1
|
Ibrahim HM, Mohammed GM, Sayed RH, Elshoky HA, Ahmed MM, El Sayed MF, Elsaady SA. Polymeric nanocarrier-based adjuvants to enhance a locally produced mucosal coryza vaccine in chicken. Sci Rep 2024; 14:15262. [PMID: 38961116 PMCID: PMC11222434 DOI: 10.1038/s41598-024-65267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).
Collapse
Affiliation(s)
- Hazem M Ibrahim
- Veterinary Serum and Vaccine Research Institute (VSVRI), Agricultural Research Center (ARC), Cairo, Egypt
| | - Gina M Mohammed
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Rafik Hamed Sayed
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt.
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt.
| | - Marwa M Ahmed
- Veterinary Serum and Vaccine Research Institute (VSVRI), Agricultural Research Center (ARC), Cairo, Egypt
| | - Marwa Fathy El Sayed
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Shaimaa Abdelall Elsaady
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| |
Collapse
|
2
|
Mansour GH, Razzak LA, Suvik A, Wahid MEA. Stimulating immunoglobulin response by intramuscular delivery of exopolysaccharides-adjuvanted mannheimiosis vaccine in goats. Vet World 2022; 15:2945-2952. [PMID: 36718330 PMCID: PMC9880838 DOI: 10.14202/vetworld.2022.2945-2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Aim Pneumonic mannheimiosis (PM) is a common respiratory bacterial disease among small ruminants. Despite numerous management methods, vaccination remains a suitable strategy to combat or reduce PM in goats and sheep. Thus, a study was conducted in Malaysia to evaluate the immunogenicity of exopolysaccharide-adjuvanted Mannheimia haemolytica A2 vaccine (EPS-MHA2) under laboratory and field conditions for its potential use as an efficient vaccine against PM. Materials and Methods This study induced immunoglobulin (Ig) responses following intramuscular (IM) delivery of the EPS-MHA2 vaccine on 12 goats for about 7 months. Goats were divided into three groups, with three goats per group, and they were vaccinated intramuscularly as follows: Group 1 was vaccinated with an adjuvanted vaccine prepared from formalin-killed M. haemolytica serotypes A2 and EPS excipient; Group 2 was vaccinated with formalin-killed M. haemolytica seed only, whereas Group 3 was injected with phosphate-buffered saline (PBS) as the negative control. Measures of specific immunity included serum IgM, IgG, and IgA as well as bronchoalveolar lavage fluid secretory IgA and the size and number of the bronchus-associated lymphoid tissue (BALT). Results From the 1st day of vaccination, Groups 1 and 2 showed a significant (p < 0.05) increase in serum IgM, IgG, and IgA levels. However, the antibodies started to decline 5-week post-vaccination, indicating that the booster dose was necessary. On the second exposure to the same vaccine (booster), the level of antibodies showed a significant increase (p < 0.05), particularly IgG. All groups were challenged intratracheally by virulent MHA2 2 weeks after the decline of second antibodies on the administration of booster. All goats were euthanatized and necropsied 4-week post-challenge. The number and size of the BALT in Group 1 goats significantly increased compared with those in Group 2 and the unvaccinated control. Bacteriological parameters were evaluated, in which MHA2 was reisolated successfully from lung samples in Group 3. The IgA level produced by the group vaccinated with EPS-MHA2 was significantly (p < 0.001) higher than that the MHA2 vaccine and PBS groups. All data obtained were analyzed statistically using a one-way analysis of variance. The results indicate that IM injection of EPS-MHA2 vaccine significantly enhanced the immune response against MHA2. Conclusion Therefore, the addition of EPS to MHA2 (EPS-MHA2 vaccine) can effectively protect goats from lethal mannheimiosis infection. Factors such as the ideal concentration of EPS should be further studied to verify its application potential as a vaccine adjuvant, and the extraction of EPS from different microalgae species should be further investigated. This study showed a novel and exciting set of data and a vaccination system, in which the suppressive effects of mannheimiosis may be further investigated.
