1
|
Infante O, Gómez I, Pélaez-Aguilar AE, Verduzco-Rosas LA, García-Suárez R, García-Gómez BI, Wang Z, Zhang J, Guerrero A, Bravo A, Soberón M. Insights into the structural changes that trigger receptor binding upon proteolytic activation of Bacillus thuringiensis Vip3Aa insecticidal protein. PLoS Pathog 2024; 20:e1012765. [PMID: 39637242 DOI: 10.1371/journal.ppat.1012765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/17/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Bacillus thuringiensis (Bt) bacteria produce different pore forming toxins with insecticidal activity, including Cry and Vip3 proteins. While both Cry and Vip3 cause insect death by forming pores in susceptible lepidopteran larval midgut cells, their mechanisms of action differ. The Vip3Aa protoxin adopts a tetramer-structure, where each monomer has five distinct domains. Upon proteolytic activation, the Vip3 tetramer undergoes a large conformational change forming a syringe like structure that is ready for membrane insertion and pore formation. Here we show that Vip3Aa protoxin had low binding to Spodoptera frugiperda brush border membrane vesicles (BBMV) unlike the activated toxin that bound specifically in a concentration dependent way, suggesting that a structural change upon Vip3Aa proteolytic activation is required for efficient receptor binding. Consistently, the Vip3Aa protoxin showed no toxicity to Sf9 cells compared to the activated toxin. In contrast, Cry1Fa protoxin and its activated toxin, were both highly toxic to Sf9 cells. To identify the region of Vip3 involved in binding to BBMV proteins, different overlapping peptides from Vip3Aa covering domains III, IV and V were expressed, and binding analysis were performed against BBMV, showing that domain III is the primary binding domain. Additionally, domains III, IV and V amino acid residues that become exposed upon activation of Vip3Aa were identified. Mutagenesis of these exposed residues revealed three amino acids (K385, K526 and V529) located in two structural adjacent loops, domain III loop β5-β6 and loop α11-β16 that connects domains III and IV, that are crucial for binding to the midguts of S. frugiperda larvae and for toxicity. Our results demonstrate that proteolytic activation of Vip3Aa exposes a receptor binding region essential for its toxicity.
Collapse
Affiliation(s)
- Oscar Infante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Angel E Pélaez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis A Verduzco-Rosas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rosalina García-Suárez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Blanca I García-Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adan Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Afzal MBS, Ijaz M, Abbas N, Shad SA, Serrão JE. Resistance of Lepidopteran Pests to Bacillus thuringiensis Toxins: Evidence of Field and Laboratory Evolved Resistance and Cross-Resistance, Mode of Resistance Inheritance, Fitness Costs, Mechanisms Involved and Management Options. Toxins (Basel) 2024; 16:315. [PMID: 39057955 PMCID: PMC11281168 DOI: 10.3390/toxins16070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus thuringiensis (Bt) toxins are potential alternatives to synthetic insecticides for the control of lepidopteran pests. However, the evolution of resistance in some insect pest populations is a threat and can reduce the effectiveness of Bt toxins. In this review, we summarize the results of 161 studies from 20 countries reporting field and laboratory-evolved resistance, cross-resistance, and inheritance, mechanisms, and fitness costs of resistance to different Bt toxins. The studies refer mainly to insects from the United States of America (70), followed by China (31), Brazil (19), India (12), Malaysia (9), Spain (3), and Australia (3). The majority of the studies revealed that most of the pest populations showed susceptibility and a lack of cross-resistance to Bt toxins. Factors that delay resistance include recessive inheritance of resistance, the low initial frequency of resistant alleles, increased fitness costs, abundant refuges of non-Bt, and pyramided Bt crops. The results of field and laboratory resistance, cross-resistance, and inheritance, mechanisms, and fitness cost of resistance are advantageous for predicting the threat of future resistance and making effective strategies to sustain the effectiveness of Bt crops.
Collapse
Affiliation(s)
- Muhammad Babar Shahzad Afzal
- Beekeeping & Hill Fruit Pests Research Station, Rawalpindi 46000, Pakistan;
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mamuna Ijaz
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Sarfraz Ali Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Vicosa, Vicosa 36570-900, MG, Brazil;
| |
Collapse
|
3
|
Yang F, Head GP, Kerns DD, Jurat-Fuentes JL, Santiago-González JC, Kerns DL. Diverse genetic basis of Vip3Aa resistance in five independent field-derived strains of Helicoverpa zea in the US. PEST MANAGEMENT SCIENCE 2024; 80:2796-2803. [PMID: 38327120 DOI: 10.1002/ps.7988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Practical resistance of Helicoverpa zea to Cry proteins has become widespread in the US, making Vip3Aa the only effective Bacillus thuringiensis (Bt) protein for controlling this pest. Understanding the genetic basis of Vip3Aa resistance in H. zea is essential in sustaining the long-term efficacy of Vip3Aa. The objectives of this study were to characterize the inheritance of Vip3Aa resistance in four distinct field-derived H. zea strains (M1-RR, AC4-RR, R2-RR and R15-RR), and to test for shared genetic basis among these strains and a previously characterized Texas resistant strain (LT#70-RR). RESULTS Maternal effects and sex linkage were absent, and the effective dominance level (DML) was 0.0 across Vip3Aa39 concentrations ranging from 1.0 to 31.6 μg cm-2, in all H. zea resistant strains. Mendelian monogenic model tests indicated that Vip3Aa resistance in each of the four strains was controlled by a single gene. However, interstrain complementation tests indicated that three distinct genetic loci are involved in Vip3Aa resistance in the five resistant H. zea strains: one shared by M1-RR and LT#70-RR; another shared by R2-RR and R15-RR; and a distinct one for AC4-RR. CONCLUSION Results of this study indicate that Vip3Aa resistance in all H. zea strains was controlled by a single, recessive and autosomal gene. However, there were three distinct genetic loci associated with Vip3Aa resistance in the five resistant H. zea strains. The information generated from this study is valuable for exploring mechanisms of Vip3Aa resistance, monitoring the evolution of Vip3Aa resistance, and devising effective strategies for managing Vip3Aa resistance in H. zea. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Dawson D Kerns
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Kerns DD, Yang F, Kerns DL, Stewart SD, Jurat-Fuentes JL. Reduced toxin binding associated with resistance to Vip3Aa in the corn earworm ( Helicoverpa zea). Appl Environ Microbiol 2023; 89:e0164423. [PMID: 38014960 PMCID: PMC10734485 DOI: 10.1128/aem.01644-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Helicoverpa zea is a major crop pest in the United States that is managed with transgenic corn and cotton that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). However, H. zea has evolved widespread resistance to the Cry proteins produced in Bt corn and cotton, leaving Vip3Aa as the only plant-incorporated protectant in Bt crops that consistently provides excellent control of H. zea. The benefits provided by Bt crops will be substantially reduced if widespread Vip3Aa resistance develops in H. zea field populations. Therefore, it is important to identify resistance alleles and mechanisms that contribute to Vip3Aa resistance to ensure that informed resistance management strategies are implemented. This study is the first report of reduced binding of Vip3Aa to midgut receptors associated with resistance.
