1
|
Li Y, Halleck TQ, Evans L, Bassuk PB, de la Paz L, Demir-Lira ÖE. Eye of the beholder: Neural synchrony of dynamically changing relations between parent praise and child affect. Dev Sci 2024; 27:e13541. [PMID: 38958643 DOI: 10.1111/desc.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024]
Abstract
In this study, we aimed to determine the role of parental praise and child affect in the neural processes underlying parent-child interactions, utilizing functional near-infrared spectroscopy (fNIRS) hyperscanning. We characterized the dynamic changes in interpersonal neural synchrony (INS) between parents and children (4-6 years old, n = 40 dyads) during a cognitively challenging task. We then examined how changes in parent-child INS are influenced by parental feedback and child affect. Parent-child INS showed a quadratic change over time, indicating a decelerated decline during the interaction period. The relationship of parental praise, in the form of positive feedback, to change in INS was contingent upon the child's positive affect during the task. The highest levels of INS were observed when praise was present and child affect was positive. The left temporo-parietal regions of the child and the right dorsolateral prefrontal and right temporo-parietal regions of the parent demonstrated the strongest INS. The dynamic change in INS during the interaction was associated with children's independent performance on a standardized test of visuospatial processing. This research, leveraging fNIRS hyperscanning, elucidates the neural dynamics underlying the interaction between parent praise and child positive affect, thereby contributing to our broader understanding of parent-child dynamics. RESEARCH HIGHLIGHTS: The level of interpersonal neural synchrony between parents and children dynamically varies during a cognitively challenging (tangram) task. The left temporo-parietal regions of the child and the right dorsolateral prefrontal and right temporo-parietal regions of the parent demonstrate the strongest parent-child neural synchrony. The relationship between parental praise (positive feedback) and parent-child neural synchrony is contingent upon child positive affect during the task. Change in parent-child neural synchrony relates to children's performance on an independent visuospatial processing measure.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Talia Q Halleck
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Laura Evans
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Paras Bhagwat Bassuk
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Leiana de la Paz
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Ö Ece Demir-Lira
- Department of Psychological and Brain Sciences, Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Liu D, Jamshaid S, Wang L. Neural Mechanisms of Inhibition in Scientific Reasoning: Insights from fNIRS. Brain Sci 2024; 14:606. [PMID: 38928606 PMCID: PMC11202143 DOI: 10.3390/brainsci14060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This study examines the impact of response and semantic inhibition on scientific reasoning using fNIRS data from 30 students (15 male, 15 female). Utilizing Go/Nogo and Stroop-like tasks within a modified speeded-reasoning task, it was found that inhibition significantly influences scientific reasoning. Specifically, slower responses and lower accuracy on incongruent statements were linked to increased activity in bilateral dorsolateral prefrontal cortex (DLPFC) and pre-supplementary motor area (pre-SMA). The research shows that both DLPFC and pre-SMA are associated with overcoming misconceptions in scientific reasoning. The findings suggest that understanding inhibitory mechanisms can enhance educational strategies to improve critical thinking and scientific literacy.
Collapse
Affiliation(s)
- Donglin Liu
- School of Psychology, Northeast Normal University, Changchun 130024, China; (D.L.); (S.J.)
- School of Psychology, Hainan Normal University, Haikou 571158, China
| | - Samrah Jamshaid
- School of Psychology, Northeast Normal University, Changchun 130024, China; (D.L.); (S.J.)
| | - Lijuan Wang
- School of Psychology, Northeast Normal University, Changchun 130024, China; (D.L.); (S.J.)
| |
Collapse
|
3
|
Zhang M, Yin Z, Zhang X, Zhang H, Bao M, Xuan B. Neural mechanisms distinguishing two types of cooperative problem-solving approaches: An fNIRS hyperscanning study. Neuroimage 2024; 291:120587. [PMID: 38548038 DOI: 10.1016/j.neuroimage.2024.120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Collaborative cooperation (CC) and division of labor cooperation (DLC) are two prevalent forms of cooperative problem-solving approaches in daily life. Despite extensive research on the neural mechanisms underlying cooperative problem-solving approaches, a notable gap exists between the neural processes that support CC and DLC. The present study utilized a functional near-infrared spectroscopy (fNIRS) hyperscanning technique along with a classic cooperative tangram puzzle task to investigate the neural mechanisms engaged by both friends and stranger dyads during CC versus DLC. The key findings of this study were as follows: (1) Dyads exhibited superior behavioral performance in the DLC task than in the CC task. The CC task bolstered intra-brain functional connectivity and inter-brain synchrony (IBS) in regions linked to the mirror neuron system (MNS), spatial perception (SP) and cognitive control. (2) Friend dyads showed stronger IBS in brain regions associated with the MNS than stranger dyads. (3) Perspective-taking predicted not only dyads' behavioral performance in the CC task but also their IBS in brain regions associated with SP during the DLC task. Taken together, these findings elucidate the divergent behavioral performance and neural connection patterns between the two cooperative problem-solving approaches. This study provides novel insights into the various neurocognitive processes underlying flexible coordination strategies in real-world cooperative contexts.
Collapse
Affiliation(s)
- Mingming Zhang
- School of Psychology, Shanghai Normal University, 100, Guilin Road, Shanghai 200234, China
| | - Zijun Yin
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Xue Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Hui Zhang
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Mingjing Bao
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, 2, Beijing Middle Road, Wuhu 241000, China.
| |
Collapse
|
4
|
Jiao Z, Song J, Yang X, Chen Y, Han G. Social pain sharing boosts interpersonal brain synchronization in female cooperation. Acta Psychol (Amst) 2024; 243:104138. [PMID: 38237471 DOI: 10.1016/j.actpsy.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Social pain sharing promotes cooperation, but we still don't know its neural basis. The present study employed functional near-infrared spectroscopy (fNIRS)-based hyperscanning technology to investigate whether interpersonal brain synchronization (IBS) increased between females engaging in cooperative activities after a shared experience of social pain. We utilized the Cyberball paradigm, manipulating social pain by regulating the number of catches for the participants. Dyads in the shared social pain (SP) group received passes only at the beginning of the game, whereas dyads in the control (CT) group had the same number of catches as other players. The results indicate that participants in the SP group showed significant IBS in the right superior frontal cortex (r-SFC, p < 0.05) and left middle frontal cortex (l-MFC, p < 0.05), but no channels in the CT group showed significant IBS (p > 0.05). Further analysis revealed that IBS in r-SFC was significantly higher in the SP group compared to the CT group (p < 0.05). Additionally, IBS in r-SFC was positively correlated with the level of cooperation (r = 0.66, p < 0.001). This study elucidates the neural basis of enhanced cooperation facilitated by shared social pain at the interbrain level. However, it is crucial to acknowledge that this study exclusively enrolled female participants. The generalizability of these findings across genders is yet to be confirmed.
Collapse
Affiliation(s)
- Zhibin Jiao
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Juan Song
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China.
| | - Xue Yang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Yiyue Chen
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Gaoxin Han
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
5
|
Liu Q, Cui H, Huang B, Huang Y, Sun H, Ru X, Zhang M, Chen W. Inter-brain neural mechanism and influencing factors underlying different cooperative behaviors: a hyperscanning study. Brain Struct Funct 2024; 229:75-95. [PMID: 37899406 DOI: 10.1007/s00429-023-02700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 10/31/2023]
Abstract
Cooperative behavior is a vital social interaction which plays a vital role in improving human survival and reproduction. However, few empirical studies have examined the differences between cooperative behaviors and the underlying neural substrates. In the present study, the brain activity of familiar dyads of the same sex was measured using functional near-infrared spectroscopy during three cooperative tasks (cooperative button-press, tangram, and Jenga tasks). We also measured the dyads' empathic abilities and personality traits to investigate the relationships between individual characteristics and neural markers. The results showed that first, there were significant differences in intra-brain activation and inter-brain synchronization among different cooperative tasks in three dimensions: social cognition, behavioral response, and cognitive processing. Second, male participants require stronger intra-brain activation to achieve the same inter-brain synchronization level as women in cooperative tasks. Third, when performing cooperative tasks involving high cognitive demands, Big Five Neuroticism may be an important predictor of neural activation in female participants. Inter-brain synchronization plays an important role in the frontal and temporoparietal junctions during interpersonal cooperation. Furthermore, this study demonstrates that mutual prediction theory is crucial for understanding the neural mechanisms of cooperative behavior.
Collapse
Affiliation(s)
- Qingming Liu
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Huimin Cui
- Department of Psychology, Shaoxing University, Shaoxing, China
| | - Bincan Huang
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Yingying Huang
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Huimeng Sun
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Xinyi Ru
- Department of Primary Education, Shaoxing University, Shaoxing, China
| | - Mingming Zhang
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai, China.
| | - Wei Chen
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China.
- Department of Psychology, Shaoxing University, Shaoxing, China.