Collapse
Affiliation(s)
- Ghaith Hussein Mansour
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Laith Abdul Razzak
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - A. Suvik
- Faculty of Science and Marine Environment Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Mohd Effendy Abd. Wahid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia,Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia,Corresponding author: Mohd Effendy Abd. Wahid, e-mail: Co-authors: GHM: , LAR: , AS:
| |
Collapse
|
3
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Rajendran D, Ezhuthupurakkal PB, Lakshman R, Gowda NKS, Manimaran A, Rao SBN. Application of encapsulated nano materials as feed additive in livestock and poultry: a review. Vet Res Commun 2022; 46:315-328. [DOI: 10.1007/s11259-022-09895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
5
|
Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. NANO-MICRO LETTERS 2022; 14:41. [PMID: 34981278 PMCID: PMC8722410 DOI: 10.1007/s40820-021-00771-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 05/02/2023]
Abstract
During the last decades, the use of nanotechnology in medicine has effectively been translated to the design of drug delivery systems, nanostructured tissues, diagnostic platforms, and novel nanomaterials against several human diseases and infectious pathogens. Nanotechnology-enabled vaccines have been positioned as solutions to mitigate the pandemic outbreak caused by the novel pathogen severe acute respiratory syndrome coronavirus 2. To fast-track the development of vaccines, unprecedented industrial and academic collaborations emerged around the world, resulting in the clinical translation of effective vaccines in less than one year. In this article, we provide an overview of the path to translation from the bench to the clinic of nanotechnology-enabled messenger ribonucleic acid vaccines and examine in detail the types of delivery systems used, their mechanisms of action, obtained results during each phase of their clinical development and their regulatory approval process. We also analyze how nanotechnology is impacting global health and economy during the COVID-19 pandemic and beyond.
Collapse
Affiliation(s)
- Diana O Lopez-Cantu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hector Carrasco-Magallanes
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Tecnologico de Monterrey, School of Medicine and Health Sciences, 64849, Monterrey, NL, Mexico
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Joseph V Bonventre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Health Sciences and Technology, Harvard University - Massachusetts Institute of Technology, Boston, MA, 02115, USA.
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Lopes PD, Okino CH, Fernando FS, Pavani C, Mariguela VC, Montassier MDFS, Montassier HJ. Comparative Evaluation of Immune Responses and Protection of Chitosan Nanoparticles and Oil-Emulsion Adjuvants in Avian Coronavirus Inactivated Vaccines in Chickens. Vaccines (Basel) 2021; 9:vaccines9121457. [PMID: 34960203 PMCID: PMC8705532 DOI: 10.3390/vaccines9121457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023] Open
Abstract
Efficient vaccines are the main strategy to control the avian coronavirus (AvCoV), although several drawbacks related to traditional attenuated and inactivated vaccines have been reported. These counterpoints highlight the importance of developing new alternative vaccines against AvCoV, especially those able to induce long-lasting immune responses. This study evaluated and compared two inactivated vaccines formulated with AvCoV BR-I variants, one composed of chitosan nanoparticles (AvCoV-CS) and the second by Montanide oily adjuvant (AvCoV-O). Both developed vaccines were administered in a single dose or associated with the traditional Mass attenuated vaccine. The AvCoV-CS vaccine administered alone or associated with the Mass vaccine was able to induce strong humoral and cell-mediated immune (CMI) responses and complete protection against IBV virulent infection, wherein single administration was characterized by high IgA antibody levels in the mucosa, whereas when associated with the Mass vaccine, the serum IgG antibody was predominantly observed. On the other hand, single administration of the oily vaccine presented poor humoral and CMI responses and consequently incomplete protection against virulent challenge, but when associated with the Mass vaccine, immune responses were developed, and complete protection against infection was observed. Both of our experimental vaccines were able to induce full protection against virulent IBV challenge. A single dose of AvCoV-CS vaccine was sufficient to achieve complete protection, while AvCoV-O required a previous priming by a Mass strain to complete the protection.
Collapse
Affiliation(s)
- Priscila Diniz Lopes
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil; (F.S.F.); (C.P.); (V.C.M.); (M.d.F.S.M.); (H.J.M.)
