1
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Li D, Chai L, Yu X, Song Y, Zhu X, Fan S, Jiang W, Qiao T, Tong J, Liu S, Fan L, Lv Z. Retraction Note: The HOTAIRM1/miR-107/TDG axis regulates papillary thyroid cancer cell proliferation and invasion. Cell Death Dis 2024; 15:162. [PMID: 38383480 PMCID: PMC10881458 DOI: 10.1038/s41419-024-06556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Affiliation(s)
- Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Li Chai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yingchun Song
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Xuchao Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Suyun Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Tingting Qiao
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Junyu Tong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Simin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
3
|
Liu L, Xiao H, Yang G. SPARC Controls Migration and Invasion of Hepatocellular Carcinoma Cells Via Regulating GPD2-Mediated Mitochondrial Respiration. Biochem Genet 2024:10.1007/s10528-024-10682-z. [PMID: 38334876 DOI: 10.1007/s10528-024-10682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial respiration and metabolism play a pivotal role in facilitating the migratory and invasive capacities of cancer cells. In this study, we aimed to explore the potential influence of glycoprotein SPARC on mitochondrial respiration and its subsequent influence on the migration and invasion of hepatocellular carcinoma (HCC) cells. Lentivirus-mediated shRNA delivery was employed to deplete SPARC in HCC cell lines. The mitochondria localization of SPARC was validated using cellular fractionation followed by Western blot analysis, as well as immunofluorescence staining and Proteinase K protection assay. Co-immunoprecipitation was employed to investigate the interaction between SPARC and GPD2. Seahorse XF Cell Mito Stress Test was conducted to assess the mitochondrial respiration and functionality of HCC cells. Our study identifies an active pool of SPARC within the mitochondria of HCC cells, with the mitochondrial subset proving crucial for the regulation of migration and invasion. The mitochondrial SPARC interacts with GPD2, influencing its expression levels and subsequently modulating GPD2-mediated mitochondrial respiration. This regulatory mechanism orchestrates the migratory and invasive phenotypes of HCC cells. Notably, SPARC and GPD2 exhibit upregulated expression in HCC tissues compared to normal liver tissues. High expression levels of both SPARC and GPD2 in HCC patients are associated with a poorer prognosis. Our study unveils a novel role for SPARC in governing HCC cell migration and invasion through regulating GPD2-mediated mitochondrial respiration. These findings underscore the importance of mitochondrial processes in cancer progression and propose the SPARC/GPD2 axis as a promising target for HCC interventions.
Collapse
Affiliation(s)
- Lei Liu
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Huawei Xiao
- Department of Medical Oncology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Guiqing Yang
- Department of Medical Oncology, Yantai Traditional Chinese Medicine Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
4
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Gao ZW, Liu C, Yang L, He T, Wu XN, Zhang HZ, Dong K. SPARC Overexpression Promotes Liver Cancer Cell Proliferation and Tumor Growth. Front Mol Biosci 2021; 8:775743. [PMID: 34912848 PMCID: PMC8668270 DOI: 10.3389/fmolb.2021.775743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Secreted protein acidic and rich in cysteine (SPARC) plays an important role in cancer development. The roles of SPARC in the liver hepatocellular carcinoma (LIHC) are unclear. Methods: GEPIA2 and UALCAN were used to analyze the SPARC mRNA expression levels in LIHC based on the TCGA database. The GEO database was used to verify the analysis results. Immunohistochemical (IHC) analysis was used to investigate the SPARC protein levels in LIHC tissues. The Kaplan-Meier (KM) plotter was used to analyze the correlation between SPARC and prognosis. The serum SPARC levels were measured by ELISA. CCK8 and murine xenograft models were used to investigate the effect of SPARC on the liver cancer growth in vitro and in vivo. SPARC-correlated genes were screened by LinkedOmics. Results: Based on the TCGA and GEO databases, the analysis showed that the SPARC mRNA expression levels were increased in tumor tissues and peripheral blood mononuclear cell (PBMC) from LIHC compared to normal controls. The IHC analysis showed an increased level of SPARC in LIHC tissues compared to adjacent non-tumor tissues. However, we found that the serum SPARC levels were lower in LIHC than those in healthy controls. The KM plotter showed that there was no significant correlation between the SPARC mRNA levels and overall survival. However, in sorafenib-treated LIHC patients, the high SPARC expression predicts favorable prognosis. Furthermore, the endogenous SPARC overexpression promotes liver cancer cell proliferation in vitro and tumor growth in vivo, while there was no significant effect of exogenous SPARC treatment on liver cancer cell proliferation. Function enrichment analysis of SPARC-correlated genes indicated a critical role of interaction with an extracellular matrix in SPARC-promoting cancer cell proliferation. Conclusion: SPARC mRNAs were increased in LIHC tumor tissues, and SPARC overexpression may promote the liver cancer growth. Further studies are needed to clarify the potential prognostic value of SPARC, both in tissues and in circulation.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Ting He
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Xia-Nan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| |
Collapse
|
6
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
7
|
Carbone A, De Santis E, Cela O, Giambra V, Miele L, Marrone G, Grieco A, Buschbeck M, Capitanio N, Mazza T, Mazzoccoli G. The Histone Variant MacroH2A1 Impacts Circadian Gene Expression and Cell Phenotype in an In Vitro Model of Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9081057. [PMID: 34440260 PMCID: PMC8391426 DOI: 10.3390/biomedicines9081057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Luca Miele
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Antonio Grieco
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, IJC Building, Can Ruti Campus Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel./Fax: +39-(0882)-410-255
| |
Collapse
|
8
|
Ray A, Kunhiraman H, Perera RJ. The Paradoxical Behavior of microRNA-211 in Melanomas and Other Human Cancers. Front Oncol 2021; 10:628367. [PMID: 33628737 PMCID: PMC7897698 DOI: 10.3389/fonc.2020.628367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer initiation, progression, and metastasis leverage many regulatory agents, such as signaling molecules, transcription factors, and regulatory RNA molecules. Among these, regulatory non-coding RNAs have emerged as molecules that control multiple cancer types and their pathologic properties. The human microRNA-211 (MIR211) is one such molecule, which affects several cancer types, including melanoma, glioblastoma, lung adenocarcinomas, breast, ovarian, prostate, and colorectal carcinoma. Previous studies suggested that in certain tumors MIR211 acts as a tumor suppressor while in others it behaves as an oncogenic regulator. Here we summarize the known molecular genetic mechanisms that regulate MIR211 gene expression and molecular pathways that are in turn controlled by MIR211 itself. We discuss how cellular and epigenetic contexts modulate the biological effects of MIR211, which exhibit pleiotropic effects. For example, up-regulation of MIR211 expression down-regulates Warburg effect in melanoma tumor cells associated with an inhibition of the growth of human melanoma cells in vitro, and yet these conditions robustly increase tumor growth in xenografted mice. Signaling through the DUSP6-ERK5 pathway is modulated by MIR211 in BRAFV600E driven melanoma tumors, and this function is involved in the resistance of tumor cells to the BRAF inhibitor, Vemurafenib. We discuss several alternate but testable models, involving stochastic cell-to-cell expression heterogeneity due to multiple equilibria involving feedback circuits, intracellular communication, and genetic variation at miRNA target sties, to reconcile the paradoxical effects of MIR211 on tumorigenesis. Understanding the precise role of this miRNA is crucial to understanding the genetic basis of melanoma as well as the other cancer types where this regulatory molecule has important influences. We hope this review will inspire novel directions in this field.