Collapse
Affiliation(s)
- Dawson D. Kerns
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Fei Yang
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Scott D. Stewart
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
7
|
Tabashnik BE, Unnithan GC, Yelich AJ, Fabrick JA, Dennehy TJ, Carrière Y. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins. PEST MANAGEMENT SCIENCE 2022; 78:3973-3979. [PMID: 35633103 DOI: 10.1002/ps.7016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Transgenic crops that make insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, evolution of resistance to Bt toxins by pests diminishes the efficacy of Bt crops. Resistance to crystalline (Cry) Bt toxins has spurred adoption of crops genetically engineered to produce the Bt vegetative insecticidal protein Vip3Aa. Here we used laboratory diet bioassays to evaluate responses to Vip3Aa by pink bollworm (Pectinophora gossypiella), one of the world's most damaging pests of cotton. RESULTS Against pink bollworm larvae susceptible to Cry toxins, Vip3Aa was less potent than Cry1Ac or Cry2Ab. Conversely, Vip3Aa was more potent than Cry1Ac or Cry2Ab against laboratory strains highly resistant to those Cry toxins. Five Cry-susceptible field populations were less susceptible to Vip3Aa than a Cry-susceptible laboratory strain (APHIS-S). Relative to APHIS-S, significant resistance to Vip3Aa did not occur in strains selected in the laboratory for > 700-fold resistance to Cry1Ac or both Cry1Ac and Cry2Ab. CONCLUSIONS Resistance to Cry1Ac and Cry2Ab did not cause strong cross-resistance to Vip3Aa in pink bollworm, which is consistent with predictions based on the lack of shared midgut receptors between these toxins and previous results from other lepidopterans. Comparison of the Bt toxin concentration in plants relative to the median lethal concentration (LC50 ) from bioassays may be useful for estimating efficacy. The moderate potency of Vip3Aa against Cry1Ac- and Cry2Ab-resistant and susceptible pink bollworm larvae suggests that Bt cotton producing this toxin together with novel Cry toxins might be useful as one component of integrated pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Jeffrey A Fabrick
- USDA ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | | | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Fu BW, Xu L, Zheng MX, Chen QX, Shi Y, Zhu YJ. Stability is essential for insecticidal activity of Vip3Aa toxin against Spodoptera exigua. AMB Express 2022; 12:92. [PMID: 35834019 PMCID: PMC9283630 DOI: 10.1186/s13568-022-01430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
Vegetative insecticidal proteins 3A (Vip3A) were important insecticidal proteins for control of lepidopteran pests. Previous study demonstrated that Vip3Aa and Vip3Ad showed significant difference in insecticidal activities against Spodoptera exigua, while the molecular mechanism remained ambiguous. Here we demonstrated that the difference in insecticidal activities between Vip3Aa and Vip3Ad might be caused by the difference in stability of Vip3Aa and Vip3Ad in S. exigua midgut protease. Vip3Aa was quite stable while Vip3Ad could be further degraded. Molecular dynamics simulation revealed that Vip3Aa was more stable than Vip3Ad, with smaller RMSD and RMSF value. Amino acid sequence alignment indicated that three were three extra prolines (P591, P605 and P779) located on Vip3Aa. We further identified that residue P591 played a crucial role on stability and insecticidal activity of Vip3Aa. Taken together, our study demonstrated that the stability was essential for the insecticidal activity of Vip3A toxins, which might provide new insight into the action mode of Vip3A toxins and contribute to the design Vip3A variants with improved stability and insecticidal activity.
Collapse
Affiliation(s)
- Bai-Wen Fu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Xu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Mei-Xia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Qing-Xi Chen
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yu-Jing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| |
Collapse
|
9
|
An B, Zhang Y, Li X, Hou X, Yan B, Cai J. PHB2 affects the virulence of Vip3Aa to Sf9 cells through internalization and mitochondrial stability. Virulence 2022; 13:684-697. [PMID: 35400294 PMCID: PMC9037526 DOI: 10.1080/21505594.2022.2064596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The vegetative insecticidal proteins (Vip3A) secreted by some Bacillus thuringiensis (Bt) strains during vegetative growth are regarded as a new generation of insecticidal toxins. Like insecticidal crystal proteins, they are also used in transgenic crops to control pests. However, their insecticidal mechanisms are far less defined than those of insecticidal crystal protein. Prohibitin 2 (PHB2) is a potential Vip3Aa binding receptor identified from the membrane of Sf9 cells in our previous work. In this paper, we demonstrated the interaction between Vip3Aa and PHB2 using pull-down, dot blotting, microscale thermophoresis, and co-immunoprecipitation assays. PHB2 is distributed on the cell membrane and in the cytoplasm, and the co-localization of PHB2 and Vip3Aa was observed in Sf9 cells using a confocal laser scanning microscope. Moreover, PHB2 could interact with scavenger receptor-C via its SPFH (stomatin, prohibitin, flotillin, and HflK/C) domain. Downregulation of phb2 expression reduced the degree of internalization of Vip3Aa, exacerbated Vip3Aa-mediated mitochondrial damage, and increased Vip3Aa toxicity to Sf9 cells. This suggested that PHB2 performs two different functions: Acting as an interacting partner to facilitate the internalization of Vip3Aa into Sf9 cells and maintaining the stability of mitochondria. The latter has a more important influence on the virulence of Vip3Aa.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyue Hou
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Jiangsu Institute of Marine Bioresources development, Lianyungang, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
10
|
Lázaro-Berenguer M, Quan Y, Hernández-Martínez P, Ferré J. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Sci Rep 2022; 12:4578. [PMID: 35301405 PMCID: PMC8931066 DOI: 10.1038/s41598-022-08633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their different specificity, the use of Vip3 proteins from Bacillus thuringiensis in combination with the conventionally used Cry proteins in crop protection is being essential to counteract the appearance of insect resistance. Therefore, understanding the mode of action of Vip3 proteins is crucial for their better application, with special interest on the binding to membrane receptors as the main step for specificity. Derived from in vitro heterologous competition binding assays using 125I-Vip3A and other Vip3 proteins as competitors, it has been shown that Vip3 proteins share receptors in Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). In this study, using 125I-Vip3Aa, we have first extended the in vitro competition binding site model of Vip3 proteins to Spodoptera littoralis. With the aim to understand the relevance (in terms of toxicity) of the binding to the midgut sites observed in vitro on the insecticidal activity of these proteins, we have performed in vivo competition assays with S. littoralis larvae, using disabled mutant (non-toxic) Vip3 proteins as competitors for blocking the toxicity of Vip3Aa and Vip3Af. The results of the in vivo competition assays confirm the occurrence of shared binding sites among Vip3 proteins and help understand the functional role of the shared binding sites as revealed in vitro.
Collapse
Affiliation(s)
- María Lázaro-Berenguer
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Yudong Quan
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
| | - Juan Ferré
- Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
11
|
Critical domains in the specific binding of radiolabelled Vip3Af insecticidal protein to brush border membrane vesicles from Spodoptera spp. and cultured insect cells. Appl Environ Microbiol 2021; 87:e0178721. [PMID: 34586902 DOI: 10.1128/aem.01787-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis). In this study, we have set up the conditions to analyze the specific binding of 125I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but that Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine-mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding, and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125I-DI-III. In addition, the truncated protein 125I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo. IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for the ex vivo toxicity to Sf21 cells.
Collapse
|
12
|
Identification and Characterization of MicroRNAs in Gonads of Helicoverpa armigera (Lepidoptera: Noctuidae). INSECTS 2021; 12:insects12080749. [PMID: 34442315 PMCID: PMC8396854 DOI: 10.3390/insects12080749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary For most insects, the development of the testis and ovary directly determines their reproductive ability. The cotton bollworm, Helicoverpa armigera (Hübner), is a polyphagous crop pest of the Lepidoptera Noctuidae. Owing to its broad range of host plants and strong fertility, H. armigera causes huge economic losses to agricultural production. Acting as a type of post-transcriptional regulatory factor, miRNAs participate in the gonadal development and reproductive regulation of H. arimgera. Our study uses H. armigera as a research object to identify and characterize the miRNAs and study their potential functions in the testis and ovary of this destructive crop pest. A total of 7,592,150 and 8,815,237 clean reads were obtained by constructing small RNA libraries of the testis and ovary, respectively. Length distribution analysis showed that the main types of small RNAs in the testis and ovary were different. Among the 74 known miRNAs, 60 miRNAs existed in the ovary, and 72 existed in the testis. Gene Ontology (GO) and KEGG pathway analyses indicated that the 8 gonad-biased differentially expressed miRNAs (miR-989a, miR-263-5p, miR-34, miR-2763, miR-998, miR-2c, miR-2765, and miR-252a-5p) had many target transcripts involved in the reproduction process. Abstract The high fecundity of the most destructive pest Helicoverpa armigera and its great resistance risk to insecticides and Bt crops make the reproductive-destruction-based control of this pest extremely appealing. To find suitable targets for disruption of its reproduction, we observed the testis and ovary development of H. armigera and conducted deep sequencing of the ovary and testis small RNAs of H. armigera and quantitative RT-PCR (RT-qPCR) validation to identify reproduction-related micro RNAs (miRNAs). A total of 7,592,150 and 8,815,237 clean reads were obtained from the testis and ovary tissue, respectively. After further analysis, we obtained 173 novel and 74 known miRNAs from the two libraries. Among the 74 known miRNAs, 60 miRNAs existed in the ovary and 72 existed in the testis. Further RT-qPCR validation of 5 miRNAs from the ovary and 6 miRNAs from the testis confirmed 8 of them were indeed ovary- (miR-989a, miR-263-5p, miR-34) or testis-biased (miR-2763, miR-998, miR-2c, miR-2765, miR-252a-5p). The 8 ovary- or testis-biased miRNAs had a total of 30,172 putative non-redundant target transcripts, as predicted by miRanda and RNAhybrid. Many of these target transcripts are assigned to reproduction-related GO terms (e.g., oocyte maturation, vitellogenesis, spermatogenesis) and are members of multiple reproduction-related KEGG pathways, such as the JAK-STAT signaling pathway, oocyte meiosis, the insulin signaling pathway, and insect hormone biosynthesis. These results suggest that the 8 gonad-biased miRNAs play important roles in reproduction and may be used as the targets for the development of reproductive-destruction-based control of H. armigera and, possibly, other lepidopteran pests.
