1
|
Mishra P, Narayanan R. The enigmatic HCN channels: A cellular neurophysiology perspective. Proteins 2025; 93:72-92. [PMID: 37982354 PMCID: PMC7616572 DOI: 10.1002/prot.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
What physiological role does a slow hyperpolarization-activated ion channel with mixed cation selectivity play in the fast world of neuronal action potentials that are driven by depolarization? That puzzling question has piqued the curiosity of physiology enthusiasts about the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are widely expressed across the body and especially in neurons. In this review, we emphasize the need to assess HCN channels from the perspective of how they respond to time-varying signals, while also accounting for their interactions with other co-expressing channels and receptors. First, we illustrate how the unique structural and functional characteristics of HCN channels allow them to mediate a slow negative feedback loop in the neurons that they express in. We present the several physiological implications of this negative feedback loop to neuronal response characteristics including neuronal gain, voltage sag and rebound, temporal summation, membrane potential resonance, inductive phase lead, spike triggered average, and coincidence detection. Next, we argue that the overall impact of HCN channels on neuronal physiology critically relies on their interactions with other co-expressing channels and receptors. Interactions with other channels allow HCN channels to mediate intrinsic oscillations, earning them the "pacemaker channel" moniker, and to regulate spike frequency adaptation, plateau potentials, neurotransmitter release from presynaptic terminals, and spike initiation at the axonal initial segment. We also explore the impact of spatially non-homogeneous subcellular distributions of HCN channels in different neuronal subtypes and their interactions with other channels and receptors. Finally, we discuss how plasticity in HCN channels is widely prevalent and can mediate different encoding, homeostatic, and neuroprotective functions in a neuron. In summary, we argue that HCN channels form an important class of channels that mediate a diversity of neuronal functions owing to their unique gating kinetics that made them a puzzle in the first place.
Collapse
Affiliation(s)
- Poonam Mishra
- Department of Neuroscience, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
2
|
Kumari S, Narayanan R. Ion-channel degeneracy and heterogeneities in the emergence of signature physiological characteristics of dentate gyrus granule cells. J Neurophysiol 2024; 132:991-1013. [PMID: 39110941 DOI: 10.1152/jn.00071.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Complex systems are neither fully determined nor completely random. Biological complex systems, including single neurons, manifest intermediate regimes of randomness that recruit integration of specific combinations of functionally specialized subsystems. Such emergence of biological function provides the substrate for the expression of degeneracy, the ability of disparate combinations of subsystems to yield similar function. Here, we present evidence for the expression of degeneracy in morphologically realistic models of dentate gyrus granule cells (GCs) through functional integration of disparate ion-channel combinations. We performed a 45-parameter randomized search spanning 16 active and passive ion channels, each biophysically constrained by their gating kinetics and localization profiles, to search for valid GC models. Valid models were those that satisfied 17 sub- and suprathreshold cellular-scale electrophysiological measurements from rat GCs. A vast majority (>99%) of the 15,000 random models were not electrophysiologically valid, demonstrating that arbitrarily random ion-channel combinations would not yield GC functions. The 141 valid models (0.94% of 15,000) manifested heterogeneities in and cross-dependencies across local and propagating electrophysiological measurements, which matched with their respective biological counterparts. Importantly, these valid models were widespread throughout the parametric space and manifested weak cross-dependencies across different parameters. These observations together showed that GC physiology could neither be obtained by entirely random ion-channel combinations nor is there an entirely determined single parametric combination that satisfied all constraints. The complexity, the heterogeneities in measurement and parametric spaces, and degeneracy associated with GC physiology should be rigorously accounted for while assessing GCs and their robustness under physiological and pathological conditions.NEW & NOTEWORTHY A recent study from our laboratory had demonstrated pronounced heterogeneities in a set of 17 electrophysiological measurements obtained from a large population of rat hippocampal granule cells. Here, we demonstrate the manifestation of ion-channel degeneracy in a heterogeneous population of morphologically realistic conductance-based granule cell models that were validated against these measurements and their cross-dependencies. Our analyses show that single neurons are complex entities whose functions emerge through intricate interactions among several functionally specialized subsystems.