Collapse
Affiliation(s)
- Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Haritha Kunhiraman
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
| | - Ranjan J. Perera
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Huo Q, Ma Y, Yin Y, Qin G. Biomarker Identification for Liver Hepatocellular Carcinoma and Cholangiocarcinoma Based on Gene Regulatory Network Analysis. Curr Bioinform 2021. [DOI: 10.2174/1574893615666200317115609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background:
Liver hepatocellular carcinoma (LIHC) and cholangiocarcinoma (CHOL)
are two main histological subtypes of primary liver cancer with a unified molecular landscape, and
feed-forward loops (FFLs) have been shown to be relevant in these complex diseases.
Objective:
To date, there has been no comparative analysis of the pathogenesis of LIHC and CHOL
based on regulatory relationships. Therefore, we investigated the common and distinct regulatory
properties of LIHC and CHOL in terms of gene regulatory networks.
Method:
Based on identified FFLs and an analysis of pathway enrichment, we constructed pathway-specific co-expression networks and further predicted biomarkers for these cancers by network clustering.
Resul:
We identified 20 and 36 candidate genes for LIHC and CHOL, respectively. The literature
from PubMed supports the reliability of our results.
Conclusion:
Our results indicated that the hsa01522-Endocrine resistance pathway was associated
with both LIHC and CHOL. Additionally, six genes (SPARC, CTHRC1, COL4A1, EDIL3, LAMA4
and OLFML2B) were predicted to be highly associated with both cancers, and COL4A2, CSPG4,
GJC1 and ADAMTS7 were predicted to be potential biomarkers of LIHC, and COL6A3, COL1A2,
FAP and COL8A1 were predicted to be potential biomarkers of CHOL. In addition, we inferred that
the Collagen gene family, which appeared more frequently in our overall prediction results, might be
closely related to cancer development.
Collapse
Affiliation(s)
- Qiuyan Huo
- School of Computer Science and Technology, Xidian University, Xi’an,China
| | - Yuying Ma
- School of Computer Science and Technology, Xidian University, Xi’an,China
| | - Yu Yin
- School of Computer Science and Technology, Xidian University, Xi’an,China
| | - Guimin Qin
- School of Computer Science and Technology, Xidian University, Xi’an,China
| |
Collapse
|
10
|
Žlajpah M, Boštjančič E, Tepeš B, Zidar N. Expression of Extracellular Matrix-Related Genes and Their Regulatory microRNAs in Problematic Colorectal Polyps. Cancers (Basel) 2020; 12:cancers12123715. [PMID: 33322258 PMCID: PMC7764749 DOI: 10.3390/cancers12123715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal carcinoma usually evolves gradually, forming a spectrum of lesions, due to accumulation of genetic mutations and epigenetic alterations. Many early lesions are detected since the introduction of screening programs. The greatest challenge is to distinguish between adenomas with epithelial misplacement (AEM) and adenomas with early carcinoma (AEC), considering the diagnosis affects prognosis and treatment. We analyzed the expression of selected extracellular matrix (ECM)-related genes and proteins, and their regulatory microRNAs using RT-qPCR and immunohistochemistry in biopsies from 44 patients. Differences were observed in AEM in comparison to AEC for DCN, EPHA4, FN1, SPON2, and SPP1, reflecting inflammatory stromal reaction to traumatisation and misplacement of dysplastic glands in the submucosa in the former, and desmoplastic stromal reaction to true invasion of dysplastic glands in the submucosa in the latter. Expression of regulatory microRNAs hsa-miR-200c and hsa-miR-146a significantly negatively correlated with the expression of their regulated genes, while significant difference between AEM and AEC was observed only for hsa-miR-29c. The described expression patterns are too complex to be used in diagnostic work, but might contribute to better understanding ECM changes in colorectal carcinoma development, helping to find new markers in the future.
Collapse
Affiliation(s)
- Margareta Žlajpah
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (E.B.)
| | - Emanuela Boštjančič
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (E.B.)
| | - Bojan Tepeš
- Gastroenterology Unit, AM DC Rogaška, 3250 Rogaška Slatina, Slovenia;
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (E.B.)
- Correspondence:
| |
Collapse
|
11
|
LncRNA NORAD promotes proliferation, migration and angiogenesis of hepatocellular carcinoma cells through targeting miR-211-5p/FOXD1/VEGF-A axis. Microvasc Res 2020; 134:104120. [PMID: 33309645 DOI: 10.1016/j.mvr.2020.104120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death around the world. Despite improvement in the prevention and treatment of HCC, the clinical prognosis is still poor with increasing mortality. Non-coding RNAs play pivotal roles in HCC oncogenesis, but the detailed mechanism is poorly known. Therefore, the functions and interaction of lncRNA NORAD and miR-211-5p in HCC was investigated in this study. METHODS Quantitative real-time PCR method was used to analyze the expression of NORAD and miR-211-5p in clinical HCC tissues and cultured cell lines. Knockdown of NORAD and overexpression of miR-211-5p were then carried in HCC cells. Moreover, bioinformatics analysis and luciferase report assays were further employed to analyze the interaction between miR-211-5p and NORAD or FOXD1. RESULTS Increased lncRNA NORAD and decreased miR-211-5p expression were first detected in HCC compared with the peritumorial area. Further studies showed that knockdown of NORAD or overexpression of miR-211-5p impaired the proliferation, migration and angiogenesis of HCC cells. Mechanistically, we found that NORAD functions as a sponge for miR-211-5p. Moreover, it was revealed that decreased miR-211-5p induced the expression of FOXD1 as well as its downstream target VEGF-A, thereby contributes to enhanced angiogenesis of HCC. CONCLUSION Elevated NORAD works as a sponge for miR-211-5p in HCC, thus release the inhibition effect of the latter on its downstream target FOXD1 and VEGF-A, which finally promotes angiogenesis. These results provide new insights into the interaction between NORAD and miR-211-5p in HCC and their potential usage as targets for the development of novel therapeutics against HCC.