Collapse
|
13
|
Quan Y, Yang J, Wang Y, Hernández-Martínez P, Ferré J, He K. The Rapid Evolution of Resistance to Vip3Aa Insecticidal Protein in Mythimna separata (Walker) Is Not Related to Altered Binding to Midgut Receptors. Toxins (Basel) 2021; 13:toxins13050364. [PMID: 34065247 PMCID: PMC8190635 DOI: 10.3390/toxins13050364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms by which insects developed resistance to shed light on the mode of action and optimize resistance management strategies. Here, a field population of Mythimna separata was subjected to laboratory selection with either Vip3Aa, Cry1Ab, or Cry1F insecticidal proteins from Bacillus thuringiensis. The population rapidly evolved resistance to Vip3Aa reaching, after eight generations, a level of >3061-fold resistance, compared with the unselected insects. In contrast, the same population did not respond to selection with Cry1Ab or Cry1F. The Vip3Aa resistant population did not show cross resistance to either Cry1Ab or Cry1F. Radiolabeled Vip3Aa was tested for binding to brush border membrane vesicles from larvae from the susceptible and resistant insects. The results did not show any qualitative or quantitative difference between both insect samples. Our data, along with previous results obtained with other Vip3Aa-resistant populations from other insect species, suggest that altered binding to midgut membrane receptors is not the main mechanism of resistance to Vip3Aa.
Collapse
Affiliation(s)
- Yudong Quan
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
| | - Jing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
| | - Patricia Hernández-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
| | - Juan Ferré
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
- Correspondence: (J.F.); (K.H.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
- Correspondence: (J.F.); (K.H.)
| |
Collapse
|
14
|
Windus LCE, Jones AM, Downes S, Walsh T, Knight K, Kinkema M. HearNPV susceptibility in Helicoverpa armigera and Helicoverpa punctigera strains resistant to Bt toxins Cry1Ac, Cry2Ab, and Vip3Aa. J Invertebr Pathol 2021; 183:107598. [PMID: 33957131 DOI: 10.1016/j.jip.2021.107598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
Genetically engineered crops expressing insecticidal toxins from Bacillus thuringiensis (Bt) have improved the management of targeted lepidopteran pests and reduced the use of insecticide sprays. These benefits explain an increasing adoption of Bt crops worldwide, intensifying the selection pressure on target species and the risk of resistance. Nucleopolyhedroviruses (NPVs) are effective bioinsecticides against numerous important lepidopteran pests. If Bt-resistant insects are shown to be susceptible to NPVs then these bioinsecticides could be a valuable component of Insecticide Resistance Management (IRM) strategies for Bt crops. We assessed the effectiveness of a Helicoverpa nucleopolyhedrovirus (HearNPV) against several different Bt-resistant strains. Utilising a droplet feeding bioassay we confirmed susceptibility to HearNPV in Helicoverpa punctigera and Helicoverpa armigera larvae resistant to the Bt toxins Cry1Ac, Cry2Ab, and Vip3A. Dual resistant H. punctigera, (Cry1Ac/Cry2Ab, and Cry2Ab/Vip3A) and dual resistant H. armigera (Cry2Ab/Vip3A) were also susceptible to HearNPV. Regardless of their specific resistance profile, Bt-resistant larvae displayed statistically similar lethal concentration (LC50) and lethal time (LT50) responses to HearNPV when compared to Bt-sensitive control insects. These results indicate that Bt-resistant H. armigera and H. punctigera are not cross-resistant to HearNPV. Consequently, the use of HearNPV against these pests may be a valuable tool to an IRM strategy for controlling Bt-resistant populations.
Collapse
Affiliation(s)
| | - Adele M Jones
- AgBiTech, 8 Rocla Court, Glenvale, QLD 4350, Australia
| | - Sharon Downes
- CSIRO Agriculture and Food, Australian Cotton Research Institute, 21888 Kamilaroi Highway, Narrabri, NSW 2390, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Kristen Knight
- Bayer Crop Science, McDougall Street, Glenvale, QLD 4350, Australia
| | - Mark Kinkema
- AgBiTech, 14401 Sovereign Rd, Fort Worth, TX 76155, USA.
| |
Collapse
|
15
|
Correction: Syed, T., et al. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins 2020, 12, 522. Toxins (Basel) 2021; 13:toxins13030200. [PMID: 33799916 PMCID: PMC7999299 DOI: 10.3390/toxins13030200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
|
16
|
Yang F, Santiago González JC, Sword GA, Kerns DL. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2021; 77:1530-1535. [PMID: 33201547 DOI: 10.1002/ps.6176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Helicoverpa zea is a destructive pest and target of maize and cotton expressing Cry and Vip3Aa proteins in North America. The efficacy of Cry proteins against H. zea in the USA has been largely compromised by resistance. A rapid shift towards planting Bt cotton and maize producing Vip3Aa will accelerate evolution of resistance to Vip3Aa in H. zea. Research on the genetic basis of Vip3Aa resistance in H. zea is urgently needed, and can provide fundamental information for managing resistance in this pest. Here, we characterize the inheritance of Vip3Aa resistance in H. zea. RESULTS Susceptibility of a Vip3Aa-susceptible strain (SS), a resistant strain (RR), and progeny from different crosses against Vip3Aa39 was determined. RR was established from an F2 screening of a population from Texas sampled in 2019. RR had a resistance ratio of 45194.1-fold against Vip3Aa39 relative to SS. Maternal effects and sex linkage were absent in RR. The dominance D value, calculated based on median lethal concentration (LC50 ) values, was -1.0 and the effective dominance (DML ), calculated based on a given Vip3Aa39 concentration, was ≤0.0 at concentrations of 0.1-31.6 μg cm-2 . The test using a monogenic mode of inheritance showed that resistance to Vip3Aa in H. zea was largely due to a single gene. CONCLUSION Results of this study indicate that Vip3Aa resistance in H. zea is monogenic, autosomal, and recessive. This information is valuable for studying the mechanism of Vip3Aa resistance, monitoring of resistance development, and designing appropriate strategies for preventive management of Vip3Aa resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
18
|
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:121-140. [PMID: 33417820 DOI: 10.1146/annurev-ento-052620-073348] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, USA;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot 46100, Spain;
| |
Collapse
|
19
|
Wang Z, Gan C, Wang J, Bravo A, Soberón M, Yang Q, Zhang J. Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment. Microb Biotechnol 2020; 14:551-560. [PMID: 33252200 PMCID: PMC7936315 DOI: 10.1111/1751-7915.13719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Vip3Aa was first identified as a protein secreted during the vegetative growth phase of Bacillus thuringiensis (Bt) bacteria and which shows high insecticidal toxicity against lepidopteran insect pests (Estruch et al., 1996). Bt strains formulated as bio‐insecticides only had low amounts of Vip3Aa secreted to the medium. Here, we report that Vip3Aa proteins produced by three different Bt strains, including an industrial strain, were indeed not secreted to the culture solution when grown in sporulation medium, but were retained in the mother cell compartment. In order to further investigate the Vip3Aa secretion and location, we grew the strains in rich medium. We found that in rich medium, a fraction of Vip3Aa was secreted, suggesting that Vip3Aa secretion is nutrient‐dependent. Regardless of the growth conditions, we found that Vip3Aa retained in cell pellets exhibited high toxicity against Spodoptera frugiperda larvae. Hence, we speculate that the accumulation of Vip3Aa protein in the mother cell compartment under sporulation conditions could still be used as an efficient strategy for industrial production in commercial Bt strains.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunxia Gan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62250, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62250, Mexico
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
20
|
Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins (Basel) 2020; 12:toxins12080522. [PMID: 32823872 PMCID: PMC7472478 DOI: 10.3390/toxins12080522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth. There are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer toxins have an insecticidal activity against many Coleopteran and Hemipteran pests. Vip3, the most extensively studied family of Vip toxins, is effective against Lepidopteron. Vip proteins do not share homology in sequence and binding sites with Cry proteins, but share similarities at some points in their mechanism of action. Vip3 proteins are expressed as pyramids alongside Cry proteins in crops like maize and cotton, so as to control resistant pests and delay the evolution of resistance. Biotechnological- and in silico-based analyses are promising for the generation of mutant Vip proteins with an enhanced insecticidal activity and broader spectrum of target insects.