Collapse
Affiliation(s)
- Sanjna Kumari
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Wang R, Gu H, Zhang X. Dynamics of interaction between IH and IKLT currents to mediate double resonances of medial superior olive neurons related to sound localization. Cogn Neurodyn 2024; 18:715-740. [PMID: 38699604 PMCID: PMC11061090 DOI: 10.1007/s11571-023-10024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 05/05/2024] Open
Abstract
Neurons in the medial superior olive (MSO) exhibit high frequency responses such as subthreshold resonance, which is helpful to sensitively detect a small difference in the arrival time of sounds between two ears for precise sound localization. Recently, except for the high frequency depolarization resonance mediated by a low threshold potassium (IKLT) current, a low frequency hyperpolarization resonance mediated by a hyperpolarization-activated cation (IH) current is observed in experiments on the MSO neurons, forming double resonances. The complex dynamics underlying double resonances are studied in an MSO neuron model in the present paper. Firstly, double resonances similar to the experimental observations are simulated as the resting membrane potential is between half-activation voltages of IH and IKLT currents, and stimulation current (IZAP) with large amplitude and exponentially increasing frequency is applied. Secondly, multiple effective factors to modulate double resonances are obtained. Especially, the decrease of time constant of IKLT current and increase of conductance of IH and IKLT currents can enhance the depolarization resonance frequency for precise sound localization. Last, different frequency responses of slow IH and fast IKLT currents in formation of the resonances are acquired. A middle phase difference between IZAP and IKLT currents appears at a high frequency, and the interaction between the positive part of IZAP and the negative IKLT current forms the depolarization resonance. Interaction between the negative part of IZAP and positive IH current with a middle phase difference results in hyperpolarization resonance at a low frequency. Furthermore, the phase difference between IZAP and resonance current can well explain the increase of depolarization resonance frequency modulated by the increase of conductance of IH or IKLT currents. The results present the dynamical and biophysical mechanisms for the double resonances mediated by two currents in the MSO neurons, which is helpful to enhance the depolarization resonance frequency for precise sound localization.
Collapse
Affiliation(s)
- Runxia Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Xinjing Zhang
- School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou, 450000 China
| |
Collapse
|
4
|
Rathour RK, Kaphzan H. Dendritic effects of tDCS insights from a morphologically realistic model neuron. iScience 2024; 27:109230. [PMID: 38433894 PMCID: PMC10907852 DOI: 10.1016/j.isci.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/04/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) induces subcellular compartmental-dependent polarization, maximal in the distal portions of axons and dendrites. Using a morphologically realistic neuron model, we simulated tDCS-induced membrane polarization of the apical dendrite. Thus, we investigated the differential dendritic effects of anodal and cathodal tDCS on membrane potential polarization along the dendritic structure and its subsequent effects on dendritic membrane resistance, excitatory postsynaptic potential amplitude, backpropagating action potential amplitude, input/output relations, and long-term synaptic plasticity. We further showed that the effects of anodal and cathodal tDCS on the backpropagating action potential were asymmetric, and explained this asymmetry. Additionally, we showed that the effects on input/output relations were rather weak and limited to the low-mid range of stimulation frequencies, and that synaptic plasticity effects were mostly limited to the distal portion of the dendrite. Thus, we demonstrated how tDCS modifies dendritic physiology due to the dendrite's unique morphology and composition of voltage-gated ion channels.
Collapse
Affiliation(s)
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Srikanth S, Narayanan R. Heterogeneous off-target impact of ion-channel deletion on intrinsic properties of hippocampal model neurons that self-regulate calcium. Front Cell Neurosci 2023; 17:1241450. [PMID: 37904732 PMCID: PMC10613471 DOI: 10.3389/fncel.2023.1241450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
How do neurons that implement cell-autonomous self-regulation of calcium react to knockout of individual ion-channel conductances? To address this question, we used a heterogeneous population of 78 conductance-based models of hippocampal pyramidal neurons that maintained cell-autonomous calcium homeostasis while receiving theta-frequency inputs. At calcium steady-state, we individually deleted each of the 11 active ion-channel conductances from each model. We measured the acute impact of deleting each conductance (one at a time) by comparing intrinsic electrophysiological properties before and immediately after channel deletion. The acute impact of deleting individual conductances on physiological properties (including calcium homeostasis) was heterogeneous, depending on the property, the specific model, and the deleted channel. The underlying many-to-many mapping between ion channels and properties pointed to ion-channel degeneracy. Next, we allowed the other conductances (barring the deleted conductance) to evolve towards achieving calcium homeostasis during theta-frequency activity. When calcium homeostasis was perturbed by ion-channel deletion, post-knockout plasticity in other conductances ensured resilience of calcium homeostasis to ion-channel deletion. These results demonstrate degeneracy in calcium homeostasis, as calcium homeostasis in knockout models was implemented in the absence of a channel that was earlier involved in the homeostatic process. Importantly, in reacquiring homeostasis, ion-channel conductances and physiological properties underwent heterogenous plasticity (dependent on the model, the property, and the deleted channel), even introducing changes in properties that were not directly connected to the deleted channel. Together, post-knockout plasticity geared towards maintaining homeostasis introduced heterogenous off-target effects on several channels and properties, suggesting that extreme caution be exercised in interpreting experimental outcomes involving channel knockouts.