Collapse
|
12
|
Qin X, Zhang J, Lin Y, Sun XM, Zhang JN, Cheng ZQ. Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in Hepatocellular Carcinoma. J Transl Med 2020; 18:326. [PMID: 32859232 PMCID: PMC7456023 DOI: 10.1186/s12967-020-02494-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver cancer is among the most common malignancy worldwide. Hepatocellular carcinoma (HCC), the principal histological subtype of liver cancer, is globally the third most common cause of cancer-related mortality. The high rates of recurrence and metastasis contribute to the poor prognosis of HCC patients. In recent years, increasing evidence has shown that microRNAs (miRNAs) are involved in the tumorigenesis, progression, and prognosis of HCC. METHODS To screen for key candidate miRNAs in HCC, three microarray datasets were downloaded from Gene Expression Omnibus (GEO). The sole common differentially expressed miRNA (DEmiR) observed in the above three datasets using a Venn diagram was microRNA-211-5p (miR-211-5p). The expression of miR-211-5p from HCC tissues was measured in several HCC cell lines. Additionally, using Kaplan-Meier plots, the potential prognostic value of miR-211-5p in HCC was analyzed. Cell counting kit-8 (CCK-8) and transwell assays examined the ability of miR-211-5p to induce cell proliferation, migration, and invasion in HCC cultures. The interaction of miR-211-5p and Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) was assessed both theoretically and using a luciferase reporter assay. Finally, the ability of miR-211-5p to modulate tumorigenesis in HCC in vivo was assessed after establishing a xenograft model. RESULTS qRT-PCR demonstrated that the relative expression of miR-211-5p was considerably down-regulated in HCC tissues and cell lines compared with normal tissue. Kaplan-Meier plots indicated that HCC patients with decreased expression of miR-211-5p had poor overall survival. Upregulation of miR-211-5p in vitro consistently suppressed cell proliferation, migration, and invasion. In contrast, enhanced expression of ACSL4 promoted a malignant phenotype in HCC cells. Importantly, we discovered that ACSL4 was a direct downstream target of miR-211-5p in HCC, and that miR-211-5p suppressed the malignant phenotype by inhibition of ACSL4 expression. Furthermore, miR-211-5p overexpression impaired tumorigenesis and growth of HCC in vivo. CONCLUSIONS Targeting miR-211-5p and the downstream gene ACSL4 will possibly provide novel insight and represents a promising approach to future therapy of HCC patients.
Collapse
Affiliation(s)
- Xia Qin
- The Graduate School of Second Military Medical University, Shanghai, China
| | - Jian Zhang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Lin
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Xue-Ming Sun
- Department of Neonatology, Yidu Central Hospital of Weifang, No. 4138, Linglongshan Road, Qingzhou, China
| | - Jia-Ning Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhi-Qiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107, western culture road, Jinan, China.
| |
Collapse
|
13
|
Exosomes derived from differentiated Schwann cells inhibit Schwann cell migration via microRNAs. Neuroreport 2020; 31:515-522. [DOI: 10.1097/wnr.0000000000001435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Chen C, Tian A, Zhou H, Zhang X, Liu Z, Ma X. Upregulation of miR-211 Promotes Chondrosarcoma Development via Targeting Tumor Suppressor VHL. Onco Targets Ther 2020; 13:2935-2943. [PMID: 32308426 PMCID: PMC7147617 DOI: 10.2147/ott.s239887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction miR-211 has been demonstrated to be aberrantly expressed and plays a pivotal role in human cancers. However, its expression profiles and potential roles in chondrosarcoma development remain still elusive. This study aims to determine the clinical values and underlying roles of miR-211 in chondrosarcoma. Methods miR-211 expression was analyzed by qRT-PCR in chondrosarcoma specimens and the matched adjacent non-tumor tissues. The relationships among miR-211 expression, clinicopathological factors and overall survival were also evaluated. Cell viability, colony formation, migration and invasion were further investigated in chondrosarcoma cells. Potential target of miR-211 was predicted using bioinformatics to delineate the molecular mechanisms. Results miR-211 was remarkably increased in chondrosarcoma compared with the matched adjacent non-tumor tissues. High miR-211 level was identified as 66.7% in chondrosarcoma specimens, which were significantly associated with histological grade and MSTS stage. miR-211 had significant influences on the prognosis of chondrosarcoma patients. Multivariate analysis demonstrated that miR-211 was an independent prognostic factor for overall survival of chondrosarcoma patients. We also found that overexpression or inhibitor of miR-211 promotes or suppresses chondrosarcoma cell proliferation, migration and invasion, respectively. Mechanistically, miR-211 binds to the 3ʹ-UTR of Von Hippel-Lindau (VHL) and suppresses its expression, while restoration of VHL suppressed the potentiated function of miR-211 on proliferation and invasion of chondrosarcoma cells. Conclusion miR-211 is identified as a potent oncogenic function in chondrosarcoma development, which can serve as a novel biomarker to predict the survival of chondrosarcoma patients. miR-211 potentiates chondrosarcoma growth via targeting VHL, highlighting a novel attractive target for chondrosarcoma treatment.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Aixian Tian
- Department of Orthopedics Institute, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Hua Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xiaolin Zhang
- Department of Spinal Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| |
Collapse
|
15
|
Zhao JT, Chi BJ, Sun Y, Chi NN, Zhang XM, Sun JB, Chen Y, Xia Y. LINC00174 is an oncogenic lncRNA of hepatocellular carcinoma and regulates miR-320/S100A10 axis. Cell Biochem Funct 2020; 38:859-869. [PMID: 32128852 DOI: 10.1002/cbf.3498] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. Multiple long non-coding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumour suppressors. In this study, we explored the effects of LINC00174 on the progression of HCC. Expression levels of LINC00174 and microRNA-320 (miR-320) in HCC tissue samples were measured using quantitative real-time polymerase chain reaction (qRT-PCR). The association between pathological indices and LINC00174 was also analysed. Human HCC cell lines Hep3B and Huh7 were used as cell models. CCK-8 and bromodeoxyuridine (BrdU) assays were used to assess the effect of LINC00174 on HCC cell line proliferation. Flow cytometry was used to study the effect of LINC00174 on HCC apoptosis. Transwell assay was conducted to detect the effect of LINC00174 on migration and invasion. Furthermore, luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm the binding relationship between miR-320 and LINC00174. Additionally, western blot was used to detect the regulatory function of LINC00174 on oncogene S100 calcium binding protein A10 (S100A10). We demonstrated that LINC00174 expression in HCC clinical samples was significantly increased and this was correlated with higher T stage. Its overexpression remarkably accelerated proliferation and metastasis of HCC cells while reduced apoptosis. Accordingly, knockdown of it suppressed the malignant phenotypes of HCC cells. Overexpression of LINC00174 significantly reduced the expression of miR-320 by sponging it, in turn enhanced the expression of S100A10. In conclusion, LINC00174 is a sponge of tumour suppressor miR-320, enhances the expression of S100A10 indirectly and functions as an oncogenic lncRNA in HCC. SIGNIFICANCE OF THE STUDY: LINC00174 is a novel lncRNA, whose function is rarely investigated. It is reported that it is oncogenic in colorectal cancer, while its role in HCC remains unclear. Herein, we report that LINC00174 is significantly up-regulated in HCC tissues and promotes the malignant phenotypes. We demonstrate that LINC00174 functions as a sponge for miR-320, increases the expression level of oncogene S100A10 in HCC. This study helps clarify the mechanism of HCC tumorigenesis and progression, and uncover the role of LINC00174 in human disease.