Collapse
|
21
|
Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. J Invertebr Pathol 2020; 186:107439. [PMID: 32663546 DOI: 10.1016/j.jip.2020.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022]
Abstract
Modern agriculture demands for more sustainable agrochemicals to reduce the environmental and health impact. The whole process of the discovery and development of new active substances or control agents is sorely slow and expensive. Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis are specific toxins against caterpillars with a potential capacity to broaden the range of target pests. Site-directed mutagenesis is one of the most approaches used to test hypotheses on the role of different amino acids on the structure and function of proteins. To gain a better understanding of the role of key amino acid residues of Vip3A proteins, we have generated 12 mutants of the Vip3Af1 protein by site-directed mutagenesis, distributed along the five structural domains of the protein. Ten of these mutants were successfully expressed and tested for stability and toxicity against three insect pests (Spodoptera frugiperda, Spodoptera littoralis and Grapholita molesta). The results showed that, to render a wild type fragment pattern upon trypsin treatment, position 483 required an acidic residue, and position 552 an aromatic residue. Regarding toxicity, the change of Met34 to Lys34 significantly increased the toxicity of the protein for one of the three insect species tested (S. littoralis), whereas the other residue substitutions did not improve, or even decreased, insect toxicity, confirming their key role in the structure/function of the protein.
Collapse
|
22
|
Pinos D, Chakroun M, Millán-Leiva A, Jurat-Fuentes JL, Wright DJ, Hernández-Martínez P, Ferré J. Reduced Membrane-Bound Alkaline Phosphatase Does Not Affect Binding of Vip3Aa in a Heliothis virescens Resistant Colony. Toxins (Basel) 2020; 12:toxins12060409. [PMID: 32575644 PMCID: PMC7354626 DOI: 10.3390/toxins12060409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the >2000-fold Vip3Aa resistance phenotype in a laboratory-selected colony of Heliothis virescens (Vip-Sel). Binding of 125I-labeled Vip3Aa to brush border membrane vesicles (BBMV) from 3rd instar larvae from Vip-Sel was not significantly different from binding in the reference susceptible colony. Interestingly, BBMV from Vip-Sel larvae showed dramatically reduced levels of membrane-bound alkaline phosphatase (mALP) activity, which was further confirmed by a strong downregulation of the membrane-bound alkaline phosphatase 1 (HvmALP1) gene. However, the involvement of HvmALP1 as a receptor for the Vip3Aa protein was not supported by results from ligand blotting and viability assays with insect cells expressing HvmALP1.
Collapse
Affiliation(s)
- Daniel Pinos
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Maissa Chakroun
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Anabel Millán-Leiva
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Denis J. Wright
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berks SL5 7PY, UK;
| | - Patricia Hernández-Martínez
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Juan Ferré
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
- Correspondence:
| |
Collapse
|
23
|
Chakrabarty S, Jin M, Wu C, Chakraborty P, Xiao Y. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. PEST MANAGEMENT SCIENCE 2020; 76:1612-1617. [PMID: 32103608 DOI: 10.1002/ps.5804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Vip3A proteins are widely used for controlling pest Lepidoptera. Different binding sites with different receptors in the insect midgut membrane and lack of cross-resistance with crystal (Cry) proteins enhance their applicability, as both single proteins and proteins pyramided with Cry proteins in transgenic Bt crops. Vip3A proteins are effective but there is relatively little information about their structure, function, activation, specificity, and mode of action. In addition, the mechanism of insect resistance to these proteins is unknown. Phylogenetic analysis and multiple sequence alignment showed that Vip3A proteins are genetically distant from Cry proteins. The mode of action and insecticidal activity of Vip3A proteins are discussed in this review. This review also provides detailed information about the Vip3A protein family that may aid in the design of more efficient pest management strategies in response to insect resistance to insecticidal proteins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chao Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Panchali Chakraborty
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
24
|
Tabashnik BE, Carrière Y. Evaluating Cross-resistance Between Vip and Cry Toxins of Bacillus thuringiensis. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:553-561. [PMID: 31821498 DOI: 10.1093/jee/toz308] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 05/27/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have revolutionized control of some major pests. Some recently introduced Bt crops make Vip3Aa, a vegetative insecticidal protein (Vip), which reportedly does not share binding sites or structural homology with the crystalline (Cry) proteins of Bt used widely in transgenic crops for more than two decades. Field-evolved resistance to Bt crops with practical consequences for pest control includes 21 cases that collectively reduce the efficacy of nine Cry proteins, but such practical resistance has not been reported yet for any Vip. Here, we review previously published data to evaluate cross-resistance between Vip and Cry toxins. We analyzed 31 cases based on 48 observations, with each case based on one to five observations assessing cross-resistance from pairwise comparisons between 21 resistant strains and 13 related susceptible strains of eight species of lepidopteran pests. Confirming results from previous analyses of smaller data sets, we found weak, statistically significant cross-resistance between Vip3 and Cry1 toxins, with a mean of 1.5-fold cross-resistance in 21 cases (range: 0.30-4.6-fold). Conversely, we did not detect significant positive cross-resistance between Vip3 toxins and Cry2Ab. Distinguishing between weak, significant cross-resistance, and no cross-resistance may be useful for better understanding mechanisms of resistance and effectively managing pest resistance to Bt crops.