- Correspondence:
| | - Cintia Hiromi Okino
- Embrapa Southeast Livestock, Brazilian Agricultural Research Corporation (Embrapa), Canchim Farm, São Carlos 13560-970, Brazil;
| | - Filipe Santos Fernando
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil; (F.S.F.); (C.P.); (V.C.M.); (M.d.F.S.M.); (H.J.M.)
| | - Caren Pavani
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil; (F.S.F.); (C.P.); (V.C.M.); (M.d.F.S.M.); (H.J.M.)
| | - Viviane Casagrande Mariguela
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil; (F.S.F.); (C.P.); (V.C.M.); (M.d.F.S.M.); (H.J.M.)
| | - Maria de Fátima Silva Montassier
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil; (F.S.F.); (C.P.); (V.C.M.); (M.d.F.S.M.); (H.J.M.)
| | - Hélio José Montassier
- Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil; (F.S.F.); (C.P.); (V.C.M.); (M.d.F.S.M.); (H.J.M.)
| |
Collapse
|
7
|
Abd El-Ghany WA, Shaalan M, Salem HM. Nanoparticles applications in poultry production: an updated review. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines (Basel) 2021; 9:vaccines9010020. [PMID: 33406695 PMCID: PMC7823560 DOI: 10.3390/vaccines9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.
Collapse
|
10
|
Immune effect of a Newcastle disease virus DNA vaccine with IL-12 as a molecular adjuvant delivered by electroporation. Arch Virol 2020; 165:1959-1968. [PMID: 32519007 PMCID: PMC7282469 DOI: 10.1007/s00705-020-04669-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 10/27/2022]
Abstract
Newcastle disease (ND), caused by virulent Newcastle disease virus (NDV) strains, has been one of the most problematic diseases affecting the poultry industry worldwide. Conventional vaccines provide effective protection for birds to survive ND outbreaks, but they may not completely suppress NDV shedding. NDV strains circulate on farms for a long time after the initial infection and cause potential risks. A new vaccine with fast clearance ability and low viral shedding is needed. In this study, we used interleukin-12 (IL-12) as an adjuvant and electroporation (EP) as an advanced delivery system to improve a DNA vaccine candidate. The fusion (F) protein gene from an NDV strain of the prevalent genotype VII.1.1 was cloned to prepare the vaccine. Chickens immunized with the F gene DNA vaccine co-delivered with an IL-12-expressing plasmid DNA showed higher neutralizing antibody levels and stronger concanavalin-A-induced lymphocyte proliferation than those treated with the F gene DNA vaccine alone. The co-delivered vaccine provided 100% protection, and less viral shedding and a shorter release time were observed in challenged chickens than when the F gene DNA vaccine was administered alone. The use of F gene DNA combined with IL-12 delivered by electroporation is a promising approach for vaccination against ND.
Collapse
|
11
|
Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, Cho CS, Islam MA. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics 2020; 12:E30. [PMID: 31906277 PMCID: PMC7022884 DOI: 10.3390/pharmaceutics12010030] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
DNA vaccines offer a flexible and versatile platform to treat innumerable diseases due to the ease of manipulating vaccine targets simply by altering the gene sequences encoded in the plasmid DNA delivered. The DNA vaccines elicit potent humoral and cell-mediated responses and provide a promising method for treating rapidly mutating and evasive diseases such as cancer and human immunodeficiency viruses. Although this vaccine technology has been available for decades, there is no DNA vaccine that has been used in bed-side application to date. The main challenge that hinders the progress of DNA vaccines and limits their clinical application is the delivery hurdles to targeted immune cells, which obstructs the stimulation of robust antigen-specific immune responses in humans. In this updated review, we discuss various nanodelivery systems that improve DNA vaccine technologies to enhance the immunological response against target diseases. We also provide possible perspectives on how we can bring this exciting vaccine technology to bedside applications.
Collapse
Affiliation(s)
- Michael Lim
- Nanotechnology Engineering Program, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Mohammad Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Taslim Ahmed Al-Hilal
- Department of Pharmaceutical Sciences, University of Texas El Paso, El Paso, TX 79968, USA;
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Technology, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | | |
Collapse
|
12
|
Yu S, Hao S, Sun B, Zhao D, Yan X, Jin Z, Zhao K. Quaternized Chitosan Nanoparticles in Vaccine Applications. Curr Med Chem 2020; 27:4932-4944. [PMID: 30827229 DOI: 10.2174/0929867326666190227192527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Different natural and synthetic biodegradable polymers have been used in vaccine formulations as adjuvant and delivery system but have faced various limitations. Chitosan is a new delivery system with the potential to improve development of nano vaccines and drugs. However, chitosan is only soluble in acidic solutions of low concentration inorganic acids such as dilute acetic acid and dilute hydrochloric acid and in pure organic solvents, which greatly limits its application. Chemical modification of chitosan is an important way to improve its weak solubility. Quaternized chitosan not only retains the excellent properties of chitosan, but also improves its water solubility for a wider application. Recently, quaternized chitosan nanoparticles have been widely used in biomedical field. This review focuses on some quaternized chitosan nanoparticles, and points out the advantages and research direction of quaternized chitosan nanoparticles. As shown by the applications of quaternized chitosan nanoparticles as adjuvant and delivery carrier in vaccines, quaternized chitosan nanoparticles have promising potential in application for the development of nano vaccines in the future.