Collapse
Affiliation(s)
- Jin-Tao Zhao
- Department of Second Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Bao-Jin Chi
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yao Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Nan-Nan Chi
- Department of Second Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xue-Mei Zhang
- Department of Second Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jia-Bin Sun
- Intensive Care Unit, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Ying Chen
- Intensive Care Unit, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yong Xia
- Department of Blood Transfusion, Affiliated Hospital of Xiangnan University, Chenzhou, China
| |
Collapse
|
16
|
Liu S, Wang H, Mu J, Wang H, Peng Y, Li Q, Mao D, Guo L. MiRNA-211 triggers an autophagy-dependent apoptosis in cervical cancer cells: regulation of Bcl-2. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:359-370. [PMID: 31637455 DOI: 10.1007/s00210-019-01720-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Cervical cancer is a significant cause of morbidity and mortality in gynecological malignancies. Although autophagy plays a critical role in affecting cell apoptosis and proliferation, the role of hsa-miR-211-5p (miR-211) in modulating autophagy of cervical cancer cells remains unclear. In the current study, the level of miR-211 was downregulated in cervical cancer specimens, compared to the paired para-carcinoma tissues. While Bcl-2 was upregulated, LC3-II/I was decreased in the tumors, indicating inhibited apoptosis and autophagy. The forced expression of miR-211 inhibited proliferation, and promoted apoptosis in SiHa cervical cancer cells, evidenced by increased expression of apoptotic proteins, caspase-3, and PARP. While the miR-211 inhibitor exerted reverse effects on C-33A cervical cancer cells. Further, miR-211 induced autophagy in cervical cancer cells, as manifested by the presence of LC3 puncta, increased LC3-II/I and Beclin1 levels, and decreased p62 level. The miR-211-induced apoptosis was alleviated by an autophagy inhibitor 3-methyladenine (3-MA). In addition, Bcl-2 was identified as a target of miR-211. Besides, the apoptosis and autophagy triggered by miR-211 were attenuated by Bcl-2 in SiHa cells. In summary, our work indicates that miR-211 induced autophagy and autophagy-dependent apoptosis by regulating Bcl-2 in cervical cancer cells, which provided further understanding of autophagy in cervical carcinogenesis.
Collapse
Affiliation(s)
- Shang Liu
- Department of Gynecology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, People's Republic of China
| | - Hongyan Wang
- Department of Gynecology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, People's Republic of China
| | - Jing Mu
- Department of Gynecology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, People's Republic of China
| | - Hao Wang
- Department of Gynecology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, People's Republic of China
| | - Yan Peng
- Disease Prevention Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Qi Li
- Department of Gynecology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, People's Republic of China
| | - Dongwei Mao
- Department of Gynecology, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, People's Republic of China
| | - Liyuan Guo
- Department of Gynecology, Cancer Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
17
|
Jiang X, Liu F, Wang Y, Gao J. Secreted protein acidic and rich in cysteine promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells and acquisition of cancerstem cell phenotypes. J Gastroenterol Hepatol 2019; 34:1860-1868. [PMID: 31041810 DOI: 10.1111/jgh.14692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/04/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that plays a significant role in tumor development. SPARC has been indicated that promotes tumorigenesis, metastasis, and poor prognosis in prostate cancer and lung cancer. Therefore, we sought to investigate the molecular mechanisms of SPARC in regulating hepatocellular carcinoma (HCC). METHODS We used spheroids cultured in serum-free culture medium to obtain liver cancer stem cells. Flow cytometric analysis was performed to investigate percentage of CD133+ cells in liver cancer cells. Real-time polymerase chain reaction and western blot were used to assess gene expression in cell lines. Transwell and wound healing assays were performed to indicate cell migration of HCC. RESULTS Secreted protein acidic and rich in cysteine was upregulated in spheres formation in HCC cells. Overexpression of SPARC enhanced the ability to form tumor spheres and increased CD133 and Oct4 expressions. Besides, SPARC promoted the migration and epithelial-mesenchymal transition in HCC cells. Importantly, SPARC overexpression stimulated the formation of subcutaneous tumors in nude mice. CONCLUSIONS Our findings suggest that SPARC overexpression promotes tumor growth, inducing epithelial-mesenchymal transition and acquisition of a stem cell phenotype. What is more, research elucidating the biological mechanisms of SPARC may be beneficial to liver cancer treatment.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fengchao Liu
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yiying Wang
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Impact of Fibroblast-Derived SPARC on Invasiveness of Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11101421. [PMID: 31554208 PMCID: PMC6827058 DOI: 10.3390/cancers11101421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein modulating cell-matrix interactions and was found up-regulated in tumor stroma. To explore the effect of high stromal SPARC on colorectal cancer (CRC) cell behavior and clinical outcome, this study determined SPARC expression in patients suffering from stage II and III CRC using a publicly available mRNA data set and immunohistochemistry of tissue microarray sections. Moreover, in vitro co-culture models using CRC cell lines together with colon-associated fibroblasts were established to determine the effect of fibroblast-derived SPARC on cancer cells. In 466 patient samples, high SPARC mRNA was associated with a shorter disease-free survival. In 99 patients of the tissue microarray cohort, high stromal SPARC in the primary tumor was an independent predictor of shorter survival in patients with relapse (27 cases; HR = 4574, p = 0.004). In CRC cell lines, SPARC suppressed phosphorylation of focal adhesion kinase and stimulated cell migration. Colon-associated fibroblasts increased migration velocity by 30% and doubled track-length in SPARC-dependent manner. In a 3D co-culture system, fibroblast-derived SPARC enhanced tumor cell invasion. Taken together, stromal SPARC had a pro-metastatic impact in vitro and was a characteristic of aggressive tumors with poor prognosis in CRC patients.