- Interdisciplinary Center for Philosophy and Cognitive Sciences, Renmin University of China, Beijing, China.
| |
Collapse
|
6
|
Liu Z, Lu K, Hao N, Wang Y. Cognitive Reappraisal and Expressive Suppression Evoke Distinct Neural Connections during Interpersonal Emotion Regulation. J Neurosci 2023; 43:8456-8471. [PMID: 37852791 PMCID: PMC10711701 DOI: 10.1523/jneurosci.0954-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Interpersonal emotion regulation is the dynamic process where the regulator aims to change the target's emotional state, which is presumed to engage three neural systems: cognitive control (i.e., dorsal and ventral lateral PFC, etc.), empathy/social cognition (i.e., dorsal premotor regions, temporal-parietal junction, etc.), and affective response (i.e., insula, amygdala, etc.). This study aimed to identify the underlying neural correlate (especially the interpersonal one), of interpersonal emotion regulation based on two typical strategies (cognitive appraisal, expressive suppression). Thirty-four female dyads (friends) were randomly assigned into two strategy groups, with one assigned as the target and the other as the regulator to downregulate the target's negative emotions using two strategies. A functional near-infrared spectroscopy system was used to simultaneously measure participants' neural activity. Results showed that these two strategies could successfully downregulate the targets' negative emotions. Both strategies evoked intrapersonal and interpersonal neural couplings between the cognitive control, social cognition, and mirror neuron systems (e.g., PFC, temporal-parietal junction, premotor cortex, etc.), whereas cognitive reappraisal (vs expressive suppression) evoked a broader pattern. Further, cognitive reappraisal involved increased interpersonal brain synchronization between the prefrontal and temporal areas at the sharing stage, whereas expressive suppression evoked increased interpersonal brain synchronization associated with the PFC at the regulation stage. These findings indicate that intrapersonal and interpersonal neural couplings associated with regions within the abovementioned systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing, underlie interpersonal emotion regulation based on cognitive reappraisal or expressive suppression.SIGNIFICANCE STATEMENT As significant as intrapersonal emotion regulation, interpersonal emotion regulation subserves parent-child, couple, and leader-follower relationships. Despite enormous growth in research on intrapersonal emotion regulation, the field lacks insight into the neural correlates underpinning interpersonal emotion regulation. This study aimed to probe the underlying neural correlates of interpersonal emotion regulation using a multibrain neuroimaging (i.e., hyperscanning) based on functional near-infrared spectroscopy. Results showed that both cognitive reappraisal and expressive suppression strategies successfully downregulated the target's negative emotions. More importantly, they evoked intrapersonal and interpersonal neural couplings associated with regions within the cognitive control, social cognition, and mirror neuron systems, possibly involving mental processes, such as cognitive control, mentalizing, and observing. These findings deepen our understanding of the neural correlates underpinning interpersonal emotion regulation.
Collapse
Affiliation(s)
- Zixin Liu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Yanmei Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Shanghai, 200335, China
| |
Collapse
|
7
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Bi X, Cui H, Ma Y. Hyperscanning Studies on Interbrain Synchrony and Child Development: A Narrative Review. Neuroscience 2023; 530:38-45. [PMID: 37657749 DOI: 10.1016/j.neuroscience.2023.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Social interactions between parents and children are closely linked with children's development, and interbrain synchrony has been shown to be a neural marker of social interaction. However, to truly capture the essence of social interactions through interbrain synchrony, it is necessary to simultaneously discuss the parental and child brains and adequately record neurological signals during parent-child interactions in interactive tasks. In the current review, we have reviewed three main contents. First, we discuss the correlation between parent-child interbrain synchrony and the development of cognitive (e.g., emotion regulation, attention, and learning) and behavioral abilities (e.g., cooperation, problem-solving) in children. Second, we examine the different neural mechanisms of interbrain synchrony in mother-child and father-child interactions, aiming to highlight the separate roles of mother and father in child development. Last, we have integrated four methods to enhance interbrain synchrony, including communication patterns, nonverbal behavior, music, and multichannel stimulation. A significant correlation exists between parent-child interbrain synchrony and the development of children's cognitive and behavioral abilities. This summary may be useful for expanding researchers' and practitioners' understanding of the ways in which parenting and the parent-child relationship shape children' cognitive and behavioral abilities.
Collapse
Affiliation(s)
- Xiaoyan Bi
- School of Education, Guangzhou University, Guangzhou, China; Institution of Science, Chinese Academy of Science, Beijing, China
| | - Hongbo Cui
- School of Education, Guangzhou University, Guangzhou, China
| | - Yankun Ma
- School of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
9
|
Chuang C, Hsu H. Pseudo-mutual gazing enhances interbrain synchrony during remote joint attention tasking. Brain Behav 2023; 13:e3181. [PMID: 37496332 PMCID: PMC10570487 DOI: 10.1002/brb3.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Mutual gaze enables people to share attention and increase engagement during social interactions through intentional and implicit messages. Although previous studies have explored gaze behaviors and neural mechanisms underlying in-person eye contact, the growing prevalence of remote communication has raised questions about how to establish mutual gaze remotely and how the brains of interacting individuals synchronize. METHODS To address these questions, we conducted a study using eye trackers to create a pseudo-mutual gaze channel that mirrors the gazes of each interacting dyad on their respective remote screens. To demonstrate fluctuations in coupling across brains, we incorporated electroencephalographic hyperscanning techniques to simultaneously record the brain activity of interacting dyads engaged in a joint attention task in player-observer, collaborative, and competitive modes. RESULTS Our results indicated that mutual gaze could improve the efficiency of joint attention activities among remote partners. Moreover, by employing the phase locking value, we could estimate interbrain synchrony (IBS) and observe low-frequency couplings in the frontal and temporal regions that varied based on the interaction mode. While dyadic gender composition significantly affected gaze patterns, it did not impact the IBS. CONCLUSION These results provide insight into the neurological mechanisms underlying remote interaction through the pseudo-mutual gaze channel and have significant implications for developing effective online communication environments.
Collapse
Affiliation(s)
- Chun‐Hsiang Chuang
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Institute of Information Systems and ApplicationsCollege of Electrical Engineering and Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hao‐Che Hsu
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Department of Computer ScienceNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
10
|
Bornstein MH, Esposito G. Coregulation: A Multilevel Approach via Biology and Behavior. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1323. [PMID: 37628322 PMCID: PMC10453544 DOI: 10.3390/children10081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
In this article, we explore the concept of coregulation, which encompasses the mutual adaptation between partners in response to one another's biology and behavior. Coregulation operates at both biological (hormonal and nervous system) and behavioral (affective and cognitive) levels and plays a crucial role in the development of self-regulation. Coregulation extends beyond the actions of individuals in a dyad and involves interactive contributions of both partners. We use as an example parent-child coregulation, which is pervasive and expected, as it emerges from shared genetic relatedness, cohabitation, continuous interaction, and the influence of common factors like culture, which facilitate interpersonal coregulation. We also highlight the emerging field of neural attunement, which investigates the coordination of brain-based neural activities between individuals, particularly in social interactions. Understanding the mechanisms and significance of neural attunement adds a new dimension to our understanding of coregulation and its implications for parent-child relationships and child development.
Collapse
Affiliation(s)
- Marc H. Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Trento, Italy;
| |
Collapse
|
11
|
do Nascimento DC, Santos da Silva JR, Ara A, Sato JR, Costa L. Hyperscanning fNIRS data analysis using multiregression dynamic models: an illustration in a violin duo. Front Comput Neurosci 2023; 17:1132160. [PMID: 37576070 PMCID: PMC10413103 DOI: 10.3389/fncom.2023.1132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Interpersonal neural synchronization (INS) demands a greater understanding of a brain's influence on others. Therefore, brain synchronization is an even more complex system than intrasubject brain connectivity and must be investigated. There is a need to develop novel methods for statistical inference in this context. Methods In this study, motivated by the analysis of fNIRS hyperscanning data, which measure the activity of multiple brains simultaneously, we propose a two-step network estimation: Tabu search local method and global maximization in the selected subgroup [partial conditional directed acyclic graph (DAG) + multiregression dynamic model]. We illustrate this approach in a dataset of two individuals who are playing the violin together. Results This study contributes new tools to the social neuroscience field, which may provide new perspectives about intersubject interactions. Our proposed approach estimates the best probabilistic network representation, in addition to providing access to the time-varying parameters, which may be helpful in understanding the brain-to-brain association of these two players. Discussion The illustration of the violin duo highlights the time-evolving changes in the brain activation of an individual influencing the other one through a data-driven analysis. We confirmed that one player was leading the other given the ROI causal relation toward the other player.
Collapse
Affiliation(s)
| | - José Roberto Santos da Silva
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
- EcMetrics Pesquisa de Mercado, Salvador, Brazil
| | - Anderson Ara
- Departamento de Estatística, Universidade Federal do Parana, Curitiba, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Lilia Costa
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
12
|
Troncoso A, Soto V, Gomila A, Martínez-Pernía D. Moving beyond the lab: investigating empathy through the Empirical 5E approach. Front Psychol 2023; 14:1119469. [PMID: 37519389 PMCID: PMC10374225 DOI: 10.3389/fpsyg.2023.1119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
Empathy is a complex and multifaceted phenomenon that plays a crucial role in human social interactions. Recent developments in social neuroscience have provided valuable insights into the neural underpinnings and bodily mechanisms underlying empathy. This methodology often prioritizes precision, replicability, internal validity, and confound control. However, fully understanding the complexity of empathy seems unattainable by solely relying on artificial and controlled laboratory settings, while overlooking a comprehensive view of empathy through an ecological experimental approach. In this article, we propose articulating an integrative theoretical and methodological framework based on the 5E approach (the "E"s stand for embodied, embedded, enacted, emotional, and extended perspectives of empathy), highlighting the relevance of studying empathy as an active interaction between embodied agents, embedded in a shared real-world environment. In addition, we illustrate how a novel multimodal approach including mobile brain and body imaging (MoBi) combined with phenomenological methods, and the implementation of interactive paradigms in a natural context, are adequate procedures to study empathy from the 5E approach. In doing so, we present the Empirical 5E approach (E5E) as an integrative scientific framework to bridge brain/body and phenomenological attributes in an interbody interactive setting. Progressing toward an E5E approach can be crucial to understanding empathy in accordance with the complexity of how it is experienced in the real world.