Collapse
Affiliation(s)
- Shuang Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Shengnan Hao
- Animal Husbandry Bureau of Hekou District, Dongying City, Shandong 257200, China
| | - Beini Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Dongying Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Xingye Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
13
|
A Novel Cre Recombinase-Mediated In Vivo Minicircle DNA (CRIM) Vaccine Provides Partial Protection against Newcastle Disease Virus. Appl Environ Microbiol 2019; 85:AEM.00407-19. [PMID: 31053588 DOI: 10.1128/aem.00407-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Minicircle DNA (mcDNA), which contains only the necessary components for eukaryotic expression and is thus smaller than traditional plasmids, has been designed for application in genetic manipulation. In this study, we constructed a novel plasmid containing both the Cre recombinase under the phosphoglycerate kinase (PGK) promoter and recombinant lox66 and lox71 sites located outside the cytomegalovirus (CMV) expression cassette. The strictly controlled synthesis of Cre recombinase in vivo maintained the complete form of the plasmid in vitro, whereas the in vivo production of Cre transformed the parental plasmid to mcDNA after transfection. The newly designed Cre recombinase-mediated in vivo mcDNA platform, named CRIM, significantly increased the nuclear entry of mcDNA, followed by increased production of mRNA and protein, using enhanced green fluorescent protein (EGFP) as a model. Similar results were also observed in chickens when the vaccine was delivered by the regulated-delayed-lysis Salmonella strain χ11218, where significantly increased production of EGFP was observed in chicken livers. Then, we used the HN gene of genotype VII Newcastle disease virus as an antigen model to construct the traditional plasmid pYL43 and the novel mcDNA plasmid pYL47. After immunization, our CRIM vaccine provided significantly increased protection against challenge compared with that of the traditional plasmid, providing us with a novel mcDNA vaccine platform.IMPORTANCE Minicircle DNA (mcDNA) has been considered an attractive alternative to DNA vaccines; however, the relatively high cost and complicated process of purifying mcDNA dramatically restricts the application of mcDNA in the veterinary field. We designed a novel in vivo mcDNA platform in which the complete plasmid could spontaneously transform into mcDNA in vivo In combination with the regulated-delayed-lysis Salmonella strain, the newly designed mcDNA vaccine provides us with an elegant platform for veterinary vaccine development.
Collapse
|
14
|
Casadei E, Salinas I. Comparative models for human nasal infections and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:212-222. [PMID: 30513304 PMCID: PMC7102639 DOI: 10.1016/j.dci.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.
Collapse
Affiliation(s)
- Elisa Casadei
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| |
Collapse
|
15
|
Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 2019; 14:627-648. [PMID: 30806568 PMCID: PMC6439506 DOI: 10.2217/nnm-2018-0147] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
As effective tools for public health, vaccines prevent disease by priming the body's adaptive and innate immune responses against an infection. Due to advances in understanding cancers and their relationship with the immune system, there is a growing interest in priming host immune defenses for a targeted and complete antitumor response. Nanoparticle systems have shown to be promising tools for effective antigen delivery as vaccines and/or for potentiating immune response as adjuvants. Here, we highlight relevant physiological processes involved in vaccine delivery, review recent advances in the use of nanoparticle systems for vaccines and discuss pertinent challenges to viably translate nanoparticle-based vaccines and adjuvants for public use.