Collapse
Affiliation(s)
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| |
Collapse
|
25
|
Liu W, Wu L, Wang J, Li X, Jin X, Zhu J. Activity of Vip3Aa1 against Periplaneta Americana. Open Life Sci 2020; 15:133-144. [PMID: 33987470 PMCID: PMC8114776 DOI: 10.1515/biol-2020-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/04/2019] [Indexed: 11/15/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a well-known entomopathogen. In this study, we cloned the vip3Aa1 gene from Bt strain GIM1.147 and investigated the insecticidal activity of Bt Vip3Aa1 protein produced by Escherichia coli against Periplaneta americana and Blattella germanica. The results showed that purified Vip3Aa1 exhibited an LC50 at 24 h against P. americana and B. germanica of 0.182 mg·ml-1 and 0.276 mg·ml-1, respectively. Investigations of its mode of action showed that Vip3Aa1 could be proteolyzed into a 62-kDa toxic protein by P. americana gut-soluble proteases. In addition, Vip3Aa1 caused severe damage to the columnar colon and the midgut, as observed through hematoxylin-eosin staining and scanning electron microscopy. The 62-kDa activated Vip3Aa1 protein could form ion channels in the colon and the midgut in vitro. Based on protease activity analysis, Vip3Aa1 at concentrations of 0.125 mg·ml-1 and 0.031 mg·ml-1 could downregulate the activities of glutathione S-transferase, α-NA esterase, trypsin, and chymotrypsin. This report provides the first description of the activity of Vip3Aa1 toxins toward P. americana and B. germanica and demonstrates that the mechanism through which Vip3Aa1 kills P. americana and B. germanica differs from that involved in the killing of lepidopteran insects.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Pharmaceutical Sciences, Southern Medical University,1023 Shatai South Road, Guangzhou510515, P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Xiaobo Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| | - Jiayong Zhu
- School of Pharmaceutical Sciences, Southern Medical University,1023 Shatai South Road, Guangzhou510515, P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou510006, P. R. China
| |
Collapse
|
26
|
Zhang J, Li H, Tan J, Wei P, Yu S, Liu R, Gao J. Transcriptome profiling analysis of the intoxication response in midgut tissue of Agrotis ipsilon larvae to Bacillus thuringiensis Vip3Aa protoxin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:20-29. [PMID: 31519254 DOI: 10.1016/j.pestbp.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/28/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
Vip insecticidal proteins are produced by Bacillus thuringiensis (Bt) during its vegetative growth phase. In the present study, Vip3Aa11 and Vip3Aa39 proteins were investigated. These two proteins present 39 amino acid differential sites and they shared 95.06% amino acid sequence similarity. They are effective against some Lepidoptera insect larvae. In a previous study, using artificial diet bioassays, we estimated the LC50 of Vip3Aa11 and Vip3Aa39 strains against Agrotis ipsilon larvae were 73.41 μg/mL (with 95% confidence interval of 2.34-11.19) and 5.43 μg/mL (with 95% confidence interval of 43.20-115.03), respectively. To investigate the response of Agrotis ipsilon transcriptome in defending against Vip3Aa11 and Vip3Aa39 toxins, we performed high-throughput RNA-sequencing on cDNA generated from the midguts of Agrotis ipsilon larvae that consumed a control diet (CK-M-A), Vip3Aa11 (Vip3Aa11-M-A) and Vip3Aa39 (Vip3Aa39-M-A) proteins. We generated about 98.87 Gb bases in total on BGISEQ-500 sequencing platform. After assembling all samples together and filtering the abundance, we got 51,887 unigenes, the total length, average length, N50 and GC content of unigenes are 64,523,651 bp, 1243 bp, 2330 bp and 41.81% respectively. We revealed 558 midgut genes differential expressed in Vip3Aa11-M-A and 65 midgut genes differentially expressed in Vip3Aa39-M-A. The differentially expressed genes were enriched for serine proteases and potential Bt Vip toxin midgut receptor genes. Eleven serine proteases related genes and 13 Bt toxin potential receptor genes with differential expression were found. Based on transcriptome profiling, we focused on validation the sensitivity of these two Vip3Aa proteins to trypsin and their binding properties to Agrotis ipsilon midgut BBMV (Brush Border Membrane Vesicles). The results show that the sensitivity of the two proteins to trypsin is similar. Binding experiments revealed that both proteins can bind to Agrotis ipsilon midgut BBMV, and there is a competitive binding between them. This transcriptome dataset provided a comprehensive sequence resource of Agrotis ipsilon and provides a foundation for comparative studies with other species of insects.
Collapse
Affiliation(s)
- Jinbo Zhang
- Northeast Agricultural University, HarBin 150030, People's Republic of China
| | - Haitao Li
- Northeast Agricultural University, HarBin 150030, People's Republic of China.
| | - Jiali Tan
- Northeast Agricultural University, HarBin 150030, People's Republic of China
| | - Panpan Wei
- Northeast Agricultural University, HarBin 150030, People's Republic of China
| | - Shuang Yu
- Northeast Agricultural University, HarBin 150030, People's Republic of China
| | - Rongmei Liu
- Northeast Agricultural University, HarBin 150030, People's Republic of China.
| | - Jiguo Gao
- Northeast Agricultural University, HarBin 150030, People's Republic of China.
| |
Collapse
|
27
|
Gonçalves RM, Mastrangelo T, Rodrigues JCV, Paulo DF, Omoto C, Corrêa AS, de Azeredo‐Espin AML. Invasion origin, rapid population expansion, and the lack of genetic structure of cotton bollworm ( Helicoverpa armigera) in the Americas. Ecol Evol 2019; 9:7378-7401. [PMID: 31346410 PMCID: PMC6635935 DOI: 10.1002/ece3.5123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
In 2013, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) was officially declared as present in Brazil and, after two years, the species was detected in the Caribbean and North America. Information on genetic features and accurate distribution of pests is the basis for agricultural protection policies. Furthermore, such knowledge is imperative to develop control strategies, understand the geographical range, and genetic patterns of this species in the Americas. Here, we carried out the widest sampling of H. armigera in the South American continent and Puerto Rico, after we estimated the diversity, demographic parameters, and genetic structure. The Internal Transcribed Spacer 1 (ITS1) nuclear marker was used to investigate the presence of putative hybrids between H. armigera and H. zea, and they were observed at a frequency of 1.5%. An ABC analysis, based in COI gene fragment, suggested Europe as the origin of South America specimens of H. armigeraand following a movement northward through the Caribbean. Three mtDNA genes and three nDNA markers revealed high genetic diversity distributed without the defined population structure of H. armigera in South America. Most of the genetic variation is within populations with a multidirectional expansion of H. armigera among morphoclimatic regions. High genetic diversity, rapid population expansion, and hybridization have implications for pest management since they suggest that adaptive alleles are spread through wide areas in South America that favor rapid local adaptation of H. armigera to new and disturbed environments (e.g., in agricultural areas).
Collapse
Affiliation(s)
- Rogério Martins Gonçalves
- Department of Genetics, Evolution and Bioagents, Institute of BiologyState University of Campinas (UNICAMP)CampinasBrazil
- Graduate Program in Genetics and Molecular Biology, Institute of BiologyState University of Campinas (UNICAMP)CampinasBrazil
| | - Thiago Mastrangelo
- Centre for Nuclear Energy in AgricultureUniversity of São Paulo (USP)PiracicabaBrazil
| | | | - Daniel Fernando Paulo
- Department of Genetics, Evolution and Bioagents, Institute of BiologyState University of Campinas (UNICAMP)CampinasBrazil
- Graduate Program in Genetics and Molecular Biology, Institute of BiologyState University of Campinas (UNICAMP)CampinasBrazil
| | - Celso Omoto
- Department of Entomology and AcarologyLuiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ)PiracicabaBrazil
| | - Alberto Soares Corrêa
- Department of Entomology and AcarologyLuiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ)PiracicabaBrazil
| | - Ana Maria Lima de Azeredo‐Espin
- Department of Genetics, Evolution and Bioagents, Institute of BiologyState University of Campinas (UNICAMP)CampinasBrazil
- Graduate Program in Genetics and Molecular Biology, Institute of BiologyState University of Campinas (UNICAMP)CampinasBrazil
| |
Collapse
|
28
|
Modification of Vip3Ab1 C-Terminus Confers Broadened Plant Protection from Lepidopteran Pests. Toxins (Basel) 2019; 11:toxins11060316. [PMID: 31163681 PMCID: PMC6628392 DOI: 10.3390/toxins11060316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023] Open
Abstract
Vegetative insecticidal proteins (Vips) from Bacillus thuringiensis (Bt) are unique from crystal (Cry) proteins found in Bt parasporal inclusions as they are secreted during the bacterial vegetative growth phase and bind unique receptors to exert their insecticidal effects. We previously demonstrated that large modifications of the Vip3 C-terminus could redirect insecticidal spectrum but results in an unstable protein with no lethal activity. In the present work, we have generated a new Vip3 protein, Vip3Ab1-740, via modest modification of the Vip3Ab1 C-terminus. Vip3Ab1-740 is readily processed by midgut fluid enzymes and has lethal activity towards Spodoptera eridania, which is not observed with the Vip3Ab1 parent protein. Importantly, Vip3Ab1-740 does retain the lethal activity of Vip3Ab1 against other important lepidopteran pests. Furthermore, transgenic plants expressing Vip3Ab1-740 are protected against S. eridania, Spodoptera frugiperda, Helicoverpa zea, and Pseudoplusia includens. Thus, these studies demonstrate successful engineering of Vip3 proteins at the C-terminus to broaden insecticidal spectrum, which can be employed for functional expression in planta.