Collapse
|
19
|
Pei Y, Yao Q, Li Y, Zhang X, Xie B. microRNA-211 regulates cell proliferation, apoptosis and migration/invasion in human osteosarcoma via targeting EZRIN. Cell Mol Biol Lett 2019; 24:48. [PMID: 31333725 PMCID: PMC6617937 DOI: 10.1186/s11658-019-0173-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, microRNA-211 (miR211) has been considered as a tumor suppressor in multiple malignancies. However, the function of miR211 in human osteosarcoma has not been explored intensively so far. In this study, the relationship between miR211 and EZRIN was analyzed in human osteosarcoma. Methods The expression levels of miR211 and EZRIN were measured in both human osteosarcoma cells and tissues. The direct regulatory relationship between miR211 and EZRIN was evaluated using dual-luciferase assay. The effect of miR211 and EZRIN overexpression on cell proliferation, migration/invasion, and apoptosis was detected. Results The expression of miR211 was obviously lower in osteosarcoma tissues than paracancerous tissues. EZRIN was identified as the direct target of miR211, and up-regulation of miR211 increased the percentage of cell apoptosis, and suppressed cell proliferation as well as cell migration/invasion via directly regulating EZRIN. Conclusions Our study indicated that miR211 has an important role in the development and progress of osteosarcoma, and it might become a novel target in the diagnosis and treatment of human osteosarcoma. Electronic supplementary material The online version of this article (10.1186/s11658-019-0173-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Pei
- 1Central laboratory, ZhongShan Hospital XiaMen University, Xiamen, 361004 China.,2Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, 361004 China
| | - Qin Yao
- 1Central laboratory, ZhongShan Hospital XiaMen University, Xiamen, 361004 China.,2Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, 361004 China
| | - Yingchao Li
- 3Department of Spine Surgery, ZhongShan Hospital XiaMen University, No. 201 Hubin South Road, Xiamen, 361004 China
| | - Xin Zhang
- 4Department of Rehabilitation, ZhongShan Hospital XiaMen University, Xiamen, 361004 China
| | - Bozhen Xie
- 3Department of Spine Surgery, ZhongShan Hospital XiaMen University, No. 201 Hubin South Road, Xiamen, 361004 China
| |
Collapse
|
20
|
Li Y, Li Y, Xu X. The long noncoding RNA cardiac hypertrophy-related factor plays oncogenic roles in hepatocellular carcinoma by downregulating microRNA-211. J Cell Biochem 2019; 120:13361-13371. [PMID: 30916824 DOI: 10.1002/jcb.28611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most major type of primary hepatic cancer. This study aimed to explore the possible oncogenic effects of the long noncoding RNA cardiac hypertrophy-related factor (CHRF) on HCC, as well as the underlying possible mechanism. METHODS The expression levels of CHRF and microRNA-211 (miR-211) in HCC tissues and/or cell lines HepG2 and Huh-7 were measured using quantitative reverse transcription polymerase chain reaction. Cell transfection was conducted to change the expression levels of CHRF and miR-211 in cells. Cell viability and apoptosis were assessed using the cell counting kit-8 assay and annexin V-phycoerythrin staining, respectively. The pull-down assay and RNA immunoprecipitation were performed to analyze the association between CHRF and miR-211. The expression of the key factors involving in cell proliferation, cell apoptosis, and epithelial-mesenchymal transition (EMT) process, as well as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways, were evaluated by Western blot analysis. RESULTS CHRF was highly expressed in HCC tissues and positively associated with the TNM stage, differentiation, and size of tumors. Overexpression of CHRF promoted HepG2 cell viability, proliferation, and EMT process. CHRF knockdown had opposite effects. Moreover, CHRF negatively regulated the expression of miR-21, and miR-21 was a direct target of CHRF. Overexpression of miR-211 reversed the effects of CHRF on HepG2 and Huh-7 cell viability, proliferation, and EMT process. Furthermore, overexpression of CHRF activated the PI3K/AKT and Wnt/β-catenin pathways in HepG2 cells by downregulating miR-211. CONCLUSION CHRF played oncogenic roles in HCC. The overexpression of CHRF promoted HepG2 and Huh-7 cell viability, proliferation, and EMT process by downregulating miR-211 and then activating the PI3K/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Yichun Li
- Department of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Yannan Li
- Department of Gynecology, Jining Hospital of TCM, Jining, Shandong, China
| | - Xiangsu Xu
- Department of Hepatobiliary Surgery, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
21
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Segeritz CP, Rashid ST, de Brito MC, Serra MP, Ordonez A, Morell CM, Kaserman JE, Madrigal P, Hannan NRF, Gatto L, Tan L, Wilson AA, Lilley K, Marciniak SJ, Gooptu B, Lomas DA, Vallier L. hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α 1-antitrypsin deficiency. J Hepatol 2018; 69:851-860. [PMID: 29879455 PMCID: PMC6562205 DOI: 10.1016/j.jhep.2018.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS α1-Antitrypsin deficiency (A1ATD) is an autosomal recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant (Gly342Lys) retain polymerised protein in the endoplasmic reticulum (ER) of their hepatocytes, predisposing them to liver disease. The concomitant lack of circulating A1AT also causes lung emphysema. Greater insight into the mechanisms that link protein misfolding to liver injury will facilitate the design of novel therapies. METHODS Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes provide a novel approach to interrogate the molecular mechanisms of A1ATD because of their patient-specific genetic architecture and reflection of human physiology. To that end, we utilised patient-specific hiPSC hepatocyte-like cells (ZZ-HLCs) derived from an A1ATD (ZZ) patient, which faithfully recapitulated key aspects of the disease at the molecular and cellular level. Subsequent functional and "omics" comparisons of these cells with their genetically corrected isogenic-line (RR-HLCs) and primary hepatocytes/human tissue enabled identification of new molecular markers and disease signatures. RESULTS Our studies showed that abnormal A1AT polymer processing (immobilised ER components, reduced luminal protein mobility and disrupted ER cisternae) occurred heterogeneously within hepatocyte populations and was associated with disrupted mitochondrial structure, presence of the oncogenic protein AKR1B10 and two upregulated molecular clusters centred on members of inflammatory (IL-18 and Caspase-4) and unfolded protein response (Calnexin and Calreticulin) pathways. These results were validated in a second patient-specific hiPSC line. CONCLUSIONS Our data identified novel pathways that potentially link the expression of Z A1AT polymers to liver disease. These findings could help pave the way towards identification of new therapeutic targets for the treatment of A1ATD. LAY SUMMARY This study compared the gene expression and protein profiles of healthy liver cells and those affected by the inherited disease α1-antitrypsin deficiency. This approach identified specific factors primarily present in diseased samples which could provide new targets for drug development. This study also demonstrates the interest of using hepatic cells generated from human-induced pluripotent stem cells to model liver disease in vitro for uncovering new mechanisms with clinical relevance.