Collapse
Affiliation(s)
- Sunandha Srikanth
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Undergraduate Program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Rathour RK, Kaphzan H. Voltage-Gated Ion Channels and the Variability in Information Transfer. Front Cell Neurosci 2022; 16:906313. [PMID: 35936503 PMCID: PMC9352938 DOI: 10.3389/fncel.2022.906313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
The prerequisites for neurons to function within a circuit and be able to contain and transfer information efficiently and reliably are that they need to be homeostatically stable and fire within a reasonable range, characteristics that are governed, among others, by voltage-gated ion channels (VGICs). Nonetheless, neurons entail large variability in the expression levels of VGICs and their corresponding intrinsic properties, but the role of this variability in information transfer is not fully known. In this study, we aimed to investigate how this variability of VGICs affects information transfer. For this, we used a previously derived population of neuronal model neurons, each with the variable expression of five types of VGICs, fast Na+, delayed rectifier K+, A-type K+, T-type Ca++, and HCN channels. These analyses showed that the model neurons displayed variability in mutual information transfer, measured as the capability of neurons to successfully encode incoming synaptic information in output firing frequencies. Likewise, variability in the expression of VGICs caused variability in EPSPs and IPSPs amplitudes, reflected in the variability of output firing frequencies. Finally, using the virtual knockout methodology, we show that among the ion channels tested, the A-type K+ channel is the major regulator of information processing and transfer.
Collapse
|
8
|
Kamaleddin MA. Degeneracy in the nervous system: from neuronal excitability to neural coding. Bioessays 2021; 44:e2100148. [PMID: 34791666 DOI: 10.1002/bies.202100148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023]
Abstract
Degeneracy is ubiquitous across biological systems where structurally different elements can yield a similar outcome. Degeneracy is of particular interest in neuroscience too. On the one hand, degeneracy confers robustness to the nervous system and facilitates evolvability: Different elements provide a backup plan for the system in response to any perturbation or disturbance. On the other, a difficulty in the treatment of some neurological disorders such as chronic pain is explained in light of different elements all of which contribute to the pathological behavior of the system. Under these circumstances, targeting a specific element is ineffective because other elements can compensate for this modulation. Understanding degeneracy in the physiological context explains its beneficial role in the robustness of neural circuits. Likewise, understanding degeneracy in the pathological context opens new avenues of discovery to find more effective therapies.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Mishra P, Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol Rep 2021; 9:e14963. [PMID: 34342171 PMCID: PMC8329439 DOI: 10.14814/phy2.14963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Degeneracy, the ability of multiple structural components to elicit the same characteristic functional properties, constitutes an elegant mechanism for achieving biological robustness. In this study, we sought electrophysiological signatures for the expression of ion-channel degeneracy in the emergence of intrinsic properties of rat hippocampal granule cells. We measured the impact of four different ion-channel subtypes-hyperpolarization-activated cyclic-nucleotide-gated (HCN), barium-sensitive inward rectifier potassium (Kir ), tertiapin-Q-sensitive inward rectifier potassium, and persistent sodium (NaP) channels-on 21 functional measurements employing pharmacological agents, and report electrophysiological data on two characteristic signatures for the expression of ion-channel degeneracy in granule cells. First, the blockade of a specific ion-channel subtype altered several, but not all, functional measurements. Furthermore, any given functional measurement was altered by the blockade of many, but not all, ion-channel subtypes. Second, the impact of blocking each ion-channel subtype manifested neuron-to-neuron variability in the quantum of changes in the electrophysiological measurements. Specifically, we found that blocking HCN or Ba-sensitive Kir channels enhanced action potential firing rate, but blockade of NaP channels reduced firing rate of granule cells. Subthreshold measures of granule cell intrinsic excitability (input resistance, temporal summation, and impedance amplitude) were enhanced by blockade of HCN or Ba-sensitive Kir channels, but were not significantly altered by NaP channel blockade. We confirmed that the HCN and Ba-sensitive Kir channels independently altered sub- and suprathreshold properties of granule cells through sequential application of pharmacological agents that blocked these channels. Finally, we found that none of the sub- or suprathreshold measurements of granule cells were significantly altered upon treatment with tertiapin-Q. Together, the heterogeneous many-to-many mapping between ion channels and single-neuron intrinsic properties emphasizes the need to account for ion-channel degeneracy in cellular- and network-scale physiology.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
10
|
Roy A, Narayanan R. Spatial information transfer in hippocampal place cells depends on trial-to-trial variability, symmetry of place-field firing, and biophysical heterogeneities. Neural Netw 2021; 142:636-660. [PMID: 34399375 PMCID: PMC7611579 DOI: 10.1016/j.neunet.2021.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
The relationship between the feature-tuning curve and information transfer profile of individual neurons provides vital insights about neural encoding. However, the relationship between the spatial tuning curve and spatial information transfer of hippocampal place cells remains unexplored. Here, employing a stochastic search procedure spanning thousands of models, we arrived at 127 conductance-based place-cell models that exhibited signature electrophysiological characteristics and sharp spatial tuning, with parametric values that exhibited neither clustering nor strong pairwise correlations. We introduced trial-to-trial variability in responses and computed model tuning curves and information transfer profiles, using stimulus-specific (SSI) and mutual (MI) information metrics, across locations within the place field. We found spatial information transfer to be heterogeneous across models, but to reduce consistently with increasing levels of variability. Importantly, whereas reliable low-variability responses implied that maximal information transfer occurred at high-slope regions of the tuning curve, increase in variability resulted in maximal transfer occurring at the peak-firing location in a subset of models. Moreover, experience-dependent asymmetry in place-field firing introduced asymmetries in the information transfer computed through MI, but not SSI, and the impact of activity-dependent variability on information transfer was minimal compared to activity-independent variability. We unveiled ion-channel degeneracy in the regulation of spatial information transfer, and demonstrated critical roles for N-methyl-d-aspartate receptors, transient potassium and dendritic sodium channels in regulating information transfer. Our results demonstrate that trial-to-trial variability, tuning-curve shape and biological heterogeneities critically regulate the relationship between the spatial tuning curve and spatial information transfer in hippocampal place cells.