Collapse
|
29
|
Ayra‐Pardo C, Ochagavía ME, Raymond B, Gulzar A, Rodríguez‐Cabrera L, Rodríguez de la Noval C, Morán Bertot I, Terauchi R, Yoshida K, Matsumura H, Téllez Rodríguez P, Hernández Hernández D, Borrás‐Hidalgo O, Wright DJ. HT-SuperSAGE of the gut tissue of a Vip3Aa-resistant Heliothis virescens (Lepidoptera: Noctuidae) strain provides insights into the basis of resistance. INSECT SCIENCE 2019; 26:479-498. [PMID: 28872766 PMCID: PMC6849831 DOI: 10.1111/1744-7917.12535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.
Collapse
Affiliation(s)
- Camilo Ayra‐Pardo
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Maria E. Ochagavía
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Ben Raymond
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| | - Asim Gulzar
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| | | | | | - Ivis Morán Bertot
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Ryohei Terauchi
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | - Kentaro Yoshida
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | - Hideo Matsumura
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | | | | | | | - Denis J. Wright
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| |
Collapse
|
30
|
de Bortoli CP, Jurat-Fuentes JL. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2019; 33:56-62. [PMID: 31358196 DOI: 10.1016/j.cois.2019.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria.
Collapse
Affiliation(s)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
31
|
Bowling AJ, Sopko MS, Tan SY, Larsen CM, Pence HE, Zack MD. Insecticidal Activity of a Vip3Ab1 Chimera Is Conferred by Improved Protein Stability in the Midgut of Spodoptera eridania. Toxins (Basel) 2019; 11:toxins11050276. [PMID: 31100873 PMCID: PMC6563307 DOI: 10.3390/toxins11050276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/03/2023] Open
Abstract
Vip3A proteins are important for the control of spodopteran pests in crops, including Spodoptera frugiperda (fall armyworm). Native Vip3Ab1 controls S. frugiperda, but it is ineffective against S. eridania (southern armyworm), a major pest of soybean in South America. Recently, a Vip3Ab1 chimera with a modified C-terminus was described, Vip3Ab1-740, which has increased potency against S. eridania while maintaining activity against S. frugiperda. As S. frugiperda and S. eridania are differentially susceptible to Vip3Ab1, experiments were conducted to identify and understand the mechanism by which this expanded potency is conferred. The role of protein stability, processing, and in vivo effects of Vip3Ab1 and Vip3Ab1-740 in both of these species was investigated. Biochemical characterization of the midgut fluids of these two species indicated no obvious differences in the composition and activity of digestive enzymes, which protease inhibitor studies indicated were likely serine proteases. Histological examination demonstrated that both proteins cause midgut disruption in S. frugiperda, while only Vip3Ab1-740 affects S. eridania. Immunolocalization indicated that both proteins were present in the midgut of S. frugiperda, but only Vip3Ab1-740 was detected in the midgut of S. eridania. We conclude that the gain of toxicity of Vip3Ab1-740 to S. eridania is due to an increase in protein stability in the midgut, which was conferred by C-terminal modification.
Collapse
Affiliation(s)
| | | | - Sek Yee Tan
- Corteva Agriscience, Indianapolis, IN 46268, USA.
| | | | | | - Marc D Zack
- Corteva Agriscience, Indianapolis, IN 46268, USA.
| |
Collapse
|
32
|
Tay WT, Gordon KHJ. Going global - genomic insights into insect invasions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:123-130. [PMID: 31109665 DOI: 10.1016/j.cois.2018.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The spread of invasive insect pests is becoming an increasing problem for agriculture globally. We discuss a number of invasive insects, already of major economic significance that have recently expanded their range to become truly global threats. These include the noctuid moths Helicoverpa and Spodoptera, whose caterpillars have long been among the worst pests in their native Old and New World habitats, respectively, and the whitefly Bemisia, a major vector of plant virus diseases. Importantly, genomic resources for these species have recently become available, allowing research to move beyond the restrictions imposed by earlier approaches limited to a single or few mitochondrial and nuclear markers, to employ genome-wide genotyping and resequencing protocols. These studies have shown hybridisation within the various species complexes, identified regions under selection in agricultural environments, and enable monitoring of genes important as biosecurity risks through introgression into established populations free of the genes. In all cases studied, global trade has emerged as the probable cause of insect spread, making it ever more important that biosecurity protocols and agencies work with researchers to make the most effective use of emerging genomic resources and tools.
Collapse
Affiliation(s)
- Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Australia
| | | |
Collapse
|
33
|
Banyuls N, Hernández-Martínez P, Quan Y, Ferré J. Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein. Int J Biol Macromol 2018; 120:59-65. [PMID: 30120972 DOI: 10.1016/j.ijbiomac.2018.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/20/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Vip3 proteins are secretable proteins from Bacillus thuringiensis with important characteristics for the microbiological control of agricultural pests. The exact details of their mode of action are yet to be disclosed and the crystallographic structure is still unknown. Vip3 proteins are expressed as protoxins that have to be activated by the insect gut proteases. A previous study on the peptidase processing of Vip3Aa revealed that the protoxin produced artefactual band patterns by SDS-PAGE due to the differential stability of this protein and the peptidases to SDS and heating (Bel et al., 2017 Toxins 9:131). To determine whether this phenomenon also applies to other Vip3A proteins, here we chose a different Vip3A protein (Vip3Af) and subjected it to commercial trypsin and midgut juice from a target insect species (Spodoptera frugiperda). The misleading degradation patterns were also observed with Vip3Af, both with trypsin and midgut juice. However, gel filtration chromatography showed that, under native conditions, Vip3Af is found as a tetramer and that peptidases only act upon primary cleavage sites. The proteolytic cleavage renders two fragments of approximately 20 kDa and 65 kDa which remain together in the tretameric structure and that are no further processed even at high peptidase concentrations.