Collapse
Affiliation(s)
- Charis-Patricia Segeritz
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Sheikh Tamir Rashid
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, UK; Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, UK.
| | - Miguel Cardoso de Brito
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Maria Paola Serra
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, UK
| | - Adriana Ordonez
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Carola Maria Morell
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pedro Madrigal
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Nicholas R F Hannan
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Laurent Gatto
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | - Lu Tan
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | | | - Bibek Gooptu
- NIHR Leicester BRC-Respiratory and Leicester Institute of Structural & Chemical Biology, University of Leicester, UK; ISMB/Birkbeck & UCL, University of London, UK; Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | | | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK; Wellcome Trust Sanger Institute, Genome Campus Hinxton, UK.
| |
Collapse
|
23
|
Zheng J, Wang J, Jia Y, Liu T, Duan Y, Liang X, Liu L. microRNA-211 promotes proliferation, migration, and invasion ability of oral squamous cell carcinoma cells via targeting the bridging integrator 1 protein. J Cell Biochem 2018; 120:4644-4653. [PMID: 30260023 PMCID: PMC6585605 DOI: 10.1002/jcb.27753] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/06/2018] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC), the most common pathological type of oral cancer, is still a frequent malignancy with unsatisfactory prognosis. Accumulating studies have proven some microRNAs (miRNAs) can function as oncogenes in OSCC by targeting tumor suppressors. In this study, we first investigated the expression and role of tumor suppressor bridging integrator‐1 (BIN1) in OSCC tissues and cells. Our results indicated that BIN1 was low expressed in the OSCC tissues and cell lines (SCC6, SCC9, SCC25, HN4, and HN6) along with miR‐211 was highly expressed in OSCC tissues and cell lines, and BIN1 overexpression could evidently inhibit their proliferation, migration, and invasion abilities. Next, we used bioinformation algorithms to predict the potential miRNA targeting BIN1 and chose miR‐211 for further study. miR‐211, a highly expressed miRNA in OSCC cells, could specifically bind with the 3′‐untranslated region (3′‐UTR) of BIN1 to trigger its degradation. Addition of miR‐211 inhibitor could evidently suppress the malignant behaviors of OSCC cells by upregulating BIN1 expression and inhibit the activation of the EGFR/MAPK pathway. Taken together the findings of the study indicated that miR‐211 mediated BIN1 downregulation had crucial significances in OSCC, suggesting the miR‐211 might be a novel potential therapeutic target for the OSCC treatment.
Collapse
Affiliation(s)
- Jiabao Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiali Wang
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Yuqing Duan
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| |
Collapse
|
24
|
Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L, Yu Y. The Role of MicroRNAs in Hepatocellular Carcinoma. J Cancer 2018; 9:3557-3569. [PMID: 30310513 PMCID: PMC6171016 DOI: 10.7150/jca.26350] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, leading to the second cancer-related death in the global. Although the treatment of HCC has greatly improved over the past few decades, the survival rate of patients is still quite low. Thus, it is urgent to explore new therapies, especially seek for more accurate biomarkers for early diagnosis, treatment and prognosis in HCC. MicroRNAs (miRNAs), small noncoding RNAs, are pivotal participants and regulators in the development and progression of HCC. Great progress has been made in the studies of miRNAs in HCC. The key regulatory mechanisms of miRNAs include proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in HCC. And exosomal miRNAs also play important roles in proliferation, invasion, metastasis, and drug resistance in HCC by regulating gene expression in the target cells. In addition, some miRNAs, including exosomal miRNAs, can be as potential diagnostic and prediction markers in HCC. This review summarizes the latest researches development of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Liang Shan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Rui Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P.R. China
- Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| |
Collapse
|
25
|
Sun W, Feng J, Yi Q, Xu X, Chen Y, Tang L. SPARC acts as a mediator of TGF-β1 in promoting epithelial-to-mesenchymal transition in A549 and H1299 lung cancer cells. Biofactors 2018; 44:453-464. [PMID: 30346081 DOI: 10.1002/biof.1442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Migration and metastasis of tumor cells greatly contributes to the failure of cancer treatment. Recently, the extracellular protein secreted protein acidic and rich in cysteine (SPARC) has been reported closely related to tumorigenesis. Some articles have suggested that SPARC promoted metastasis in several highly metastatic tumors. However, there are also some studies shown that SPARC acted as an antitumor factor. SPARC-induced epithelial-to-mesenchymal transition (EMT) in melanoma cells and promoted EMT in hepatocellular carcinoma. Therefore, the role of SPARC in tumorigenesis and its relationship with EMT is still unclear. In this study, we investigated the expression change of SPARC in A549 and H1299 lung cancer cells undergoing EMT process. Our study indicated that SPARC was upregulated in A549 and H1299 cells EMT process. We further investigated the function of SPARC on proliferation, migration, and EMT process of A549 and H1299 cells. Overexpression of SPARC promoted the migration and EMT of A549 and H1299 cells. Knockdown SPARC inhibited the EMT of A549 cells. Overexpression of SPARC induced the increased expression of p-Akt and P-ERK. Furthermore, exogenous SPARC peptide promoted transforming growth factor (TGF)-β1-induced EMT of A549 and H1299 cells. SPARC knockdown partially eliminated TGF-β1 function in inducing EMT of A549 cells. SPARC follistatin-like functional domain reduced the expression of E-cadherin, but had no effect on the expression of p-Akt and p-ERK. In conclusion, we elucidated that SPARC contributes to tumorigenesis by promoting migration and EMT of A549 and H1299 lung cancer cells. These results will provide some new suggestion for lung cancer treatment. © 2018 BioFactors, 44(5):453-464, 2018.