Collapse
Affiliation(s)
- Ankit Roy
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India; Undergraduate program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
11
|
Kelley C, Dura-Bernal S, Neymotin SA, Antic SD, Carnevale NT, Migliore M, Lytton WW. Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons. J Neurophysiol 2021; 125:1501-1516. [PMID: 33689489 PMCID: PMC8282219 DOI: 10.1152/jn.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We, therefore, investigated how well several biophysically detailed multicompartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a shunting current, such as that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel density in this model was proportional to local HCN channel density. We found that although this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of HCN channel current (Ih) and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.NEW & NOTEWORTHY We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.
Collapse
Affiliation(s)
- Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, New York
| | - Srdjan D Antic
- Neuroscience Department, Institute of Systems Genomics, University of Connecticut Health, Farmington, Connecticut
| | | | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - William W Lytton
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Department of Neurology, Kings County Hospital Center, Brooklyn, New York
- The Robert F. Furchgott Center for Neural and Behavioral Science, Brooklyn, New York
| |
Collapse
|
12
|
Mishra P, Narayanan R. Ion-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100007. [PMID: 33997798 PMCID: PMC7610774 DOI: 10.1016/j.crneur.2021.100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heterogeneities in biological neural circuits manifest in afferent connectivity as well as in local-circuit components such as neuronal excitability, neural structure and local synaptic strengths. The expression of adult neurogenesis in the dentate gyrus (DG) amplifies local-circuit heterogeneities and guides heterogeneities in afferent connectivity. How do neurons and their networks endowed with these distinct forms of heterogeneities respond to perturbations to individual ion channels, which are known to change under several physiological and pathophysiological conditions? We sequentially traversed the ion channels-neurons-network scales and assessed the impact of eliminating individual ion channels on conductance-based neuronal and network models endowed with disparate local-circuit and afferent heterogeneities. We found that many ion channels differentially contributed to specific neuronal or network measurements, and the elimination of any given ion channel altered several functional measurements. We then quantified the impact of ion-channel elimination on response decorrelation, a well-established metric to assess the ability of neurons in a network to convey complementary information, in DG networks endowed with different forms of heterogeneities. Notably, we found that networks constructed with structurally immature neurons exhibited functional robustness, manifesting as minimal changes in response decorrelation in the face of ion-channel elimination. Importantly, the average change in output correlation was dependent on the eliminated ion channel but invariant to input correlation. Our analyses suggest that neurogenesis-driven structural heterogeneities could assist the DG network in providing functional resilience to molecular perturbations. Perturbations at one scale result in a cascading impact on physiology across scales. Heterogeneous multi-scale models used to assess the impact of ion-channel deletion. Mapping of structural components to functional outcomes is many-to-many. Differential & variable impact of ion channel deletion on response decorrelation. Neurogenesis-induced structural heterogeneity confers resilience to perturbations.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Murru L, Ponzoni L, Longatti A, Mazzoleni S, Giansante G, Bassani S, Sala M, Passafaro M. Lateral habenula dysfunctions in Tm4sf2 -/y mice model for neurodevelopmental disorder. Neurobiol Dis 2021; 148:105189. [PMID: 33227491 PMCID: PMC7840593 DOI: 10.1016/j.nbd.2020.105189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022] Open
Abstract
Mutations in the TM4SF2 gene, which encodes TSPAN7, cause a severe form of intellectual disability (ID) often comorbid with autism spectrum disorder (ASD). Recently, we found that TM4SF2 loss in mice affects cognition. Here, we report that Tm4sf2-/y mice, beyond an ID-like phenotype, display altered sociability, increased repetitive behaviors, anhedonic- and depressive-like states. Cognition relies on the integration of information from several brain areas. In this context, the lateral habenula (LHb) is strategically positioned to coordinate the brain regions involved in higher cognitive functions. Furthermore, in Tm4sf2-/y mice we found that LHb neurons present hypoexcitability, aberrant neuronal firing pattern and altered sodium and potassium voltage-gated ion channels function. Interestingly, we also found a reduced expression of voltage-gated sodium channel and a hyperactivity of the PKC-ERK pathway, a well-known modulator of ion channels activity, which might explain the functional phenotype showed by Tm4sf2-/y mice LHb neurons. These findings support Tm4sf2-/y mice as useful in modeling some ASD-like symptoms. Additionally, we can speculate that LHb functional alteration in Tm4sf2-/y mice might play a role in the disease pathophysiology.