Collapse
Affiliation(s)
- Alejandro Troncoso
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| | - Vicente Soto
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| | - Antoni Gomila
- Department of Psychology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - David Martínez-Pernía
- Center for Social and Cognitive Neuroscience, School of Psychology, Adolfo Ibáñez University, Santiago, Chile
| |
Collapse
|
13
|
Park J, Shin J, Lee J, Jeong J. Inter-Brain Synchrony Pattern Investigation on Triadic Board Game Play-Based Social Interaction: An fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2923-2932. [PMID: 37410649 DOI: 10.1109/tnsre.2023.3292844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Recent advances in functional neuroimaging techniques, including methodologies such as fNIRS, have enabled the evaluation of inter-brain synchrony (IBS) induced by interpersonal interactions. However, the social interactions assumed in existing dyadic hyperscanning studies do not sufficiently emulate polyadic social interactions in the real world. Therefore, we devised an experimental paradigm that incorporates the Korean folk board game "Yut-nori" to reproduce social interactions that emulate social activities in the real world. We recruited 72 participants aged 25.2 ± 3.9 years (mean ± standard deviation) and divided them into 24 triads to play Yut-nori, following the standard or modified rules. The participants either competed against an opponent (standard rule) or cooperated with an opponent (modified rule) to achieve a goal efficiently. Three different fNIRS devices were employed to record cortical hemodynamic activations in the prefrontal cortex both individually and simultaneously. Wavelet transform coherence (WTC) analyses were performed to assess prefrontal IBS within a frequency range of 0.05-0.2 Hz. Consequently, we observed that cooperative interactions increased prefrontal IBS across overall frequency bands of interest. In addition, we also found that different purposes for cooperation generated different spectral characteristics of IBS depending on the frequency bands. Moreover, IBS in the frontopolar cortex (FPC) reflected the influence of verbal interactions. The findings of our study suggest that future hyperscanning studies should consider polyadic social interactions to reveal the properties of IBS in real-world interactions.
Collapse
|
14
|
Balters S, Miller JG, Li R, Hawthorne G, Reiss AL. Virtual (Zoom) Interactions Alter Conversational Behavior and Interbrain Coherence. J Neurosci 2023; 43:2568-2578. [PMID: 36868852 PMCID: PMC10082458 DOI: 10.1523/jneurosci.1401-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 03/05/2023] Open
Abstract
A growing number of social interactions are taking place virtually on videoconferencing platforms. Here, we explore potential effects of virtual interactions on observed behavior, subjective experience, and neural "single-brain" and "interbrain" activity via functional near-infrared spectroscopy neuroimaging. We scanned a total of 36 human dyads (72 participants, 36 males, 36 females) who engaged in three naturalistic tasks (i.e., problem-solving, creative-innovation, socio-emotional task) in either an in-person or virtual (Zoom) condition. We also coded cooperative behavior from audio recordings. We observed reduced conversational turn-taking behavior during the virtual condition. Given that conversational turn-taking was associated with other metrics of positive social interaction (e.g., subjective cooperation and task performance), this measure may be an indicator of prosocial interaction. In addition, we observed altered patterns of averaged and dynamic interbrain coherence in virtual interactions. Interbrain coherence patterns that were characteristic of the virtual condition were associated with reduced conversational turn-taking. These insights can inform the design and engineering of the next generation of videoconferencing technology.SIGNIFICANCE STATEMENT Videoconferencing has become an integral part of our lives. Whether this technology impacts behavior and neurobiology is not well understood. We explored potential effects of virtual interaction on social behavior, brain activity, and interbrain coupling. We found that virtual interactions were characterized by patterns of interbrain coupling that were negatively implicated in cooperation. Our findings are consistent with the perspective that videoconferencing technology adversely affects individuals and dyads during social interaction. As virtual interactions become even more necessary, improving the design of videoconferencing technology will be crucial for supporting effective communication.
Collapse
Affiliation(s)
- Stephanie Balters
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Jonas G Miller
- Department of Psychology, Stanford University, Stanford, California 94305
| | - Rihui Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Grace Hawthorne
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
- Department of Pediatrics, Stanford University, Stanford, California 94305
- Department of Radiology, Stanford University, Stanford, California 94305
| |
Collapse
|
15
|
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci 2023; 13:brainsci13040600. [PMID: 37190565 DOI: 10.3390/brainsci13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderly people tend not to compete with others, and if they do, the mechanism behind the competition is not clear. In this study, groups of elderly couples and matched cross-sex controls were recruited to perform a competitive button-pressing task, while their brain signals were simultaneously collected using functional near-infrared spectroscopy (fNIRS) hyperscanning. Several fundamental observations were made. First, controls showed attenuated interpersonal competition across task processes, but couples held the competition with each other. Second, couples demonstrated increased inter-brain synchronization (IBS) between the middle temporal cortex and the temporoparietal junction across task processes. Third, Granger causality analysis in couples revealed significant differences between the directions (i.e., from men to women, and from women to men) in the first half of the competitive task, whereas there was no significant difference in the second half. Finally, the groups of couples and controls could be successfully discriminated against based on IBS by using a machine-learning approach. In sum, these findings indicate that elderly couples can maintain interpersonal competition, and such maintenance might be associated with changes in the IBS of the mentalizing system. It suggests the possible positive impact of long-term spouse relationships on interpersonal interactions, both behaviorally and neurally, in terms of competition.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Zhennan Liu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Haoyue Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200234, China
| | - Yinying Hu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Xiangping Gao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
16
|
Pan Y, Cheng X, Hu Y. Three heads are better than one: cooperative learning brains wire together when a consensus is reached. Cereb Cortex 2023; 33:1155-1169. [PMID: 35348653 DOI: 10.1093/cercor/bhac127] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/14/2022] Open
Abstract
Theories of human learning converge on the view that individuals working together learn better than do those working independently. Little is known, however, about the neural mechanisms of learning through cooperation. We addressed this research gap by leveraging functional near-infrared spectroscopy to record the brain activity of triad members in a group simultaneously. Triads were instructed to analyze an ancient Chinese poem either cooperatively or independently. Four main findings emerged. First, we observed significant within-group neural synchronization (GNS) in the left superior temporal cortex, supramarginal gyrus, and postcentral gyrus during cooperative learning compared with independent learning. Second, the enhancement of GNS in triads was amplified when a consensus was reached (vs. elaboration or argument) during cooperative learning. Third, GNS was predictive of learning outcome at an early stage (156-170 s after learning was initiated). Fourth, social factors such as social closeness (e.g. how much learners liked one other) were reflected in GNS and co-varied with learning engagement. These results provide neuroscientific support for Piaget's theory of cognitive development and favor the notion that successful learning through cooperation involves dynamic consensus-building, which is captured in neural patterns shared across learners in a group.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, 310063 Hangzhou, China.,Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, 518060 Shenzhen, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, 200031 Shanghai, China
| |
Collapse
|
17
|
Li Y, Luo X, Wang K, Li X. Persuader-receiver neural coupling underlies persuasive messaging and predicts persuasion outcome. Cereb Cortex 2023:7005168. [PMID: 36702485 DOI: 10.1093/cercor/bhad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/25/2022] [Accepted: 12/29/2023] [Indexed: 01/28/2023] Open
Abstract
Opportunities to persuade and be persuaded are ubiquitous. What interpersonal neural pathway in real-world settings determining successful information propagation in naturalistic two-person persuasion scenarios? Hereby, we extended prior research on a naturalistic dyadic persuasion paradigm (NDP) using dual-fNIRS protocol simultaneously measured the neural activity from persuader-receiver dyads while they engaged in a modified "Arctic Survival Task." Investigating whether neural coupling between persuaders and receivers underpinning of persuading and predict persuasion outcomes (i.e., receiver's compliance). Broadly, we indicated that the persuasive arguments increase neural coupling significantly compared to non-persuasive arguments in the left superior temporal gyrus-superior frontal gyrus and superior frontal gyrus-inferior frontal gyrus. G-causality indices further revealed the coupling directionality of information flows between the persuader and receiver. Critically, the neural coupling could be a better predictor of persuasion outcomes relative to traditional self-report measures. Eventually, temporal dynamics neural coupling incorporating video recording revealed neural coupling marked the micro-level processes in response to persuading messages and possibly reflecting the time that persuasion might occurs. The initial case of the arguments with targeted views is valuable as the first step in encouraging the receiver's compliance. Our investigation represented an innovative interpersonal approach toward comprehending the neuroscience and psychology underlying complex and true persuasion.
Collapse
Affiliation(s)
- Yangzhuo Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaoxiao Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Keying Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.,Shanghai Changning Mental Health Center, Shanghai 200062, China.,Institute of Wisdom in China, East China Normal University, Shanghai 200062, China
| |
Collapse
|
18
|
Wei Y, Liu J, Zhang T, Su W, Tang X, Tang Y, Xu L, Qian Z, Zhang T, Li X, Wang J. Reduced interpersonal neural synchronization in right inferior frontal gyrus during social interaction in participants with clinical high risk of psychosis: An fNIRS-based hyperscanning study. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110634. [PMID: 36099966 DOI: 10.1016/j.pnpbp.2022.110634] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Clinical high risk (CHR) of psychosis is characterized by cognitive impairment in social interaction. However, research investigating the neurobiological underpinnings of social interactions and interpersonal relationships in CHR participants is sparse. METHODS 21 CHR and 54 healthy controls (HCs) participated in the study. Dyads were formed between one CHR, one sex-matched HC, and two sex-matched HCs comprising 19 CHR-HC dyads and 19 HC-HC dyads. The concentration changes of oxyhemoglobin and deoxyhemoglobin were examined during a two-block button-press "cooperation" and "competition" task using functional near-infrared spectroscopy(fNIRS) hyperscanning technology. CHR diagnosis and psychopathological assessments were performed by Structured Interview for Prodromal Syndromes (SIPS) and Scale of Prodromal Symptoms (SOPS). Neural synchronizations were compared between CHR-HC dyads and HC-HC dyads. Correlation analyses were performed to identify the relationship between neural synchronization, clinical syndrome and cognition. RESULTS During the cooperation, but not the competition task, the CHR-HC dyads showed reduced inter-brain neural synchronization (INS) in the right inferior frontal gyrus (IFG) compared to the HC-HC dyads. INS also showed a positive correlation with the average cooperation rate. Moreover, the reduced INS in the CHR-HC group was significantly correlated with symptoms score of suspiciousness/persecutory ideas and movement disorders. CONCLUSIONS The decreased INS in right IFG during cooperation could account for CHR's cognitive impairment of social interaction. Our findings provide evidence that inter-brain neural synchronization potentially represents a biomarker of social interaction deficits of CHR.