Collapse
Affiliation(s)
- Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qian Yi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Physiology, College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan Province, Luzhou, Sichuan Province, China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
26
|
Kordaß T, Weber CEM, Eisel D, Pane AA, Osen W, Eichmüller SB. miR-193b and miR-30c-1 * inhibit, whereas miR-576-5p enhances melanoma cell invasion in vitro. Oncotarget 2018; 9:32507-32522. [PMID: 30197759 PMCID: PMC6126698 DOI: 10.18632/oncotarget.25986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023] Open
Abstract
In cancer cells, microRNAs (miRNAs) are often aberrantly expressed resulting in impaired mRNA translation. In this study we show that miR-193b and miR-30c-1* inhibit, whereas miR-576-5p accelerates invasion of various human melanoma cell lines. Using Boyden chamber invasion assays the effect of selected miRNAs on the invasive capacity of various human melanoma cell lines was analyzed. Upon gene expression profiling performed on transfected A375 cells, CTGF, THBS1, STMN1, BCL9, RAC1 and MCL1 were identified as potential targets. For target validation, qPCR, Western blot analyses or luciferase reporter assays were applied. This study reveals opposed effects of miR-193b / miR-30c-1* and miR-576-5p, respectively, on melanoma cell invasion and on expression of BCL9 and MCL1, possibly accounting for the contrasting invasive phenotypes observed in A375 cells transfected with these miRNAs. The miRNAs studied and their targets identified fit well into a model proposed by us explaining the regulation of invasion associated genes and the observed opposed phenotypes as a result of networked direct and indirect miRNA / target interactions. The results of this study suggest miR-193b and miR-30c-1* as tumor-suppressive miRNAs, whereas miR-576-5p appears as potential tumor-promoting oncomiR. Thus, miR-193b and miR-30c-1* mimics as well as antagomiRs directed against miR-576-5p might become useful tools in future therapy approaches against advanced melanoma.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Claudia E M Weber
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Eisel
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Antonino A Pane
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Qu X, Gao D, Ren Q, Jiang X, Bai J, Sheng L. miR-211 inhibits proliferation, invasion and migration of cervical cancer via targeting SPARC. Oncol Lett 2018; 16:853-860. [PMID: 29963155 PMCID: PMC6019960 DOI: 10.3892/ol.2018.8735] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer remains one of the most frequent gynecological malignancies among females around the world. Therefore, fully understanding the molecular mechanisms underlying the progression of cervical cancer may be critical for the development of effective therapeutic strategies against cervical cancer. The object was to evaluate the potential effect of miR-211 and verify its influence on the function of secreted protein acidic and rich in cysteine (SPARC) in cervical cancer. It was demonstrated that miR-211 was downregulated in cervical cancer cell lines (HeLa and C33A) and cervical cancer specimens, while SPARC expression level was higher in tumor tissues. We also revealed miR-211 upregulated expression could inhibit cells proliferation, migration and invasion in vivo. SPARC was confirmed as a direct and functional target of miR-211 and the inverse relationship between them was also observed. The results of the present study suggest that miR-211 reduced cancer growth, migration and invasion, and suppresses the SPARC expression in cervical cancer. This newly identified miR-211 may provide further insight into the progression and offers a promising target for cervical cancer therapy.
Collapse
Affiliation(s)
- Xuqin Qu
- Reproductive Center, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Dezhen Gao
- Department of Blood Transfusion, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Qingxia Ren
- Clinical Laboratory, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Xiufang Jiang
- Department of Obstetrics, People's Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Jianhua Bai
- Department of Obstetrics, People's Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Li Sheng
- Clinical Laboratory, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
28
|
Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma. Sci Rep 2018; 8:7673. [PMID: 29769662 PMCID: PMC5955984 DOI: 10.1038/s41598-018-26000-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/17/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78–88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson’s r = 0.62; p < 3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy.
Collapse
|
29
|
Li W, Miao X, Liu L, Zhang Y, Jin X, Luo X, Gao H, Deng X. Methylation-mediated silencing of microRNA-211 promotes cell growth and epithelial to mesenchymal transition through activation of the AKT/β-catenin pathway in GBM. Oncotarget 2018; 8:25167-25176. [PMID: 28445937 PMCID: PMC5421919 DOI: 10.18632/oncotarget.15531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Aberrant expression of miR-211 has frequently been reported in cancer studies; however, its role in glioblastoma multiforme (GBM) has not been examined in detail. We investigated the function and the underlying mechanism of miR-211 in GBM. We revealed that miR-211 was downregulated in GBM tissues and cell lines. Restoration of miR-211 inhibited GBM cell growth and invasion both in vitro and in vivo. The epithelial to mesenchymal transition (EMT) phenotype was reversed when miR-211 expression was restored. HMGA2 was identified as a down-stream target of miR-211. MiR-211 had an inhibitory effect on AKT/β-catenin signaling, which was reversed by HMGA2 overexpression or miR-211 restoration. In addition, miR-211 was transcriptionally repressed by EZH2-induced H3K27 trimethylation and promoter methylation. Overall, our findings revealed miR-211 as a tumor suppressor in GBM and mir-211 may be a potential therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Weidong Li
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaobo Miao
- Department of Radiation and Chemotherapy Oncology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xuejun Jin
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Luo
- Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Hai Gao
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.,Xiamen Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, China
| | - Xubin Deng
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Abstract
Dysregulation of microRNAs (miRNAs/miRs) is frequently associated with cancer progression. Altered expression of miR-211 has been observed in various types of human cancer; however, its expression and role in prostate cancer (PCa) remains unknown. In the present study, the expression of miR-211 in PCa cell lines and tissues was measured by reverse transcription-quantitative PCR (qPCR), revealing that miR-211 was downregulated in PCa cell lines and tissues. Further analysis revealed that low miR-211 was associated with the tumor stage and Gleason score. With the assistance of miR-211 mimics and inhibitor, it was also revealed that the overexpression of miR-211 could inhibit PCa cell proliferation in vitro. Conversely, downregulated miR-211 expression promotes PCa cell proliferation. In addition, the secreted protein acidic and rich in cysteine (SPARC) was identified as a target of miR-211 in the PCa cell lines, and SPARC expression was inversely associated with miR-211. In conclusion, it was demonstrated that the miR-211 expression was downregulated in PCa cell lines and tissues. Additionally, miR-211 could inhibit PCa cell proliferation partially by downregulating SPARC. Therefore, miR-211 may be a potential therapeutic target for PCa treatment in the future.