Collapse
Affiliation(s)
- Luca Murru
- Institute of Neuroscience, CNR, Milan 20129, Italy; NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, Milan 20126, Italy.
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, Segrate, MI 20090, Italy
| | | | - Sara Mazzoleni
- Institute of Neuroscience, CNR, Milan 20129, Italy; Department of Medical Biotechnology and Translational Medicine, Università di Milano, Segrate, MI 20090, Italy
| | | | - Silvia Bassani
- Institute of Neuroscience, CNR, Milan 20129, Italy; NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, Milan 20126, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, CNR, Milan 20129, Italy; NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, Milan 20126, Italy
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Milan 20129, Italy; NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, Milan 20126, Italy.
| |
Collapse
|
14
|
Mishra P, Narayanan R. Heterogeneities in intrinsic excitability and frequency-dependent response properties of granule cells across the blades of the rat dentate gyrus. J Neurophysiol 2020; 123:755-772. [PMID: 31913748 PMCID: PMC7052640 DOI: 10.1152/jn.00443.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/25/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
The dentate gyrus (DG), the input gate to the hippocampus proper, is anatomically segregated into three different sectors, namely, the suprapyramidal blade, the crest region, and the infrapyramidal blade. Although there are well-established differences between these sectors in terms of neuronal morphology, connectivity patterns, and activity levels, differences in electrophysiological properties of granule cells within these sectors have remained unexplored. Here, employing somatic whole cell patch-clamp recordings from the rat DG, we demonstrate that granule cells in these sectors manifest considerable heterogeneities in their intrinsic excitability, temporal summation, action potential characteristics, and frequency-dependent response properties. Across sectors, these neurons showed positive temporal summation of their responses to inputs mimicking excitatory postsynaptic currents and showed little to no sag in their voltage responses to pulse currents. Consistently, the impedance amplitude profile manifested low-pass characteristics and the impedance phase profile lacked positive phase values at all measured frequencies and voltages and for all sectors. Granule cells in all sectors exhibited class I excitability, with broadly linear firing rate profiles, and granule cells in the crest region fired significantly fewer action potentials compared with those in the infrapyramidal blade. Finally, we found weak pairwise correlations across the 18 different measurements obtained individually from each of the three sectors, providing evidence that these measurements are indeed reporting distinct aspects of neuronal physiology. Together, our analyses show that granule cells act as integrators of afferent information and emphasize the need to account for the considerable physiological heterogeneities in assessing their roles in information encoding and processing.NEW & NOTEWORTHY We employed whole cell patch-clamp recordings from granule cells in the three subregions of the rat dentate gyrus to demonstrate considerable heterogeneities in their intrinsic excitability, temporal summation, action potential characteristics, and frequency-dependent response properties. Across sectors, granule cells did not express membrane potential resonance, and their impedance profiles lacked inductive phase leads at all measured frequencies. Our analyses also show that granule cells manifest class I excitability characteristics, categorizing them as integrators of afferent information.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Jain A, Narayanan R. Degeneracy in the emergence of spike-triggered average of hippocampal pyramidal neurons. Sci Rep 2020; 10:374. [PMID: 31941985 PMCID: PMC6962224 DOI: 10.1038/s41598-019-57243-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022] Open
Abstract
Hippocampal pyramidal neurons are endowed with signature excitability characteristics, exhibit theta-frequency selectivity - manifesting as impedance resonance and as a band-pass structure in the spike-triggered average (STA) - and coincidence detection tuned for gamma-frequency inputs. Are there specific constraints on molecular-scale (ion channel) properties in the concomitant emergence of cellular-scale encoding (feature detection and selectivity) and excitability characteristics? Here, we employed a biophysically-constrained unbiased stochastic search strategy involving thousands of conductance-based models, spanning 11 active ion channels, to assess the concomitant emergence of 14 different electrophysiological measurements. Despite the strong biophysical and physiological constraints, we found models that were similar in terms of their spectral selectivity, operating mode along the integrator-coincidence detection continuum and intrinsic excitability characteristics. The parametric combinations that resulted in these functionally similar models were non-unique with weak pair-wise correlations. Employing virtual knockout of individual ion channels in these functionally similar models, we found a many-to-many relationship between channels and physiological characteristics to mediate this degeneracy, and predicted a dominant role for HCN and transient potassium channels in regulating hippocampal neuronal STA. Our analyses reveals the expression of degeneracy, that results from synergistic interactions among disparate channel components, in the concomitant emergence of neuronal excitability and encoding characteristics.