Collapse
Affiliation(s)
- Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jieqiong Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tingyu Zhang
- Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China; Shanghai Changning Mental Health Center, Shanghai, 200335, China; Institute of Wisdom in China, East China Normal University, Shanghai, 200062, China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
19
|
Large losses from little lies: Strategic gender misrepresentation and cooperation. PLoS One 2023; 18:e0282335. [PMID: 36888615 PMCID: PMC9994690 DOI: 10.1371/journal.pone.0282335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
This paper investigates the possibility that a small deceptive act of misrepresenting one's gender to others reduces cooperation in the Golden Balls game, a variant of a prisoner's dilemma game. Compared to treatments where either participants' true genders are revealed to each other in a pair or no information on gender is given, the treatment effects of randomly selecting people to be allowed to misrepresent their gender on defection are positive, sizeable, and statistically significant. Allowing people to misrepresent their gender reduces the average cooperation rate by approximately 10-12 percentage points. While one explanation for the significant treatment effects is that participants who chose to misrepresent their gender in the treatment where they were allowed to do so defect substantially more, the potential of being matched with someone who could be misrepresenting their gender also caused people to defect more than usual as well. On average, individuals who chose to misrepresent their gender are around 32 percentage points more likely to defect than those in the blind and true gender treatments. Further analysis reveals that a large part of the effect is driven by women who misrepresented in same-sex pairs and men who misrepresented in mixed-sex pairs. We conclude that even small short-term opportunities to misrepresent one's gender can potentially be extremely harmful to later human cooperation.
Collapse
|
20
|
Mora AM, Baker JM, Hyland C, Rodríguez-Zamora MG, Rojas-Valverde D, Winkler MS, Staudacher P, Palzes VA, Gutiérrez-Vargas R, Lindh C, Reiss AL, Eskenazi B, Fuhrimann S, Sagiv SK. Pesticide exposure and cortical brain activation among farmworkers in Costa Rica. Neurotoxicology 2022; 93:200-210. [PMID: 36228750 PMCID: PMC10014323 DOI: 10.1016/j.neuro.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous epidemiological studies have reported associations of pesticide exposure with poor cognitive function and behavioral problems. However, these findings have relied primarily on neuropsychological assessments. Questions remain about the neurobiological effects of pesticide exposure, specifically where in the brain pesticides exert their effects and whether compensatory mechanisms in the brain may have masked pesticide-related associations in studies that relied purely on neuropsychological measures. METHODS We conducted a functional neuroimaging study in 48 farmworkers from Zarcero County, Costa Rica, in 2016. We measured concentrations of 13 insecticide, fungicide, or herbicide metabolites or parent compounds in urine samples collected during two study visits (approximately 3-5 weeks apart). We assessed cortical brain activation in the prefrontal cortex during tasks of working memory, attention, and cognitive flexibility using functional near-infrared spectroscopy (fNIRS). We estimated associations of pesticide exposure with cortical brain activation using multivariable linear regression models adjusted for age and education level. RESULTS We found that higher concentrations of insecticide metabolites were associated with reduced activation in the prefrontal cortex during a working memory task. For example, 3,5,6-trichloro-2-pyridinol (TCPy; a metabolite of the organophosphate chlorpyrifos) was associated with reduced activation in the left dorsolateral prefrontal cortex (β = -2.3; 95% CI: -3.9, -0.7 per two-fold increase in TCPy). Similarly, 3-phenoxybenzoic acid (3-PBA; a metabolite of pyrethroid insecticides) was associated with bilateral reduced activation in the dorsolateral prefrontal cortices (β = -3.1; 95% CI: -5.0, -1.2 and -2.3; 95% CI: -4.5, -0.2 per two-fold increase in 3-PBA for left and right cortices, respectively). These associations were similar, though weaker, for the attention and cognitive flexibility tasks. We observed null associations of fungicide and herbicide biomarker concentrations with cortical brain activation during the three tasks that were administered. CONCLUSION Our findings suggest that organophosphate and pyrethroid insecticides may impact cortical brain activation in the prefrontal cortex - neural dynamics that could potentially underlie previously reported associations with cognitive and behavioral function. Furthermore, our study demonstrates the feasibility and utility of fNIRS in epidemiological field studies.
Collapse
Affiliation(s)
- Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA.
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Carly Hyland
- School of Public Health and Population Science, Boise State University, 1910 W University Dr, Boise, ID 83725, USA
| | - María G Rodríguez-Zamora
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Calle 15, Avenida 14, 1 km Sur de la Basílica de los Ángeles, Cartago 30101, Provincia de Cartago, Costa Rica
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Mirko S Winkler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Philipp Staudacher
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Vanessa A Palzes
- Drug and Alcohol Research Team at the Kaiser Permanente Northern California's Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, Scheelevägen 2, 22363 Lund, Sweden
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA; Department of Radiology, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Angioletti L, Balconi M. Delta-Alpha EEG pattern reflects the interoceptive focus effect on interpersonal motor synchronization. FRONTIERS IN NEUROERGONOMICS 2022; 3:1012810. [PMID: 38235477 PMCID: PMC10790895 DOI: 10.3389/fnrgo.2022.1012810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 01/19/2024]
Abstract
Little is known about how the modulation of the interoceptive focus impacts the neural correlates of high-level social processes, such as synchronization mechanisms. Therefore, the current study aims to explore the intraindividual electrophysiological (EEG) patterns induced by the interoceptive focus on breath when performing cognitive and motor tasks requiring interpersonal synchronization. A sample of 28 healthy caucasian adults was recruited and asked to perform two tasks requiring interpersonal synchronization during two distinct conditions: while focusing on the breath or without the focus on the breath. EEG frequency bands (delta, theta, alpha, and beta band) were recorded from the frontal, temporo-central, and parieto-occipital regions of interest. Significant results were observed for the delta and alpha bands. Notably, higher mean delta values and alpha desynchronization were observed in the temporo-central area during the focus on the breath condition when performing the motor compared to the cognitive synchronization task. Taken together these results could be interpreted considering the functional meaning of delta and alpha band in relation to motor synchronization. Indeed, motor delta oscillations shape the dynamics of motor behaviors and motor neural processes, while alpha band attenuation was previously observed during generation, observation, and imagery of movement and is considered to reflect cortical motor activity and action-perception coupling. Overall, the research shows that an EEG delta-alpha pattern emerges in the temporo-central areas at the intra-individual level, indicating the attention to visceral signals, particularly during interpersonal motor synchrony.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
22
|
Angioletti L, Balconi M. EEG brain oscillations are modulated by interoception in response to a synchronized motor vs. cognitive task. Front Neuroanat 2022; 16:991522. [PMID: 36213612 PMCID: PMC9540215 DOI: 10.3389/fnana.2022.991522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
So far, little is known about how conscious attention to internal body signals, that is, interoception, affects the synchronization with another person, a necessary or required social process that promotes affiliations and cooperation during daily joint social interactions. The effect of explicit interoceptive attentiveness (IA) modulation, conceived as the focus on the breath for a given time interval, on electrophysiological (EEG) correlates during an interpersonal motor task compared with a cognitive synchronization task was investigated in this study. A total of 28 healthy participants performed a motor and a cognitive synchronization task during the focus and no-focus breath conditions. During the tasks, frequency bands (delta, theta, alpha, and beta bands) from the frontal, temporo-central, and parieto-occipital regions of interest (ROIs) were acquired. According to the results, significantly higher delta and theta power were found in the focus condition in the frontal ROI during the execution of the motor than the cognitive synchronization task. Moreover, in the same experimental condition, delta and beta band power increased in the temporo-central ROI. The current study suggested two main patterns of frequency band modulation during the execution of a motor compared with the cognitive synchronization task while a person is focusing the attention on one's breath. This study can be considered as the first attempt to classify the different effects of interoceptive manipulation on motor and cognitive synchronization tasks using neurophysiological measures.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
23
|
Interpersonal neural synchrony when predicting others' actions during a game of rock-paper-scissors. Sci Rep 2022; 12:12967. [PMID: 35902663 PMCID: PMC9334613 DOI: 10.1038/s41598-022-16956-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
As members of a social species, we spend most of our time interacting with others. In interactions, we tend to mutually align our behavior and brain responses to communicate more effectively. In a semi-computerized version of the Rock-Paper-Scissors game, we investigated whether people show enhanced interpersonal neural synchronization when making explicit predictions about others' actions. Across four experimental conditions, we measured the dynamic brain activity using the functional near-infrared spectroscopy (fNIRS) hyperscanning method. Results showed that interpersonal neural synchrony was enhanced when participants played the game together as they would do in real life in comparison to when they played the game on their own. We found no evidence of increased neural synchrony when participants made explicit predictions about others' actions. Hence, neural synchrony may depend on mutual natural interaction rather than an explicit prediction strategy. This study is important, as it examines one of the presumed functions of neural synchronization namely facilitating predictions.
Collapse
|
24
|
The presence of adjacent others facilitates interpersonal neural synchronization in the left prefrontal cortex during a simple addition task. Sci Rep 2022; 12:12662. [PMID: 35879339 PMCID: PMC9314338 DOI: 10.1038/s41598-022-16936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
The hyperscanning technique, that is, simultaneous measurement of neural signals in more than one person, is a powerful research tool for understanding humans' social interactions. In recent years, many studies have investigated interpersonal neural synchronization during various types of communication processes. However, there has been little focus on the impact of the presence of others without explicit social interaction, despite the mere presence of others having been suggested as influencing behavior. In this study, we clarify whether neural signals during a self-paced, repeated, addition task are synchronized when another individual is adjacent without direct interaction. Twenty pairs of participants were measured using a hyperscanning approach with near-infrared spectroscopy. The results show that interpersonal neural synchronization of the task-related signal in the left forehead region was enhanced under the condition of being adjacent to another participant. By contrast, a significant decrease in neural synchronization in the center of the forehead region, where increased neural synchronization is often reported in explicit communication, was observed. Thus, the results indicate that the adjacency of others modulates interpersonal neural synchronization in the task-related signal, and the effect on cognitive processing is different from that of explicit social interaction.