Collapse
Affiliation(s)
- Peng Hao
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Bo Kang
- Central Sterile Supply Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guoqing Yao
- Department of Surgery 1, The 224th Hospital of Chinese People's Liberation Army, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wenqi Hao
- Department of Clinical Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feihong Ma
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
31
|
Kang M, Shi J, Peng N, He S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. Onco Targets Ther 2017; 10:5667-5675. [PMID: 29238200 PMCID: PMC5713696 DOI: 10.2147/ott.s143084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that microRNAs play a pivotal role in the pathogenesis of cancer. In our current study, the expression levels of microRNA-211 (miR-211) were measured in human non-small-cell lung cancer (NSCLC) tissues and cell lines. We found that miR-211 expression levels were increased in NSCLC tissues and cell lines and that the overexpression of miR-211 promotes cell proliferation and invasion. Using bioinformatics, we demonstrated that miR-211 binds to the 3'-untranslated region of MxA and overexpression of miR-211 suppresses the expression of MxA at both the transcriptional and translational levels in NSCLC cell lines. Furthermore, knockdown of MxA increased the proliferation and invasion of NSCLC cell lines in vitro. High levels of miR-211 expression were associated with a shorter survival time in patients with NSCLC. Taken together, these results suggest that miR-211 promotes tumor proliferation and invasion by regulating MxA expression in NSCLC. This study provides insights into molecular mechanisms of miR-211-mediated tumorigenesis and oncogenesis.
Collapse
Affiliation(s)
- Mafei Kang
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Jieqiong Shi
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Na Peng
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Shaozhong He
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| |
Collapse
|
32
|
Xue F, Liang Y, Li Z, Liu Y, Zhang H, Wen Y, Yan L, Tang Q, Xiao E, Zhang D. MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2. Oncol Lett 2017; 15:813-820. [PMID: 29399149 PMCID: PMC5772877 DOI: 10.3892/ol.2017.7399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most widespread malignant human tumors worldwide. Treatment options include radiotherapy, surgical intervention and chemotherapy; however, drug resistance is an ongoing treatment concern. In the present study, the effects of a microRNA (miR/miRNA), miR-9, on the sensitivity of HCC cell lines to the epidermal growth factor receptor inhibitor, cetuximab, were examined. miR-9 has been proposed to serve a role in tumorigenesis and tumor progression. In the present study, bioinformatics analyses identified the eukaryotic translation initiation factor 5A2 (eIF-5A-2) as a target of miR-9. The expression levels of miR-9 and eIF-5A-2 were examined by reverse transcription-quantitative polymerase chain reaction and HCC cell lines were transfected with miR-9 mimics and inhibitors to determine the effects of the miRNA on cell proliferation and viability. The miR-9 mimic was revealed to significantly increase the sensitivity of epithelial phenotype HCC cells (Hep3B and Huh7) to cetuximab, while the miR-9 inhibitor triggered the opposite effect. There were no significant differences in sensitivity to cetuximab observed in mesenchymal phenotype HCC cells (SNU387 and SNU449). Cells lines displaying high expression levels of eIF-5A-2 were more resistant to cetuximab. Transfection of cells with a miR-9 mimic resulted in downregulation of the expression of eIF-5A-2 mRNA, while an miR-9 inhibitor increased expression. When expression of eIF-5A-2 was knocked down with siRNA, the effects of miR-9 on cetuximab sensitivity were no longer observed. Taken together, these data support a role for miR-9 in enhancing the sensitivity of epithelial phenotype HCC cells to cetuximab through regulation of eIF-5A-2.
Collapse
Affiliation(s)
- Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Yuntian Liang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Zhenrong Li
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Yanhui Liu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Hongwei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Yu Wen
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Lei Yan
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Qiang Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Erhui Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| | - Dongyi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 410003, P.R. China
| |
Collapse
|
33
|
In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery. Br J Cancer 2017; 117:1676-1684. [PMID: 29024941 PMCID: PMC5729441 DOI: 10.1038/bjc.2017.344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver. New serum biomarkers for HCC screening are needed, especially for alpha-fetoprotein (AFP) negative patients. As a proximal fluid between body fluids and intracellular fluid, tissue interstitial fluid (TIF) is a suitable source for serum biomarker discovery. Methods: Sixteen paired TIF samples from HCC tumour and adjacent non-tumour tissues were analysed by isobaric tags for relative and absolute quantitation (iTRAQ) method. Two proteins were selected for ELISA validation in serum samples. Results: Totally, 3629 proteins were identified and 3357 proteins were quantified in TIF samples. Among them, 232 proteins were significantly upregulated in HCC-TIF and 257 proteins down-regulated. Two overexpressed extracellular matrix proteins, SPARC and thrombospondin-2 (THBS2) were selected for further validation. ELISA result showed that the serum levels of SPARC and THBS2 in HCC patients were both significantly higher than those in healthy controls. The combination of serum SPARC and THBS2 could distinguish HCC (AUC=0.97, sensitivity=86%, specificity=100%) or AFP-negative HCC (AUC=0.95, sensitivity=91%, specificity=93%) from healthy controls. And the combination of serum SPARC and THBS2 could also distinguish HCC patients from benign liver disease patients (AUC=0.93, sensitivity=80%, specificity=94%). In addition, serum THBS2 was found to be a novel independent indicator for poor prognosis of HCC. Conclusions: Novel HCC candidate serum markers were found through in-depth proteomic analysis of TIF, which demonstrated the successful utility of TIF in cancer serum biomarker discovery.
Collapse
|
34
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|
35
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
36
|
Jafri MA, Al-Qahtani MH, Shay JW. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 2017; 44:117-131. [PMID: 28188828 DOI: 10.1016/j.semcancer.2017.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jerry William Shay
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3956485. [PMID: 28105421 PMCID: PMC5220417 DOI: 10.1155/2016/3956485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy.
Collapse
|
38
|
Su JR, Kuai JH, Li YQ. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression. World J Gastroenterol 2016; 22:10053-10063. [PMID: 28018113 PMCID: PMC5143752 DOI: 10.3748/wjg.v22.i45.10053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future.
Collapse
|