Collapse
Affiliation(s)
- Abha Jain
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Undergraduate program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
16
|
Basak R, Narayanan R. Robust emergence of sharply tuned place-cell responses in hippocampal neurons with structural and biophysical heterogeneities. Brain Struct Funct 2020; 225:567-590. [PMID: 31900587 DOI: 10.1007/s00429-019-02018-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
Hippocampal pyramidal neurons sustain propagation of fast electrical signals and are electrotonically non-compact structures exhibiting cell-to-cell variability in their complex dendritic arborization. In this study, we demonstrate that sharp place-field tuning and several somatodendritic functional maps concomitantly emerge despite the presence of geometrical heterogeneities in these neurons. We establish this employing an unbiased stochastic search strategy involving thousands of models that spanned several morphologies and distinct profiles of dispersed synaptic localization and channel expression. Mechanistically, employing virtual knockout models (VKMs), we explored the impact of bidirectional modulation in dendritic spike prevalence on place-field tuning sharpness. Consistent with the prior literature, we found that across all morphologies, virtual knockout of either dendritic fast sodium channels or N-methyl-D-aspartate receptors led to a reduction in dendritic spike prevalence, whereas A-type potassium channel knockouts resulted in a non-specific increase in dendritic spike prevalence. However, place-field tuning sharpness was critically impaired in all three sets of VKMs, demonstrating that sharpness in feature tuning is maintained by an intricate balance between mechanisms that promote and those that prevent dendritic spike initiation. From the functional standpoint of the emergence of sharp feature tuning and intrinsic functional maps, within this framework, geometric variability was compensated by a combination of synaptic democracy, the ability of randomly dispersed synapses to yield sharp tuning through dendritic spike initiation, and ion-channel degeneracy. Our results suggest electrotonically non-compact neurons to be endowed with several degrees of freedom, encompassing channel expression, synaptic localization and morphological microstructure, in achieving sharp feature encoding and excitability homeostasis.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
17
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
18
|
Basak R, Narayanan R. Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 2018; 14:e1006485. [PMID: 30383745 PMCID: PMC6233924 DOI: 10.1371/journal.pcbi.1006485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/13/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Microdomains that emerge from spatially constricted spread of biochemical signaling components play a central role in several neuronal computations. Although dendrites, endowed with several voltage-gated ion channels, form a prominent structural substrate for microdomain physiology, it is not known if these channels regulate the spatiotemporal spread of signaling microdomains. Here, we employed a multiscale, morphologically realistic, conductance-based model of the hippocampal pyramidal neuron that accounted for experimental details of electrical and calcium-dependent biochemical signaling. We activated synaptic N-Methyl-d-Aspartate receptors through theta-burst stimulation (TBS) or pairing (TBP) and assessed microdomain propagation along a signaling pathway that included calmodulin, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1. We found that the spatiotemporal spread of the TBS-evoked microdomain in phosphorylated CaMKII (pCaMKII) was amplified in comparison to that of the corresponding calcium microdomain. Next, we assessed the role of two dendritically expressed inactivating channels, one restorative (A-type potassium) and another regenerative (T-type calcium), by systematically varying their conductances. Whereas A-type potassium channels suppressed the spread of pCaMKII microdomains by altering the voltage response to TBS, T-type calcium channels enhanced this spread by modulating TBS-induced calcium influx without changing the voltage. Finally, we explored cross-dependencies of these channels with other model components, and demonstrated the heavy mutual interdependence of several biophysical and biochemical properties in regulating microdomains and their spread. Our conclusions unveil a pivotal role for dendritic voltage-gated ion channels in actively amplifying or suppressing biochemical signals and their spatiotemporal spread, with critical implications for clustered synaptic plasticity, robust information transfer and efficient neural coding. The spatiotemporal spread of biochemical signals in neurons and other cells regulate signaling specificity, tuning of signal propagation, along with specificity and clustering of adaptive plasticity. Theoretical and experimental studies have demonstrated a critical role for cellular morphology and the topology of signaling networks in regulating this spread. In this study, we add a significantly complex dimension to this narrative by demonstrating that voltage-gated ion channels on the plasma membrane could actively amplify or suppress the strength and spread of downstream signaling components. Given the expression of different ion channels with wide-ranging heterogeneity in gating kinetics, localization and density, our results point to an increase in complexity of and degeneracy in signaling spread, and unveil a powerful mechanism for regulating biochemical-signaling pathways across different cell types.