Collapse
Affiliation(s)
- Núria Banyuls
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Patricia Hernández-Martínez
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Yudong Quan
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Juan Ferré
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
34
|
Yang F, Morsello S, Head GP, Sansone C, Huang F, Gilreath RT, Kerns DL. F 2 screen, inheritance and cross-resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA. PEST MANAGEMENT SCIENCE 2018; 74:1769-1778. [PMID: 29193722 DOI: 10.1002/ps.4805] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/23/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fall armyworm, Spodoptera frugiperda, is a target pest of the Vip3A protein used in pyramided Bt corn and cotton in the USA. In this study, we provide the first documentation of a resistance allele conferring Vip3A resistance in a field-derived population of S. frugiperda from the USA, and characterize its inheritance and cross-resistance. RESULTS An F2 screen with 104 two-parent families generated from a field collection of S. frugiperda in Louisiana, USA, resulted in one family carrying a Vip3A resistance allele. The Vip3A-resistant strain (RR) derived from the two-parent family showed a high level of resistance to Vip3A in both diet and whole-plant bioassays, with a resistance ratio of >632.0-fold relative to a susceptible population (SS) based on diet-overlay bioassays. The inheritance of Vip3A resistance was monogenic, autosomal and recessive. Furthermore, the Vip3A resistance conferred no cross-resistance to Cry1F, Cry2Ab2 or Cry2Ae purified proteins, with resistance ratios of 3.5, 5.0 and 1.1, respectively. CONCLUSION These findings provide valuable information for characterizing Vip3A resistance, resistance monitoring, and developing effective resistance management strategies for the sustainable use of the Vip3A technology. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | | | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Ryan T Gilreath
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Silva IF, Baldin ELL, Specht A, Sosa-Gómez DR, Roque-Specht VF, Morando R, Paula-Moraes SV. Biotic Potential and Life Table of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) from Three Brazilian Regions. NEOTROPICAL ENTOMOLOGY 2018; 47:344-351. [PMID: 28484967 DOI: 10.1007/s13744-017-0529-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to evaluate the biotic potential and life table of individuals of Helicoverpa armigera (Hübner) from different host plants (citrus, corn, and cotton) and Brazilian states (São Paulo, Distrito Federal, and Bahia) in artificial diet, under laboratory conditions (25 ± 1°C, 70 ± 10% RH, 14 h photophase). The longevity, pre-, post- and oviposition periods, fecundity, and fertility of 15 mating pairs per origin were evaluated. We also compared the reproductive parameters of each group of insects (São Paulo (SP), Distrito Federal (DF), and Bahia (BA)), including the net reproductive rate (Ro), mean generation time (T), intrinsic rate of increase (r m), and finite rate of increase (λ). Microsatellite analysis from individuals collected in different locations and host plants did not show differences among the parental insects. It was verified that parental progeny collected in cotton fields from Bahia had a higher biotic potential, a higher reproductive rate (Ro), and a better fecundity compared to the insects from remaining regions. The life table charts indicate that the highest values for the reproductive parameters of the Bahia progeny are associated with higher specific fertility, particularly in early adulthood. The greatest biotic potential of the Bahia progeny may be due to increased selection pressure from the insecticide used (organophosphate and pyrethroid) on cotton crops compared to that of other crops, as well due to the massive adoption of Bt cotton-producing areas of that state from 2013 outbreaks.
Collapse
Affiliation(s)
- I F Silva
- Depto de Proteção Vegetal, Fac de Ciências Agronômica, Univ Estadual Paulista (UNESP), Botucatu, SP, Brasil.
| | - E L L Baldin
- Depto de Proteção Vegetal, Fac de Ciências Agronômica, Univ Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - A Specht
- Embrapa Cerrados, Planaltina, DF, Brasil
| | | | | | - R Morando
- Depto de Proteção Vegetal, Fac de Ciências Agronômica, Univ Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | |
Collapse
|
36
|
Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J Invertebr Pathol 2018; 155:64-70. [DOI: 10.1016/j.jip.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
37
|
Campos EVR, Proença PLF, Oliveira JL, Pereira AES, de Morais Ribeiro LN, Fernandes FO, Gonçalves KC, Polanczyk RA, Pasquoto-Stigliani T, Lima R, Melville CC, Della Vechia JF, Andrade DJ, Fraceto LF. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci Rep 2018; 8:7623. [PMID: 29769620 PMCID: PMC5955913 DOI: 10.1038/s41598-018-26043-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Pesticides are the main tactics for pest control because they reduce the pest population very fast and their efficiency does not depend on abiotic factors. However, the indiscriminate use of these substances can speed up the development of resistant populations and causing environmental contamination. Therefore, alternative methods of pest control are sought, such as the use of botanical compounds. Nanoencapsulation of volatile compounds has been shown to be an important tool that can be used to overcome the lack of stability of these compounds. In this work, we describe the preparation and characterization of chitosan nanoparticles functionalized with β-cyclodextrin containing carvacrol and linalool. The toxicity and biological activity were evaluated. Decreases of toxicity were observed when the compounds were nanoencapsulated. The nanoparticles presented insecticidal activity against the species Helicoverpa armigera (corn earworm) and Tetranychus urticae (spider mite). In addition, repellent activity and reduction in oviposition were observed for the mites.
Collapse
Affiliation(s)
- Estefânia V R Campos
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil.,Department of Biochemistry and Tissue Biology, State University of Campinas, Campinas, SP, Brazil
| | - Patrícia L F Proença
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | - Jhones L Oliveira
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | - Anderson E S Pereira
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | | | - Fabrício O Fernandes
- São Paulo State University - UNESP, College of Agricultural and Veterinary Sciences, Department of Crop Protection, Jaboticabal, SP, Brazil
| | - Kelly C Gonçalves
- São Paulo State University - UNESP, College of Agricultural and Veterinary Sciences, Department of Crop Protection, Jaboticabal, SP, Brazil
| | - Ricardo A Polanczyk
- São Paulo State University - UNESP, College of Agricultural and Veterinary Sciences, Department of Crop Protection, Jaboticabal, SP, Brazil
| | | | - Renata Lima
- Department of Biotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Cirano C Melville
- São Paulo State University - UNESP, College of Agricultural and Veterinary Sciences, Department of Crop Protection, Jaboticabal, SP, Brazil
| | - Jaqueline F Della Vechia
- São Paulo State University - UNESP, College of Agricultural and Veterinary Sciences, Department of Crop Protection, Jaboticabal, SP, Brazil
| | - Daniel J Andrade
- São Paulo State University - UNESP, College of Agricultural and Veterinary Sciences, Department of Crop Protection, Jaboticabal, SP, Brazil
| | - Leonardo F Fraceto
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil. .,Department of Biochemistry and Tissue Biology, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
38
|
Banyuls N, Hernández-Rodríguez CS, Van Rie J, Ferré J. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Sci Rep 2018; 8:7539. [PMID: 29765057 PMCID: PMC5953952 DOI: 10.1038/s41598-018-25346-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/20/2018] [Indexed: 11/16/2022] Open
Abstract
Vip3 vegetative insecticidal proteins from Bacillus thuringiensis are an important tool for crop protection against caterpillar pests in IPM strategies. While there is wide consensus on their general mode of action, the details of their mode of action are not completely elucidated and their structure remains unknown. In this work the alanine scanning technique was performed on 558 out of the total of 788 amino acids of the Vip3Af1 protein. From the 558 residue substitutions, 19 impaired protein expression and other 19 substitutions severely compromised the insecticidal activity against Spodoptera frugiperda. The latter 19 substitutions mainly clustered in two regions of the protein sequence (amino acids 167-272 and amino acids 689-741). Most of these substitutions also decreased the activity to Agrotis segetum. The characterisation of the sensitivity to proteases of the mutant proteins displaying decreased insecticidal activity revealed 6 different band patterns as evaluated by SDS-PAGE. The study of the intrinsic fluorescence of most selected mutants revealed only slight shifts in the emission peak, likely indicating only minor changes in the tertiary structure. An in silico modelled 3D structure of Vip3Af1 is proposed for the first time.
Collapse
Affiliation(s)
- N Banyuls
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain
| | - C S Hernández-Rodríguez
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain
| | - J Van Rie
- Bayer CropScience N.V., Ghent, Belgium
| | - J Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
39
|
Tessnow AE, Behmer ST, Walsh TK, Sword GA. Protein-carbohydrate regulation in Helicoverpa amigera and H. punctigera and how diet protein-carbohydrate content affects insect susceptibility to Bt toxins. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:88-95. [PMID: 28733239 DOI: 10.1016/j.jinsphys.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Many animals, including insects, demonstrate a remarkable ability to regulate their intake of key macronutrients (e.g., soluble protein and digestible carbohydrates), which allows them to optimize fitness and performance. Additionally, regulating the intake of these two macronutrients enhances an animal's ability to defend itself against pathogens, mitigate the effects of secondary plant metabolites, and decrease susceptibility to toxins. In this study, we first compared how Bt-resistant and -susceptible lines of Helicoverpa armigera and Helicoverpa punctigera regulate their intake of protein (p) and digestible carbohydrates (c). We found that there was no difference in the self-selected protein-carbohydrate intake target between resistant and susceptible genotypes of either species. We then explored the extent to which food protein-carbohydrate content altered the susceptibility of these species to three Bt toxins: Cry1Ac, Cry2Ab, and Vip3Aa. We found that H. armigera on diets that had protein-carbohydrate profiles that matched their self-selected protein-carbohydrate intake target were significantly less susceptible to Cry1Ac. In contrast, diet protein-carbohydrate content did not affect H. punctigera susceptibility to Cry1Ac. For both H. armigera and H. punctigera, susceptibility to Cry2Ab and Vip3Aa toxins did not change as a function of diet protein-carbohydrate profile. These results, when combined with earlier work on H. zea, suggest food protein-carbohydrate content can modify susceptibility to some Bt toxins, but not others. An increased understanding of how the nutritional environment can modify susceptibility to different Bt toxins could help improve pest management and resistance management practices.