Collapse
|
25
|
“We Will Let You Know”: An Assessment of Digital vs. Face-to-Face Job Interviews via EEG Connectivity Analysis. INFORMATION 2022. [DOI: 10.3390/info13070312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We focused on job interviews as critical examples of complex social interaction in organizational contexts. We aimed at investigating the effect of face-to-face vs. computer-mediated interaction, of role (candidate, recruiter), and of the interview phase (introductory, attitudinal, technical, conclusive) on intra-brain and inter-brain connectivity measures and autonomic synchronization. Twenty expert recruiters and potential candidates took part in a hyperscanning investigation. Namely, electroencephalography (delta, theta, alpha, beta bands) and autonomic (skin-conductance, heart-rate) data were collected in candidate-recruiter dyads during a simulated job interview and then concurrently analyzed. Analyses highlighted a link between face-to-face condition and greater intra-/inter-brain connectivity indices in delta and theta bands. Furthermore, intra-brain and inter-brain connectivity measures were higher for delta and theta bands in the final interview phases compared to the first ones. Consistently, autonomic synchronization was higher during the final interview phases, specifically in the face-to-face condition. Finally, recruiters showed higher intra-brain connectivity in the delta range over frontal and temporoparietal areas, while candidates showed higher intra-brain connectivity in the theta range over frontal areas. Findings highlight the value of hyperscanning investigations in exploring social attunement in professional contexts and hint at their potential to foster neuroscience-informed practices in human resource management processes.
Collapse
|
26
|
Wang X, Zhang Y, He Y, Lu K, Hao N. Dynamic Inter-Brain Networks Correspond With Specific Communication Behaviors: Using Functional Near-Infrared Spectroscopy Hyperscanning During Creative and Non-creative Communication. Front Hum Neurosci 2022; 16:907332. [PMID: 35721354 PMCID: PMC9201441 DOI: 10.3389/fnhum.2022.907332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Social interaction is a dynamic and variable process. However, most hyperscanning studies implicitly assume that inter-brain synchrony (IBS) is constant and rarely investigate the temporal variability of the multi-brain networks. In this study, we used sliding windows and k-mean clustering to obtain a set of representative inter-brain network states during different group communication tasks. By calculating the network parameters and temporal occurrence of the inter-brain states, we found that dense efficient interbrain states and sparse inefficient interbrain states appeared alternately and periodically, and the occurrence of efficient interbrain states was positively correlated with collaborative behaviors and group performance. Moreover, compared to common communication, the occurrence of efficient interbrain states and state transitions were significantly higher during creative communication, indicating a more active and intertwined neural network. These findings may indicate that there is a close correspondence between inter-brain network states and social behaviors, contributing to the flourishing literature on group communication.
Collapse
|
27
|
Angioletti L, Balconi M. The Increasing Effect of Interoception on Brain Frontal Responsiveness During a Socially Framed Motor Synchronization Task. Front Hum Neurosci 2022; 16:834619. [PMID: 35669205 PMCID: PMC9163315 DOI: 10.3389/fnhum.2022.834619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
This research explored the effect of explicit Interoceptive Attentiveness (IA) manipulation on hemodynamic brain correlates during a task involving interpersonal motor coordination framed with a social goal. Participants performed a task requiring interpersonal movement synchrony with and without a social framing in both explicit IA and control conditions. Functional Near-Infrared Spectroscopy (fNIRS) was used to record oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) changes during the tasks. According to the results, the prefrontal cortex (PFC), which is involved in high-order social cognition and interpersonal relations processing, was more responsive when inducing the explicit focus (IA) on the breath during the socially framed motor task requiring synchronization, as indicated by increased O2Hb. In the absence of a broader social frame, this effect was not significant for the motor task. Overall, the present study suggests that when a joint task is performed and the individual focuses on his/her physiological body reactions, the brain hemodynamic correlates are “boosted” in neuroanatomical regions that support sustained attention, reorientation of attention, social responsiveness, and synchronization. Furthermore, the PFC responds significantly more as the person consciously focuses on physiological interoceptive correlates and performs a motor task requiring synchronization, particularly when the task is socially framed.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- *Correspondence: Laura Angioletti,
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
28
|
Zhou S, Zhang Y, Fu Y, Wu L, Li X, Zhu N, Li D, Zhang M. The Effect of Task Performance and Partnership on Interpersonal Brain Synchrony during Cooperation. Brain Sci 2022; 12:brainsci12050635. [PMID: 35625021 PMCID: PMC9139361 DOI: 10.3390/brainsci12050635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Interpersonal brain synchrony (IBS) during cooperation has not been systematically investigated. To address this research gap, this study assessed neural synchrony during a cooperative jigsaw puzzle solving task using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. IBS was measured for successful and failed tasks in 31 dyads in which the partners were familiar or unknown to each other. No significant difference in IBS was observed between the different types of cooperative partnership; however, stronger IBS within regions of the pars triangularis Broca’s area, right frontopolar cortex, and right temporoparietal junction was observed during task success. These results highlight the effect of better task performance on cooperative IBS for the first time and further extend understanding of the neural basis of cooperation.
Collapse
Affiliation(s)
- Shujin Zhou
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yuxuan Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Yiwen Fu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Lingling Wu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Xiaodie Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Ningning Zhu
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Dan Li
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
| | - Mingming Zhang
- Department of Psychology, Shanghai Normal University, Shanghai 100 Guilin Road, Xuhui District, Shanghai 200234, China; (S.Z.); (Y.Z.); (Y.F.); (L.W.); (X.L.); (N.Z.); (D.L.)
- College of Marxism, Kashgar Vocational and Technical College, Kashgar, Xinjiang 844000, China
- Correspondence: ; Tel.: +86-137-7669-9751
| |
Collapse
|
29
|
Interoceptive Attentiveness Induces Significantly More PFC Activation during a Synchronized Linguistic Task Compared to a Motor Task as Revealed by Functional Near-Infrared Spectroscopy. Brain Sci 2022; 12:brainsci12030301. [PMID: 35326258 PMCID: PMC8946073 DOI: 10.3390/brainsci12030301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is little understanding of how interoceptive attentiveness (IA) affects brain responses during synchronized cognitive or motor tasks. This pilot study explored the effect of explicit IA manipulation on hemodynamic correlates of simple cognitive tasks implying linguistic or motor synchronization. Eighteen healthy participants completed two linguistic and motor synchronization tasks during explicit IA and control conditions while oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin variations were recorded by functional Near-Infrared Spectroscopy (fNIRS). The findings suggested that the brain regions associated with sustained attention, such as the right prefrontal cortex (PFC), were more involved when an explicit focus on the breath was induced during the cognitive linguistic task requiring synchronization with a partner, as indicated by increased O2Hb. Interestingly, this effect was not significant for the motor task. In conclusion, for the first time, this pilot research found increased activity in neuroanatomical regions that promote sustained attention, attention reorientation, and synchronization when a joint task is carried out and the person is focusing on their physiological body reactions. Moreover, the results suggested that the benefits of conscious concentration on physiological interoceptive correlates while executing a task demanding synchronization, particularly verbal alignment, may be related to the right PFC.
Collapse
|
30
|
Reindl V, Wass S, Leong V, Scharke W, Wistuba S, Wirth CL, Konrad K, Gerloff C. Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads. Neuroimage 2022; 251:118982. [PMID: 35149229 DOI: 10.1016/j.neuroimage.2022.118982] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems - specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships.
Collapse
Affiliation(s)
- Vanessa Reindl
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore.
| | - Sam Wass
- Division of Psychology, University of East London, London E16 2RD, United Kingdom
| | - Victoria Leong
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore S639818, Republic of Singapore; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Wolfgang Scharke
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; Chair of Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany
| | - Sandra Wistuba
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Christina Lisa Wirth
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany
| | - Christian Gerloff
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Germany
| |
Collapse
|
31
|
Park J, Shin J, Jeong J. Inter-Brain Synchrony Levels According to Task Execution Modes and Difficulty Levels: an fNIRS/GSR Study. IEEE Trans Neural Syst Rehabil Eng 2022; 30:194-204. [PMID: 35041606 DOI: 10.1109/tnsre.2022.3144168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyperscanning is a brain imaging technique that measures brain synchrony caused by social interactions. Recent research on hyperscanning has revealed substantial inter-brain synchrony (IBS), but little is known about the link between IBS and mental workload. To study this link, we conducted an experiment consisting of button-pressing tasks of three different difficulty levels for the cooperation and competition modes with 56 participants aged 23.7±3.8 years (mean±standard deviation). We attempted to observe IBS using functional near-infrared spectroscopy (fNIRS) and galvanic skin response (GSR) to assess the activities of the human autonomic nervous system. We found that the IBS levels increased in a frequency band of 0.075-0.15 Hz, which was unrelated to the task repetition frequency in the cooperation mode according to the task difficulty level. Significant relative inter-brain synchrony (RIBS) increases were observed in three and 10 channels out of 15 for the hard tasks compared to the normal and easy tasks, respectively. We observed that the average GSR values increased with increasing task difficulty levels for the competition mode only. Thus, our results suggest that the IBS revealed by fNIRS and GSR is not related to the hemodynamic changes induced by mental workload, simple behavioral synchrony such as button-pressing timing, or autonomic nervous system activity. IBS is thus explicitly caused by social interactions such as cooperation.