Collapse
Affiliation(s)
- Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
19
|
Mittal D, Narayanan R. Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells. J Neurophysiol 2018; 120:576-600. [PMID: 29718802 PMCID: PMC6101195 DOI: 10.1152/jn.00136.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Biological heterogeneities are ubiquitous and play critical roles in the emergence of physiology at multiple scales. Although neurons in layer II (LII) of the medial entorhinal cortex (MEC) express heterogeneities in channel properties, the impact of such heterogeneities on the robustness of their cellular-scale physiology has not been assessed. Here, we performed a 55-parameter stochastic search spanning nine voltage- or calcium-activated channels to assess the impact of channel heterogeneities on the concomitant emergence of 10 in vitro electrophysiological characteristics of LII stellate cells (SCs). We generated 150,000 models and found a heterogeneous subpopulation of 449 valid models to robustly match all electrophysiological signatures. We employed this heterogeneous population to demonstrate the emergence of cellular-scale degeneracy in SCs, whereby disparate parametric combinations expressing weak pairwise correlations resulted in similar models. We then assessed the impact of virtually knocking out each channel from all valid models and demonstrate that the mapping between channels and measurements was many-to-many, a critical requirement for the expression of degeneracy. Finally, we quantitatively predict that the spike-triggered average of SCs should be endowed with theta-frequency spectral selectivity and coincidence detection capabilities in the fast gamma-band. We postulate this fast gamma-band coincidence detection as an instance of cellular-scale-efficient coding, whereby SC response characteristics match the dominant oscillatory signals in LII MEC. The heterogeneous population of valid SC models built here unveils the robust emergence of cellular-scale physiology despite significant channel heterogeneities, and forms an efficacious substrate for evaluating the impact of biological heterogeneities on entorhinal network function. NEW & NOTEWORTHY We assessed the impact of heterogeneities in channel properties on the robustness of cellular-scale physiology of medial entorhinal cortical stellate neurons. We demonstrate that neuronal models with disparate channel combinations were endowed with similar physiological characteristics, as a consequence of the many-to-many mapping between channel properties and the physiological characteristics that they modulate. We predict that the spike-triggered average of stellate cells should be endowed with theta-frequency spectral selectivity and fast gamma-band coincidence detection capabilities.
Collapse
Affiliation(s)
- Divyansh Mittal
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science , Bangalore , India
| |
Collapse
|
20
|
Das A, Narayanan R. Theta-frequency selectivity in the somatic spike-triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels. J Neurophysiol 2017; 118:2251-2266. [PMID: 28768741 PMCID: PMC5626898 DOI: 10.1152/jn.00356.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
The ability to distill specific frequencies from complex spatiotemporal patterns of afferent inputs is a pivotal functional requirement for neurons residing in networks receiving frequency-multiplexed inputs. Although the expression of theta-frequency subthreshold resonance is established in hippocampal pyramidal neurons, it is not known if their spike initiation dynamics manifest spectral selectivity, or if their intrinsic properties are tuned to process gamma-frequency inputs. Here, we measured the spike-triggered average (STA) of rat hippocampal pyramidal neurons through electrophysiological recordings and quantified spectral selectivity in their spike initiation dynamics and their coincidence detection window (CDW). Our results revealed strong theta-frequency selectivity in the STA, which was also endowed with gamma-range CDW, with prominent neuron-to-neuron variability that manifested distinct pairwise dissociations and correlations with different intrinsic measurements. Furthermore, we demonstrate that the STA and its measurements substantially adapted to the state of the neuron defined by its membrane potential and to the statistics of its afferent inputs. Finally, we tested the effect of pharmacologically blocking the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels on the STA and found that the STA characteristic frequency reduced significantly to the delta-frequency band after HCN channel blockade. This delta-frequency selectivity in the STA emerged in the absence of subthreshold resonance, which was abolished by HCN channel blockade, thereby confirming computational predictions on the dissociation between these two forms of spectral selectivity. Our results expand the roles of HCN channels to theta-frequency selectivity in the spike initiation dynamics, apart from underscoring the critical role of interactions among different ion channels in regulating neuronal physiology.NEW & NOTEWORTHY We had previously predicted, using computational analyses, that the spike-triggered average (STA) of hippocampal neurons would exhibit theta-frequency (4-10 Hz) spectral selectivity and would manifest coincidence detection capabilities for inputs in the gamma-frequency band (25-150 Hz). Here, we confirmed these predictions through direct electrophysiological recordings of STA from rat CA1 pyramidal neurons and demonstrate that blocking HCN channels reduces the frequency of STA spectral selectivity to the delta-frequency range (0.5-4 Hz).