Collapse
Affiliation(s)
- Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Afoma C Umeano
- Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yi Kou
- Department of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian Xu
- Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 54000, Pakistan
| |
Collapse
|
16
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
17
|
Yagnik B, Sharma D, Padh H, Desai P. In vivo delivery of pPERDBY to BALB/c mice by LacVax ® DNA-I and comparison of elicited immune response with conventional immunization methods. Gene Ther 2018; 25:485-496. [PMID: 30108273 DOI: 10.1038/s41434-018-0033-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
The non-invasive food grade Lactococcus lactis (L. lactis) represents a safe and attractive alternative to invasive pathogens for the delivery of plasmid DNA at mucosal sites. We have earlier shown the DNA delivery potential of r-L. lactis harboring DNA vaccine reporter plasmid; pPERDBY in vitro. In the present work, we examined in vivo delivery potential of food grade non-invasive r-L. lactis::pPERDBY (LacVax® DNA-I) in BALB/c mice. Moreover, using EGFP as a model antigen, we also characterized and compared the immune response elicited by LacVax® DNA-I with other conventional vaccination approaches using protein and naked DNA immunization. The presence of antigen-specific serum IgG and fecal secretory IgA (sIgA) antibodies demonstrated in vivo DNA delivery and immune elicitation potential of the developed LacVax® DNA-I. As compared with intramuscular injection, oral delivery of pPERDBY via L. lactis resulted in a significantly rapid increase in IgG and higher sIgA titers, indicating the immunogenic and immunostimulatory properties of the LacVax® DNA-I. The needle-free immunization with LacVax® DNA-I led to increased production of IL-4, an indicator of Th2 screwed response. To the best of our knowledge, this report for the first time outlines comparison of orally administered LacVax® DNA-I with other conventional vaccination approaches.
Collapse
Affiliation(s)
- Bhrugu Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Drashya Sharma
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Harish Padh
- Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Priti Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India. .,School of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India.
| |
Collapse
|
18
|
Nochi T, Jansen CA, Toyomizu M, van Eden W. The Well-Developed Mucosal Immune Systems of Birds and Mammals Allow for Similar Approaches of Mucosal Vaccination in Both Types of Animals. Front Nutr 2018; 5:60. [PMID: 30050906 PMCID: PMC6052093 DOI: 10.3389/fnut.2018.00060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
The mucosal immune system is a compartmentalized part of the immune system that provides local immunity in the mucosa of the respiratory, gastrointestinal, and digestive tracts. It possesses secondary lymphoid tissues, which contain immune cells, such as T, B, and dendritic cells. Once the cells of the mucosal immune system are stimulated by luminal antigens, including microorganisms, they infiltrate into diffuse areas of mucosal tissues (e.g., respiratory mucosa and lamina propria of intestinal villi) and exhibit immune effector functions. Inducing the antigen-specific immune responses in mucosal tissues by mucosal vaccination would be an ideal strategy for not only humans, but also mammals and birds, to protect against infectious diseases occurring in mucosal tissues (e.g., pneumonia and diarrhea). Infectious diseases cause huge economic losses in agriculture, such as livestock and poultry industries. Since most infectious diseases occur in mucosal tissues, vaccines that are capable of inducing immune responses in mucosal tissues are in high need. In this review, we discuss the current understanding of mucosal immunity in mammals and birds, and recent progress in the development of mucosal vaccines.