Collapse
|
32
|
Orcioli-Silva D, Islam A, Baker MR, Gobbi LTB, Rochester L, Pantall A. Bi-Anodal Transcranial Direct Current Stimulation Combined With Treadmill Walking Decreases Motor Cortical Activity in Young and Older Adults. Front Aging Neurosci 2021; 13:739998. [PMID: 34924993 PMCID: PMC8681021 DOI: 10.3389/fnagi.2021.739998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Walking in the "real world" involves motor and cognitive processes. In relation to this, declines in both motor function and cognition contribute to age-related gait dysfunction. Transcranial direct current stimulation (tDCS) and treadmill walking (STW) have potential to improve gait, particularly during dual-task walking (DTW); walking whilst performing a cognitive task. Our aims were to analyze effects of combined anodal tDCS + STW intervention on cortical activity and gait during DTW. Methods: Twenty-three young adults (YA) and 21 older adults (OA) were randomly allocated to active or sham tDCS stimulation groups. Participants performed 5-min of mixed treadmill walking (alternating 30 s bouts of STW and DTW) before and after a 20-min intervention of active or sham tDCS + STW. Anodal electrodes were placed over the left prefrontal cortex (PFC) and the vertex (Cz) using 9 cm2 electrodes at 0.6 mA. Cortical activity of the PFC, primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA) bilaterally were recorded using a functional near-infrared spectroscopy (fNIRS) system. Oxygenated hemoglobin (HbO2) levels were analyzed as indicators of cortical activity. An accelerometer measured gait parameters. We calculated the difference between DTW and STW for HbO2 and gait parameters. We applied linear mixed effects models which included age group (YA vs. OA), stimulation condition (sham vs. active), and time (pre- vs. post-intervention) as fixed effects. Treadmill belt speed was a covariate. Partial correlation tests were also performed. Results: A main effect of age group was observed. OA displayed higher activity bilaterally in the PFC and M1, unilaterally in the right PMC and higher gait variability than YA. M1 activity decreased in both YA and OA following active tDCS + STW. There was no overall effect of tDCS + STW on PFC activity or gait parameters. However, negative correlations were observed between changes in left PFC and stride length variability following active tDCS + STW intervention. Conclusion: Increased activity in multiple cortical areas during DTW in OA may act as a compensatory mechanism. Reduction in M1 activity following active tDCS + STW with no observed gait changes suggests improved neural efficiency.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Aisha Islam
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark R Baker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lilian Teresa Bucken Gobbi
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil.,Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annette Pantall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
Akimoto M, Tanaka T, Ito J, Kubota Y, Seiyama A. Inter-Brain Synchronization During Sandplay Therapy: Individual Analyses. Front Psychol 2021; 12:723211. [PMID: 34887797 PMCID: PMC8650609 DOI: 10.3389/fpsyg.2021.723211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Interactions between the client (Cl) and therapist (Th) evolve therapeutic relationships in psychotherapy. An interpersonal link or therapeutic space is implicitly developed, wherein certain important elements are expressed and shared. However, neural basis of psychotherapy, especially of non-verbal modalities, have scarcely been explored. Therefore, we examined the neural backgrounds of such therapeutic alliances during sandplay, a powerful art/play therapy technique. Real-time and simultaneous measurement of hemodynamics was conducted in the prefrontal cortex (PFC) of Cl-Th pairs participating in sandplay and subsequent interview sessions through multichannel near-infrared spectroscopy. As sandplay is highly individualized, and no two sessions and products (sandtrays) are the same, we expected variation in interactive patterns in the Cl–Th pairs. Nevertheless, we observed a statistically significant correlation between the spatio-temporal patterns in signals produced by the homologous regions of the brains. During the sandplay condition, significant correlations were obtained in the lateral PFC and frontopolar (FP) regions in the real Cl-Th pairs. Furthermore, a significant correlation was observed in the FP region for the interview condition. The correlations found in our study were explained as a “remote” synchronization (i.e., unconnected peripheral oscillators synchronizing through a hub maintaining free desynchronized dynamics) between two subjects in a pair, possibly representing the neural foundation of empathy, which arises commonly in sandplay therapy (ST).
Collapse
Affiliation(s)
- Michiko Akimoto
- Faculty of Human Sciences, Toyo Eiwa University, Yokohama, Japan
| | - Takuma Tanaka
- Faculty of Data Science, Shiga University, Hikone, Japan
| | - Junko Ito
- Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Japan
| | - Akitoshi Seiyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Mayseless N, Reiss AL. The neurodevelopmental basis of humor appreciation: A fNIRS study of young children. PLoS One 2021; 16:e0259422. [PMID: 34879055 PMCID: PMC8654164 DOI: 10.1371/journal.pone.0259422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Humor is crucial for social development. Despite this, very few studies have examined the neurodevelopment of humor in very young children, and none to date have used functional near-infrared spectroscopy (fNIRS) to study this important cognitive construct. The main aim of the current study was to characterize the neural basis of humor processing in young children between the ages of 6–8 years. Thirty-five healthy children (6–8 years old) watched funny and neutral video clips while undergoing fNIRS imaging. We observed activation increases in left temporo-occipito-parietal junction (TOPJ), inferior-parietal lobe (IPL), dorsolateral-prefrontal cortex (DLPFC) and right inferior frontal gyrus (IFG) and superior parietal lobe (SPL) regions. Activation in left TOPJ was positively correlated with age. In addition, we found that coherence increased in humor viewing compared to neutral content, mainly between remote regions. This effect was different for boys and girls, as boys showed a more pronounced increase in coherence for funny compared to neutral videos, more so in frontoparietal networks. These results expand our understanding of the neurodevelopment of humor by highlighting the effect of age on the neural basis of humor appreciation as well as emphasizing different developmental trajectories of boys and girls.
Collapse
Affiliation(s)
- Naama Mayseless
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Departments of Radiology and Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
35
|
Integration of social status and trust through interpersonal brain synchronization. Neuroimage 2021; 246:118777. [PMID: 34864151 DOI: 10.1016/j.neuroimage.2021.118777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Trust can be a dynamic social process, during which the social identity of the interacting agents (e.g., an investor and a trustee) can bias trust outcomes. Here, we investigated how social status modulates trust and the neural mechanisms underlying this process. An investor and a trustee performed a 10-round repeated trust game while their brain activity was being simultaneously recorded using functional near-infrared spectroscopy. The social status (either high or low) of both investors and trustees was manipulated via a math competition task. The behavioral results showed that in the initial round, individuals invested more in low-status partners. However, the investment ratio increased faster as the number of rounds increased during trust interaction when individuals were paired with a high-status partner. This increasing trend was particularly prominent in the low (investor)-high (trustee) status group. Moreover, the low-high group showed increased investor-trustee brain synchronization in the right temporoparietal junction as the number of rounds increased, while brain activation in the right dorsolateral prefrontal cortex of the investor decreased as the number of rounds increased. Both interpersonal brain synchronization and brain activation predicted investment performance at the early stage; furthermore, two-brain data provided earlier predictions than did single-brain data. These effects were detectable in the investment phase in the low-high group only; no comparable effects were observed in the repayment phase or other groups. Overall, this study demonstrated a multi-brain mechanism for the integration of social status and trust.
Collapse
|
36
|
Yan W, Ji W, Su C, Yu Y, Yu X, Chen L. Anger Experience and Anger Expression Through Drawing in Schizophrenia: An fNIRS Study. Front Psychol 2021; 12:721148. [PMID: 34539522 PMCID: PMC8441178 DOI: 10.3389/fpsyg.2021.721148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in emotion experience and emotion expression between patients with schizophrenia and the healthy population have long been the focus of research and clinical attention. However, few empirical studies have addressed this topic using art-making as a tool of emotion expression. This study explores the differences in brain mechanism during the process of expressing anger between patients with schizophrenia and healthy participants using pictographic psychological techniques. We used functional near-infrared spectroscopy to fully detect changes in frontal cortex activity among participants in two groups-schizophrenia and healthy-during the process of experiencing and expressing anger. The results showed that there were no differences in the experience of anger between the two groups. In the process of anger expression, the dorsolateral prefrontal cortex, frontal pole, and other regions showed significant negative activation among patients with schizophrenia, which was significantly different from that of the healthy group. There were significant differences between patients with schizophrenia and the healthy group in the drawing features, drawing contents, and the ability to describe the contents of their drawings. Moreover, the effect size of the latter was greater than those of the former two. In terms of emotion expression, the drawing data and brain activation data were significantly correlated in each group; however, the correlation patterns differed between groups.
Collapse
Affiliation(s)
- Wenhua Yan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Affiliate Mental Health Center, East China Normal University, Shanghai, China
| | - Weidong Ji
- Affiliate Mental Health Center, East China Normal University, Shanghai, China.,Shanghai Changning Mental Health Center, Shanghai, China
| | - Chen Su
- The School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yunhan Yu
- The School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiaoman Yu
- The School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Liangliang Chen
- Affiliate Mental Health Center, East China Normal University, Shanghai, China.,Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
37
|
Lu K, Qiao X, Yun Q, Hao N. Educational diversity and group creativity: Evidence from fNIRS hyperscanning. Neuroimage 2021; 243:118564. [PMID: 34506915 DOI: 10.1016/j.neuroimage.2021.118564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022] Open
Abstract
Educational diversity is defined as the diversity of educational backgrounds measured by multiple subjects. This study aimed to unveil the interpersonal neural correlates that underlie the effect of group educational diversity on group creativity. One hundred and sixteen college students were assigned to high educational diversity (HD; the members respectively majored in science or social science) or low educational diversity (LD; the members both majored in either science or social science) groups based on their academic majors. They were required to solve two problems that either demanded creativity (alternative uses task, AUT) or not (object characteristics task). We used functional near-infrared spectroscopy (fNIRS)-based hyperscanning to simultaneously record the neural responses of pairs of interacting participants in each group. The LD group showed more AUT fluency and perspective-taking behaviours than the HD group, whereas no group difference was observed for AUT uniqueness. Additionally, collective flexibility was higher in the HD group than in the LD group. The fNIRS results showed that the interpersonal brain synchronisation (IBS) increments at the right angular gyrus and right primary somatosensory cortex were greater in the LD group than in the HD group. These findings indicate that although high educational diversity benefits cognitive flexibility, it does not necessarily lead to a better idea quality or greater idea quantity. The greater IBS increments and perspective-taking behaviours that we observed in the LD group may account for this.
