y, Liu S, Sun X. Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12936] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Yang Yang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Chuang Zhang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Hao Yang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Huimin Wang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Evgenia Blagodatskaya
- Department of Agricultural Soil ScienceUniversity of Goettingen Goettingen Germany
- Institute of Physicochemical and Biological Problems in Soil ScienceRussian Academy of Sciences Pushchino Russia
| | - Yakov Kuzyakov
- Department of Agricultural Soil ScienceUniversity of Goettingen Goettingen Germany
- College of Resources and EnvironmentHuazhong Agricultural University Wuhan China
- Institute of Environmental SciencesKazan Federal University Kazan Russia
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Yuqian Tang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Shuang Liu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Xiaomin Sun
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|