Collapse
Affiliation(s)
- Anindita Das
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
21
|
Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol 2017; 13:e1005565. [PMID: 28582395 PMCID: PMC5476304 DOI: 10.1371/journal.pcbi.1005565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 06/19/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
Neuronal membrane potential resonance (MPR) is associated with subthreshold and network oscillations. A number of voltage-gated ionic currents can contribute to the generation or amplification of MPR, but how the interaction of these currents with linear currents contributes to MPR is not well understood. We explored this in the pacemaker PD neurons of the crab pyloric network. The PD neuron MPR is sensitive to blockers of H- (IH) and calcium-currents (ICa). We used the impedance profile of the biological PD neuron, measured in voltage clamp, to constrain parameter values of a conductance-based model using a genetic algorithm and obtained many optimal parameter combinations. Unlike most cases of MPR, in these optimal models, the values of resonant- (fres) and phasonant- (fϕ = 0) frequencies were almost identical. Taking advantage of this fact, we linked the peak phase of ionic currents to their amplitude, in order to provide a mechanistic explanation the dependence of MPR on the ICa gating variable time constants. Additionally, we found that distinct pairwise correlations between ICa parameters contributed to the maintenance of fres and resonance power (QZ). Measurements of the PD neuron MPR at more hyperpolarized voltages resulted in a reduction of fres but no change in QZ. Constraining the optimal models using these data unmasked a positive correlation between the maximal conductances of IH and ICa. Thus, although IH is not necessary for MPR in this neuron type, it contributes indirectly by constraining the parameters of ICa. Many neuron types exhibit membrane potential resonance (MPR) in which the neuron produces the largest response to oscillatory input at some preferred (resonant) frequency and, in many systems, the network frequency is correlated with neuronal MPR. MPR is captured by a peak in the impedance vs. frequency curve (Z-profile), which is shaped by the dynamics of voltage-gated ionic currents. Although neuron types can express variable levels of ionic currents, they may have a stable resonant frequency. We used the PD neuron of the crab pyloric network to understand how MPR emerges from the interplay of the biophysical properties of multiple ionic currents, each capable of generating resonance. We show the contribution of an inactivating current at the resonant frequency in terms of interacting time constants. We measured the Z-profile of the PD neuron and explored possible combinations of model parameters that fit this experimentally measured profile. We found that the Z-profile constrains and defines correlations among parameters associated with ionic currents. Furthermore, the resonant frequency and amplitude are sensitive to different parameter sets and can be preserved by co-varying pairs of parameters along their correlation lines. Furthermore, although a resonant current may be present in a neuron, it may not directly contribute to MPR, but constrain the properties of other currents that generate MPR. Finally, constraining model parameters further to those that modify their MPR properties to changes in voltage range produces maximal conductance correlations.
Collapse
|
22
|
Das A, Rathour RK, Narayanan R. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites. Front Cell Neurosci 2017; 11:72. [PMID: 28348519 PMCID: PMC5346355 DOI: 10.3389/fncel.2017.00072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.
Collapse
Affiliation(s)
- Anindita Das
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science Bangalore, India
| | - Rahul K Rathour
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science Bangalore, India
| |
Collapse
|
23
|
Mukunda CL, Narayanan R. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. J Physiol 2017; 595:2611-2637. [PMID: 28026868 DOI: 10.1113/jp273482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS We develop a new biophysically rooted, physiologically constrained conductance-based synaptic model to mechanistically account for short-term facilitation and depression, respectively through residual calcium and transmitter depletion kinetics. We address the specific question of how presynaptic components (including voltage-gated ion channels, pumps, buffers and release-handling mechanisms) and interactions among them define synaptic filtering and short-term plasticity profiles. Employing global sensitivity analyses (GSAs), we show that near-identical synaptic filters and short-term plasticity profiles could emerge from disparate presynaptic parametric combinations with weak pairwise correlations. Using virtual knockout models, a technique to address the question of channel-specific contributions within the GSA framework, we unveil the differential and variable impact of each ion channel on synaptic physiology. Our conclusions strengthen the argument that parametric and interactional complexity in biological systems should not be viewed from the limited curse-of-dimensionality standpoint, but from the evolutionarily advantageous perspective of providing functional robustness through degeneracy. ABSTRACT Information processing in neurons is known to emerge as a gestalt of pre- and post-synaptic filtering. However, the impact of presynaptic mechanisms on synaptic filters has not been quantitatively assessed. Here, we developed a biophysically rooted, conductance-based model synapse that was endowed with six different voltage-gated ion channels, calcium pumps, calcium buffer and neurotransmitter-replenishment mechanisms in the presynaptic terminal. We tuned our model to match the short-term plasticity profile and band-pass structure of Schaffer collateral synapses, and performed sensitivity analyses to demonstrate that presynaptic voltage-gated ion channels regulated synaptic filters through changes in excitability and associated calcium influx. These sensitivity analyses also revealed that calcium- and release-control mechanisms were effective regulators of synaptic filters, but accomplished this without changes in terminal excitability or calcium influx. Next, to perform global sensitivity analysis, we generated 7000 randomized models spanning 15 presynaptic parameters, and computed eight different physiological measurements in each of these models. We validated these models by applying experimentally obtained bounds on their measurements, and found 104 (∼1.5%) models to match the validation criteria for all eight measurements. Analysing these valid models, we demonstrate that analogous synaptic filters emerge from disparate combinations of presynaptic parameters exhibiting weak pairwise correlations. Finally, using virtual knockout models, we establish the variable and differential impact of different presynaptic channels on synaptic filters, underlining the critical importance of interactions among different presynaptic components in defining synaptic physiology. Our results have significant implications for protein-localization strategies required for physiological robustness and for degeneracy in long-term synaptic plasticity profiles.
Collapse
Affiliation(s)
- Chinmayee L Mukunda
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|