Collapse
Affiliation(s)
- Ashley E Tessnow
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| | - Tom K Walsh
- CSIRO, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
40
|
Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 2018; 8:201. [PMID: 29607282 DOI: 10.1007/s13205-018-1223-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram-positive, spore-forming, soil bacterium, which is very popular bio-control agent in agricultural and forestry. In general, B. thuringiensis secretes an array of insecticidal proteins including toxins produced during vegetative growth phase (such as secreted insecticidal protein, Sip; vegetative insecticidal proteins, Vip), parasporal crystalline δ-endotoxins produced during vegetative stationary phase (such as cytolytic toxin, Cyt; and crystal toxin, Cry), and β-exotoxins. Till date, a wide spectrum of Cry proteins has been reported and most of them belong to three-domain-Cry toxins, Bin-like toxin, and Etx_Mtx2-like toxins. To the best of our knowledge, neither Bt insecticidal toxins are exclusive to Bt nor all the strains of Bt are capable of producing insecticidal Bt toxins. The lacuna in their latest classification has also been discussed. In this review, the updated information regarding the insecticidal Bt toxins and their different mode of actions were summarized. Before applying the Bt toxins on agricultural field, the non-specific effects of toxins should be investigated. We also have summarized the problem of insect resistance and the strategies to combat with this problem. We strongly believe that this information will help a lot to the budding researchers in the field of modern pest control biotechnology.
Collapse
|
41
|
Pool deconvolution approach for high-throughput gene mining from Bacillus thuringiensis. Appl Microbiol Biotechnol 2017; 102:1467-1482. [DOI: 10.1007/s00253-017-8633-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/24/2017] [Accepted: 11/05/2017] [Indexed: 11/27/2022]
|
42
|
Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Transgenic Res 2017; 26:763-774. [DOI: 10.1007/s11248-017-0048-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/21/2017] [Indexed: 11/25/2022]
|
43
|
Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 2017; 35:926-935. [DOI: 10.1038/nbt.3974] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
|
44
|
Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease. Int J Biol Macromol 2017; 107:1220-1226. [PMID: 28970168 DOI: 10.1016/j.ijbiomac.2017.09.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/23/2022]
Abstract
Proteolysis of Vip3Aa by insect midgut proteases is essential for their toxicity against target insects. In the present study, proteolysis of Vip3Aa was evaluated by Spodoptera exigua midgut proteases (MJ). Trypsin was verified involved in the activation of Vip3Aa and three potential cleavage sites (Lys195, Lys197 and Lys198) were identified. Four Vip3Aa mutants (KKK195197198AAA, KK197198AA, KK195198AA and KK195197AA) were designed and constructed by replacing residues Lys195,197,198, Lys197,198, Lys195,198 and Lys195,197 with Ala, respectively. Proteolytic processing assays revealed that mutants KK197198AA, KK195198AA and KK195197AA could be processed into 66kDa activated toxins by trypsin or MJ while mutant KKK195197198AAA was not cleaved by trypsin and less susceptible to MJ. Bioassays demonstrated that mutants KK197198AA, KK195198AA and KK195197AA were toxic against S. exigua resembled that of wild-type Vip3Aa, however, the LC50 of mutant KKK195197198AAA against S. exigua was higher than wild-type. Those results suggested that proteolysis by MJ was associated with the insecticidal toxicity of Vip3Aa against S. exigua. It also revealed that trypsin played an important role in the formation of Vip3Aa activated toxin. Our studies characterized the proteolytic processing of Vip3Aa and provided new insight into the activation of this novel Bt toxin.
Collapse
|
45
|
Wang J, Wang H, Liu S, Liu L, Tay WT, Walsh TK, Yang Y, Wu Y. CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:147-153. [PMID: 28705634 DOI: 10.1016/j.ibmb.2017.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 05/29/2023]
Abstract
High levels of resistance to Bt toxin Cry2Ab have been identified to be genetically linked with loss of function mutations of an ABC transporter gene (ABCA2) in two lepidopteran insects, Helicoverpa armigera and Helicoverpa punctigera. To further confirm the causal relationship between the ABCA2 gene (HaABCA2) and Cry2Ab resistance in H. armigera, two HaABCA2 knockout strains were created from the susceptible SCD strain with the CRISPR/Cas9 genome editing system. One strain (SCD-A2KO1) is homozygous for a 2-bp deletion in exon 2 of HaABCA2 created by non-homologous end joining (NHEJ). The other strain (SCD-A2KO2) is homozygous for a 5-bp deletion in exon 18 of HaABCA2 made by homology-directed repair (HDR), which was produced to mimic the r2 resistance allele of a field-derived Cry2Ab-resistant strain from Australia. Both knockout strains obtained high levels of resistance to both Cry2Aa (>120-fold) and Cry2Ab (>100-fold) compared with the original SCD strain, but no or very limited resistance to Cry1Ac (<4-fold). Resistance to Cry2Ab in both knockouts is recessive, and genetic complementary tests confirmed Cry2Ab resistance alleles are at the same locus (i.e. HaABCA2) for the two strains. Brush border membrane vesicles (BBMVs) of midguts from both knockout strains lost binding with Cry2Ab, but maintained the same binding with Cry1Ac as the SCD strain. In vivo functional evidence from this study demonstrates knockout of HaABCA2 confers high levels of resistance to both Cry2Aa and Cry2Ab, confirming that HaABCA2 plays a key role in mediating toxicity of both Cry2Aa and Cry2Ab against H. armigera.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huidong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoyan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Laipan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wee Tek Tay
- CSIRO, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia.
| | - Thomas K Walsh
- CSIRO, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Bel Y, Banyuls N, Chakroun M, Escriche B, Ferré J. Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis. Toxins (Basel) 2017; 9:toxins9040131. [PMID: 28387713 PMCID: PMC5408205 DOI: 10.3390/toxins9040131] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 11/17/2022] Open
Abstract
Vip3 proteins are secretable proteins from Bacillus thuringiensis whose mode of action is still poorly understood. In this study, the activation process for Vip3 proteins was closely examined in order to better understand the Vip3Aa protein stability and to shed light on its structure. The Vip3Aa protoxin (of 89 kDa) was treated with trypsin at concentrations from 1:100 to 120:100 (trypsin:Vip3A, w:w). If the action of trypsin was not properly neutralized, the results of SDS-PAGE analysis (as well as those with Agrotis ipsilon midgut juice) equivocally indicated that the protoxin could be completely processed. However, when the proteolytic reaction was efficiently stopped, it was revealed that the protoxin was only cleaved at a primary cleavage site, regardless of the amount of trypsin used. The 66 kDa and the 19 kDa peptides generated by the proteases co-eluted after gel filtration chromatography, indicating that they remain together after cleavage. The 66 kDa fragment was found to be extremely resistant to proteases. The trypsin treatment of the protoxin in the presence of SDS revealed the presence of secondary cleavage sites at S-509, and presumably at T-466 and V-372, rendering C-terminal fragments of approximately 29, 32, and 42 kDa, respectively. The fact that the predicted secondary structure of the Vip3Aa protein shows a cluster of beta sheets in the C-terminal region of the protein might be the reason behind the higher stability to proteases compared to the rest of the protein, which is mainly composed of alpha helices.
Collapse
Affiliation(s)
- Yolanda Bel
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| | - Núria Banyuls
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| | - Maissa Chakroun
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| | - Baltasar Escriche
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| | - Juan Ferré
- ERI BIOTECMED and Department of Genetics, Universitat de València, Dr. Moliner, 50, BURJASSOT, 46100 Valencia, Spain.
| |
Collapse
|