Collapse
Affiliation(s)
- Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Christine A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Masaaki Toyomizu
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018; 14:1717-1733. [PMID: 29624470 PMCID: PMC6067898 DOI: 10.1080/21645515.2018.1461296] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Collapse
Affiliation(s)
- Zhichao Zheng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| | - Diana Diaz-Arévalo
- c Grupo Funcional de Inmunología , Fundación Instituto de Inmunología de Colombia-FIDIC, Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , DC . Colombia
| | - Hongbing Guan
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Mingtao Zeng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| |
Collapse
|
20
|
Zhao K, Han J, Zhang Y, Wei L, Yu S, Wang X, Jin Z, Wang Y. Enhancing Mucosal Immune Response of Newcastle Disease Virus DNA Vaccine Using N-2-Hydroxypropyl Trimethylammonium Chloride Chitosan and N,O-Carboxymethyl Chitosan Nanoparticles as Delivery Carrier. Mol Pharm 2017; 15:226-237. [PMID: 29172532 DOI: 10.1021/acs.molpharmaceut.7b00826] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because mucosal sites are the entry ports of pathogens, immunization via mucosal routes can extremely enhance the immunity. To elevate the potential of N-2-hydroxypropyl trimethylammonium chloride chitosan (N-2-HACC) and N,O-carboxymethyl chitosan (CMC) nanoparticles as a mucosal immune delivery carrier for DNA vaccines, we prepared the NDV F gene plasmid DNA with C3d6 molecular adjuvant (pVAX I-F(o)-C3d6) encapsulated in the N-2-HACC-CMC nanoparticles (N-2-HACC-CMC/pFDNA-C3d6 NPs). The N-2-HACC-CMC/pFDNA-C3d6 NPs had regular spherical morphology and low toxicity with a mean diameter of 309.7 ± 6.52 nm, zeta potential of 49.9 ± 4.93 mV, encapsulation efficiency of 92.27 ± 1.48%, and loading capacity of 50.75 ± 1.35%. The N-2-HACC-CMC had high stability and safety. The pVAX I-F(o)-C3d6 could be sustainably released from the N-2-HACC-CMC/pFDNA-C3d6 NPs after an initial burst release. Immunization intranasally of chickens with N-2-HACC-CMC/pFDNA-C3d6 NPs not only produced higher anti-NDV IgG and sIgA antibody than chickens in other groups did, but also significantly stimulated lymphocyte proliferation and triggered higher the IL-2, IL-4, and IFN-γ levels. These findings indicated that the N-2-HACC-CMC could be used as an efficient delivery carrier for the mucosal immunity of Newcastle disease virus DNA vaccine. The work laid a basis for the quaternized chitosan nanoparticles as efficient mucosal immunity delivery carrier for DNA vaccines and had immense application promise and potential for vaccines and drugs.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University , Harbin 150080, China
| | - Jinyu Han
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University , Harbin 150080, China
| | - Yang Zhang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University , Harbin 150080, China
| | - Lin Wei
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University , Harbin 150080, China
| | - Shuang Yu
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University , Harbin 150080, China
| | - Xiaohua Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University , Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University , Harbin 150080, China
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS , Harbin 150001, China
| |
Collapse
|
21
|
Merino-Guzmán R, Latorre JD, Delgado R, Hernandez-Velasco X, Wolfenden AD, Teague KD, Graham LE, Mahaffey BD, Baxter MFA, Hargis BM, Tellez G. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Dimitrov KM, Afonso CL, Yu Q, Miller PJ. Newcastle disease vaccines-A solved problem or a continuous challenge? Vet Microbiol 2016; 206:126-136. [PMID: 28024856 PMCID: PMC7131810 DOI: 10.1016/j.vetmic.2016.12.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 01/11/2023]
Abstract
Newcastle disease (ND) has been defined by the World Organisation for Animal Health as infection of poultry with virulent strains of Newcastle disease virus (NDV). Lesions affecting the neurological, gastrointestinal, respiratory, and reproductive systems are most often observed. The control of ND must include strict biosecurity that prevents virulent NDV from contacting poultry, and also proper administration of efficacious vaccines. When administered correctly to healthy birds, ND vaccines formulated with NDV of low virulence or viral-vectored vaccines that express the NDV fusion protein are able to prevent clinical disease and mortality in chickens upon infection with virulent NDV. Live and inactivated vaccines have been widely used since the 1950's. Recombinant and antigenically matched vaccines have been adopted recently in some countries, and many other vaccine approaches have been only evaluated experimentally. Despite decades of research and development towards formulation of an optimal ND vaccine, improvements are still needed. Impediments to prevent outbreaks include uneven vaccine application when using mass administration techniques in larger commercial settings, the difficulties associated with vaccinating free-roaming, multi-age birds of village flocks, and difficulties maintaining the cold chain to preserve the thermo-labile antigens in the vaccines. Incomplete or improper immunization often results in the disease and death of poultry after infection with virulent NDV. Another cause of decreased vaccine efficacy is the existence of antibodies (including maternal) in birds, which can neutralize the vaccine and thereby reduce the effectiveness of ND vaccines. In this review, a historical perspective, summary of the current situation for ND and NDV strains, and a review of traditional and experimental ND vaccines are presented.
Collapse
Affiliation(s)
- Kiril M Dimitrov
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA
| | - Qingzhong Yu
- Endemic Poultry Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA
| | - Patti J Miller
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, USDA/ARS, Athens, GA, 30605, USA.
| |
Collapse
|