Collapse
Affiliation(s)
- Kelong Lu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qiang Yun
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| |
Collapse
|
38
|
Carollo A, Lim M, Aryadoust V, Esposito G. Interpersonal Synchrony in the Context of Caregiver-Child Interactions: A Document Co-citation Analysis. Front Psychol 2021; 12:701824. [PMID: 34393940 PMCID: PMC8355520 DOI: 10.3389/fpsyg.2021.701824] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Social interactions accompany individuals throughout their whole lives. When examining the underlying mechanisms of social processes, dynamics of synchrony, coordination or attunement emerge between individuals at multiple levels. To identify the impactful publications that studied such mechanisms and establishing the trends that dynamically originated the available literature, the current study adopted a scientometric approach. A sample of 543 documents dated from 1971 to 2021 was derived from Scopus. Subsequently, a document co-citation analysis was conducted on 29,183 cited references to examine the patterns of co-citation among the documents. The resulting network consisted of 1,759 documents connected to each other by 5,011 links. Within the network, five major clusters were identified. The analysis of the content of the three major clusters-namely, "Behavioral synchrony," "Towards bio-behavioral synchrony," and "Neural attunement"-suggests an interest in studying attunement in social interactions at multiple levels of analysis, from behavioral to neural, by passing through the level of physiological coordination. Furthermore, although initial studies on synchrony focused mostly on parent-child interactions, new hyperscanning paradigms are allowing researchers to explore the role of biobehavioral synchrony in all social processes in a real-time and ecological fashion. Future potential pathways of research were also discussed.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vahid Aryadoust
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
39
|
Zhou X, Pan Y, Zhang R, Bei L, Li X. Mortality threat mitigates interpersonal competition: an EEG-based hyperscanning study. Soc Cogn Affect Neurosci 2021; 16:621-631. [PMID: 33755182 PMCID: PMC8138089 DOI: 10.1093/scan/nsab033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/21/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Awareness of death has been shown to influence human cognition and behavior. Yet, how mortality threat (MT) impacts our daily social behavior remains elusive. To address this issue, we developed a dyadic experimental model and recruited 86 adults (43 dyads) to complete two computer-based tasks (i.e. competitive and cooperative button-pressing). We manipulated dyads’ awareness of death [MT vs neutral control (NC)] and simultaneously measured their neurophysiological activity using electroencephalography during the task. Several fundamental observations were made. First, the MT group showed significantly attenuated competition and slightly promoted cooperation. Second, compared to NC, MT significantly decreased gamma-band inter-brain synchronization (IBS) in the competitive context, which was associated with increased subjective fear of death within dyads. Notably, those effects were context-specific: we did not observe comparable results in the cooperative context. Finally, a machine-learning approach was successfully used to discriminate between the MT and NC groups based on accumulated IBS. Together, these findings indicate that MT to some extent mitigates interpersonal competition, and such mitigation might be associated with changes in gamma-band IBS.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yafeng Pan
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Ruqian Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Litian Bei
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
40
|
Sciaraffa N, Liu J, Aricò P, Flumeri GD, Inguscio BMS, Borghini G, Babiloni F. Multivariate model for cooperation: bridging social physiological compliance and hyperscanning. Soc Cogn Affect Neurosci 2021; 16:193-209. [PMID: 32860692 PMCID: PMC7812636 DOI: 10.1093/scan/nsaa119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
The neurophysiological analysis of cooperation has evolved over the past 20 years, moving towards the research of common patterns in neurophysiological signals of people interacting. Social physiological compliance (SPC) and hyperscanning represent two frameworks for the joint analysis of autonomic and brain signals, respectively. Each of the two approaches allows to know about a single layer of cooperation according to the nature of these signals: SPC provides information mainly related to emotions, and hyperscanning that related to cognitive aspects. In this work, after the analysis of the state of the art of SPC and hyperscanning, we explored the possibility to unify the two approaches creating a complete neurophysiological model for cooperation considering both affective and cognitive mechanisms We synchronously recorded electrodermal activity, cardiac and brain signals of 14 cooperative dyads. Time series from these signals were extracted, and multivariate Granger causality was computed. The results showed that only when subjects in a dyad cooperate there is a statistically significant causality between the multivariate variables representing each subject. Moreover, the entity of this statistical relationship correlates with the dyad’s performance. Finally, given the novelty of this approach and its exploratory nature, we provided its strengths and limitations.
Collapse
Affiliation(s)
- Nicolina Sciaraffa
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy
| | - Jieqiong Liu
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, China
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy
| | - Gianluca Di Flumeri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy
| | - Bianca M S Inguscio
- BrainSigns srl, Rome, Italy.,Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Gianluca Borghini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou Zhejiang Province, People's Republic of China
| |
Collapse
|
41
|
Misaki M, Kerr KL, Ratliff EL, Cosgrove KT, Simmons WK, Morris AS, Bodurka J. Beyond synchrony: the capacity of fMRI hyperscanning for the study of human social interaction. Soc Cogn Affect Neurosci 2021; 16:84-92. [PMID: 33104783 PMCID: PMC7812622 DOI: 10.1093/scan/nsaa143] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hyperscanning-simultaneous brain scanning of two or more individuals-holds great promise in elucidating the neurobiological underpinnings of social cognitive functions. This article focuses on functional magnetic resonance imaging (fMRI) hyperscanning and identifies promising targets for studying the neuroscience of social interaction with fMRI hyperscanning. Specifically, we present applications of fMRI hyperscanning in the study of social interaction along with promising analysis approaches for fMRI hyperscanning, with its high spatial and low temporal resolution. We first review fMRI hyperscanning studies in social neuroscience and evaluate the premise of using this costly neuroimaging paradigm. Many second-person social neuroscience studies are possible without fMRI hyperscanning. However, certain fundamental aspects of social cognition in real-life social interactions, including different roles of interactors, shared intention emerging through interaction and history of interaction, can be addressed only with hyperscanning. We argue that these fundamental aspects have not often been investigated in fMRI hyperscanning studies. We then discuss the implication of the signal coupling found in fMRI hyperscanning and consider analysis approaches that make fair use of it. With fMRI hyperscanning, we can explore not only synchronous brain activations but whole-brain asymmetric activation patterns with a lagged association between interacting individuals.
Collapse
Affiliation(s)
- Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Kara L Kerr
- Department of Psychology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Erin L Ratliff
- Department of Human Development and Family Science, Oklahoma State University, Tulsa, OK 74106, USA
| | - Kelly T Cosgrove
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA.,Department of Psychology, The University of Tulsa, Tulsa, OK 74104, USA
| | - W Kyle Simmons
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Amanda Sheffield Morris
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA.,Department of Human Development and Family Science, Oklahoma State University, Tulsa, OK 74106, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA.,Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
42
|
Nguyen T, Schleihauf H, Kayhan E, Matthes D, Vrtička P, Hoehl S. Neural synchrony in mother-child conversation: Exploring the role of conversation patterns. Soc Cogn Affect Neurosci 2021; 16:93-102. [PMID: 32591781 PMCID: PMC7812624 DOI: 10.1093/scan/nsaa079] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Conversations are an essential form of communication in daily family life. Specific patterns of caregiver–child conversations have been linked to children’s socio-cognitive development and child-relationship quality beyond the immediate family environment. Recently, interpersonal neural synchronization has been proposed as a neural mechanism supporting conversation. Here, we present a functional near-infrared spectroscopy (fNIRS) hyperscanning study looking at the temporal dynamics of neural synchrony during mother–child conversation. Preschoolers (20 boys and 20 girls, M age 5;07 years) and their mothers (M age 36.37 years) were tested simultaneously with fNIRS hyperscanning while engaging in a free verbal conversation lasting for 4 min. Neural synchrony (using wavelet transform coherence analysis) was assessed over time. Furthermore, each conversational turn was coded for conversation patterns comprising turn-taking, relevance, contingency and intrusiveness. Results from linear mixed-effects modeling revealed that turn-taking, but not relevance, contingency or intrusiveness predicted neural synchronization during the conversation over time. Results are discussed to point out possible variables affecting parent–child conversation quality and the potential functional role of interpersonal neural synchronization for parent–child conversation.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria
| | - Hanna Schleihauf
- Cognitive Ethology Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen 37077, Germany.,Department for Primate Cognition, Georg-August-University Göttingen, Göttingen 37073, Germany.,Department of Psychology, Social Origins Lab, University of California, Berkeley, CA 94720-1650, USA
| | - Ezgi Kayhan
- Department of Developmental Psychology, University of Potsdam, Potsdam 14476, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Daniel Matthes
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Pascal Vrtička
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Stefanie Hoehl
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
43
|
Yan W, Zhang M, Liu Y. Regulatory effect of drawing on negative emotion: A functional near-infrared spectroscopy study. ARTS IN PSYCHOTHERAPY 2021. [DOI: 10.1016/j.aip.2021.101780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Li R, Mayseless N, Balters S, Reiss AL. Dynamic inter-brain synchrony in real-life inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning study. Neuroimage 2021; 238:118263. [PMID: 34126210 DOI: 10.1016/j.neuroimage.2021.118263] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022] Open
Abstract
How two brains communicate with each other during social interaction is highly dynamic and complex. Multi-person (i.e., hyperscanning) studies to date have focused on analyzing the entire time series of brain signals to reveal an overall pattern of inter-brain synchrony (IBS). However, this approach does not account for the dynamic nature of social interaction. In the present study, we propose a data-driven approach based on sliding windows and k-mean clustering to capture the dynamic modulation of IBS patterns during interactive cooperation tasks. We used a portable functional near-infrared spectroscopy (fNIRS) system to measure brain hemodynamic response between interacting partners (20 dyads) engaged in a creative design task and a 3D model building task. Results indicated that inter-personal communication during naturalistic cooperation generally presented with a series of dynamic IBS states along the tasks. Compared to the model building task, the creative design task appeared to involve more complex and active IBS between multiple regions in specific dynamic IBS states. In summary, the proposed approach stands as a promising tool to distill complex inter-brain dynamics associated with social interaction into a set of representative brain states with more fine-grained temporal resolution. This approach holds promise for advancing our current understanding of the dynamic nature of neurocognitive processes underlying social interaction.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Naama Mayseless
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie Balters
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Radiology and Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Short MR, Hernandez-Pavon JC, Jones A, Pons JL. EEG hyperscanning in motor rehabilitation: a position paper. J Neuroeng Rehabil 2021; 18:98. [PMID: 34112208 PMCID: PMC8194127 DOI: 10.1186/s12984-021-00892-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
Studying the human brain during interpersonal interaction allows us to answer many questions related to motor control and cognition. For instance, what happens in the brain when two people walking side by side begin to change their gait and match cadences? Adapted from the neuroimaging techniques used in single-brain measurements, hyperscanning (HS) is a technique used to measure brain activity from two or more individuals simultaneously. Thus far, HS has primarily focused on healthy participants during social interactions in order to characterize inter-brain dynamics. Here, we advocate for expanding the use of this electroencephalography hyperscanning (EEG-HS) technique to rehabilitation paradigms in individuals with neurological diagnoses, namely stroke, spinal cord injury (SCI), Parkinson's disease (PD), and traumatic brain injury (TBI). We claim that EEG-HS in patient populations with impaired motor function is particularly relevant and could provide additional insight on neural dynamics, optimizing rehabilitation strategies for each individual patient. In addition, we discuss future technologies related to EEG-HS that could be developed for use in the clinic as well as technical limitations to be considered in these proposed settings.
Collapse
Affiliation(s)
- Matthew R Short
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Julio C Hernandez-Pavon
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alyssa Jones
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA
| | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
46
|
Liu T, Duan L, Dai R, Pelowski M, Zhu C. Team-work, Team-brain: Exploring synchrony and team interdependence in a nine-person drumming task via multiparticipant hyperscanning and inter-brain network topology with fNIRS. Neuroimage 2021; 237:118147. [PMID: 33984492 DOI: 10.1016/j.neuroimage.2021.118147] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Teamwork is indispensable in human societies. However, due to the complexity of studying ecologically valid synchronous team actions, requiring multiple members and a range of subjective and objective measures, the mechanism underlying the impact of synchrony on team performance is still unclear. In this paper, we simultaneously measured groups of nine-participants' (total N = 180) fronto-temporal activations during a drum beating task using functional near infrared spectroscopy (fNIRS)-based hyperscanning and multi-brain network modeling, which can assess patterns of shared neural synchrony and attention/information sharing across entire teams. Participants (1) beat randomly without considering others' drumming (random condition), (2) actively coordinated their beats with the entire group without other external cue (team-focus condition), and (3) beat together based on a metronome (shared-focus condition). Behavioral data revealed higher subjective and objective measures of drum-beat synchronization in the team-focus condition, as well as higher felt interdependence. The fNIRS data revealed that participants in the team-focus condition also showed higher interpersonal neural synchronization (INS) and higher Global Network Efficiency in their left TPJ and mPFC. Higher left TPJ Global Network Efficiency also predicted higher actual synchrony in the team-focus condition, with an effect size roughly 1.5 times that of subjective measures, but not in the metronome-enabled shared-focus condition. This result suggests that shared mental representations with high efficiency of information exchange across the entire team may be a key component of synchrony, adding to the understanding of the actual relation to team work.
Collapse
Affiliation(s)
- Tao Liu
- Department of Marketing, School of Management, Zhejiang University, China
| | - Lian Duan
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, China
| | - Ruina Dai
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, China
| | - Matthew Pelowski
- Faculty of Psychology and Cognitive Sciences Hub, University of Vienna, Austria
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, China.
| |
Collapse
|
47
|
Müller V, Perdikis D, Mende MA, Lindenberger U. Interacting brains coming in sync through their minds: an interbrain neurofeedback study. Ann N Y Acad Sci 2021; 1500:48-68. [PMID: 33956993 DOI: 10.1111/nyas.14605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
Neurophysiological evidence shows that interpersonal action coordination is accompanied by interbrain synchronization (IBS). However, the functional significance of this association remains unclear. Using two experimental designs, we explored whether IBS is amenable to neurofeedback (NFB). Feedback was provided either as two balls approaching each other (so-called ball design), or as two pendula, each reflecting the oscillatory activity of one of the two participants (so-called pendulum design). The NFB was provided at delta (i.e., 2.5 Hz) and theta (i.e., 5 Hz) electroencephalography frequencies, and manipulated by enhanced and inverse feedback. We showed that the participants were able to increase IBS by using NFB, especially when it was fed back at the theta frequency. Apart from intra- and interbrain coupling, other oscillatory activities (e.g., power spectral density, peak amplitude, and peak frequency) also changed during the task compared with the rest. Moreover, all the measures showed specific correlations with the subjective postsurvey item scores, reflecting subjective feeling and appraisal. We conclude that the use of IBS for NFB might help in specifying the contribution of IBS to interpersonal action coordination and in providing important information about the neural mechanisms of social interaction and the causal dimension of IBS.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Dionysios Perdikis
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Brain Simulation Section, Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Melinda A Mende
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| |
Collapse
|
48
|
Zhang R, Zhou X, Feng D, Yuan D, Li S, Lu C, Li X. Effects of acute psychosocial stress on interpersonal cooperation and competition in young women. Brain Cogn 2021; 151:105738. [PMID: 33915401 DOI: 10.1016/j.bandc.2021.105738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023]
Abstract
Although tend-and-befriend is believed to be the dominant stress response in women, little is known regarding the effects of acute psychosocial stress on different dynamic social interactions. To measure these effects, 80 female participants were recruited, paired into the dyads, and instructed to complete cooperative and competitive key-pressing tasks after experiencing acute stress or a control condition. Each dyad of participants should press the key synchronously when the signal was presented in the cooperative task and as fast as possible in the competitive task. During the tasks, brain activities of prefrontal and right temporo-parietal areas were recorded from each dyad using functional near-infrared spectroscopy (fNIRS). The results showed that acute psychosocial stress evidently promoted competitive behavior, accompanied by increased interpersonal neural synchronization (INS) in the right dorsolateral prefrontal cortex. Despite the lack of a significant difference in the overall cooperation rate, the response time difference between two stressed participants markedly declined over time with more widespread INS in the prefrontal cortex, suggesting that there ensued cooperative improvement among stressed women. These findings behaviorally and neurologically revealed context-dependent response patterns to psychosocial stress in women during dynamic social interactions.
Collapse
Affiliation(s)
- Ruqian Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaoyu Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Danyang Feng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Di Yuan
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Shijia Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Xianchun Li
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
49
|
Hoyniak CP, Quiñones-Camacho LE, Camacho MC, Chin JH, Williams EM, Wakschlag LS, Perlman SB. Adversity is Linked with Decreased Parent-Child Behavioral and Neural Synchrony. Dev Cogn Neurosci 2021; 48:100937. [PMID: 33639519 PMCID: PMC7910510 DOI: 10.1016/j.dcn.2021.100937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Parent-child synchrony-parent-child interaction patterns characterized by contingent social responding, mutual responsivity, and co-regulation-has been robustly associated with adaptive child outcomes. Synchrony has been investigated in both behavioral and biological frameworks. While it has been demonstrated that adversity can influence behavioral parent-child synchrony, the neural mechanisms by which this disruption occurs are understudied. The current study examined the association between adversity, parent-child behavioral synchrony, and parent-child neural synchrony across lateral prefrontal cortical regions using functional near-infrared spectroscopy hyperscanning during a parent-child interaction task that included a mild stress induction followed by a recovery period. Participants included 115 children (ages 4-5) and their primary caregivers. Parent-child behavioral synchrony was quantified as the amount time the dyad was synchronous (e.g., reciprocal communication, coordinated behaviors) during the interaction task. Parent-child neural synchrony was examined as the hemodynamic concordance between parent and child lateral PFC activation. Adversity was examined across two, empirically-derived domains: sociodemographic risk (e.g., family income) and familial risk (e.g., household chaos). Adversity, across domains, was associated with decreased parent-child behavioral synchrony across task conditions. Sociodemographic risk was associated with decreased parent-child neural synchrony in the context of experimentally-induced stress. These findings link adversity to decreased parent-child behavioral and neural synchrony.
Collapse
Affiliation(s)
| | | | | | - Jenna H Chin
- Washington University in St. Louis School of Medicine, United States
| | | | | | - Susan B Perlman
- Washington University in St. Louis School of Medicine, United States
| |
Collapse
|
50
|
Panico F, De Marco S, Sagliano L, D'Olimpio F, Grossi D, Trojano L. Brain hemodynamic response in Examiner-Examinee dyads during spatial short-term memory task: an fNIRS study. Exp Brain Res 2021; 239:1607-1616. [PMID: 33751169 PMCID: PMC8144143 DOI: 10.1007/s00221-021-06073-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
The Corsi Block-Tapping test (CBT) is a measure of spatial working memory (WM) in clinical practice, requiring an examinee to reproduce sequences of cubes tapped by an examiner. CBT implies complementary behaviors in the examiners and the examinees, as they have to attend a precise turn taking. Previous studies demonstrated that the Prefrontal Cortex (PFC) is activated during CBT, but scarce evidence is available on the neural correlates of CBT in the real setting. We assessed PFC activity in dyads of examiner–examinee participants while completing the real version of CBT, during conditions of increasing and exceeding workload. This procedure allowed to investigate whether brain activity in the dyads is coordinated. Results in the examinees showed that PFC activity was higher when the workload approached or reached participants’ spatial WM span, and lower during workload conditions that were largely below or above their span. Interestingly, findings in the examiners paralleled the ones in the examinees, as examiners’ brain activity increased and decreased in a similar way as the examinees’ one. In the examiners, higher left-hemisphere activity was observed suggesting the likely activation of non-spatial WM processes. Data support a bell-shaped relationship between cognitive load and brain activity, and provide original insights on the cognitive processes activated in the examiner during CBT.
Collapse
Affiliation(s)
- Francesco Panico
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy.
| | - Stefania De Marco
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Laura Sagliano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Francesca D'Olimpio
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Dario Grossi
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| |
Collapse
|