1
|
Guo J, Qiu M, Li L, Gao Z, Zhou G, Liu X. Comparative transcriptomic analysis and volatile compound characterization of Aspergillus tubingensis and Penicillium oxalicum during their infestation of Japonica rice. Food Microbiol 2025; 125:104626. [PMID: 39448170 DOI: 10.1016/j.fm.2024.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 10/26/2024]
Abstract
Volatile organic compounds (VOCs), a byproduct of mold metabolism, have garnered increasing interest because the VOCs can be used to detect food early contamination. So far, the use of VOCs as indicators of rice mildew, specifically caused by Aspergillus tubingensis and Penicillium oxalicum, and the mechanisms of their generation are not well investigated. This study examines the VOCs produced by these molds during paddy storage, utilizing headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We further elucidate the mechanisms underlying the formation of these VOCs through a comparative transcriptomic analysis. The VOCs characteristic to A. tubingensis and P. oxalicum, identified with a VIP value > 1 in the partial least squares discriminant analysis (PLS-DA) model, are primarily alkenes. Our transcriptome analysis uncovers key metabolic pathways in both molds, including energy metabolism and pathways related to volatile substance formation, and identifies differentially expressed genes associated with alkane and alcohol formation.
Collapse
Affiliation(s)
- Jian Guo
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China.
| | - Mingming Qiu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Ling Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhenbo Gao
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Guoxin Zhou
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Xingquan Liu
- College of Food and Health, National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou, 311300, PR China.
| |
Collapse
|
2
|
Figueiredo G, Costa CP, Lourenço J, Caetano T, Rocha SM, Mendo S. Linking Pedobacter lusitanus NL19 volatile exometabolome with growth medium composition: what can we learn using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry? Anal Bioanal Chem 2023; 415:2613-2627. [PMID: 36631573 PMCID: PMC10149447 DOI: 10.1007/s00216-022-04505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
Microbial metabolomics allows understanding and to comprehensively analyse metabolites, and their related cellular and metabolic processes, that are produced and released to the extracellular environment under specific conditions. In that regard, the main objective of this research is to understand the impact of culture media changes in the metabolic profile of Pedobacter lusitanus NL19 (NL19) and Pedobacter himalayensis MTCC 6384 (MTCC6384) and respective influence on the production of biotechnologically relevant compounds. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry with time-of-flight analyser (GC × GC-ToFMS) was applied to comprehensively study the metabolites produced by NL19 and MTCC6384 both in tryptic soy broth 100% (TSB100) and tryptic soy broth with 25% casein peptone (PC25). A total of 320 metabolites were putatively identified, which belong to different chemical families: alcohols, aldehydes, esters, ethers, hydrocarbons, ketones, nitrogen compounds, sulphur compounds, monoterpenes, and sesquiterpenes. Metabolites that were statistically different from the control (sterile medium) were selected allowing for the construction of the metabolic profile of both strains. A set of 80 metabolites was tentatively associated to the metabolic pathways such as the metabolism of fatty acids, branched-chain aminoacids, phenylalanine, methionine, aromatic compounds, and monoterpene and sesquiterpene biosynthesis. This study allowed to better understand how slight changes of the culture media and thus the composition of nutrients impair the metabolic profile of bacteria, which may be further explored for metabolomics pipeline construction or biotechnological applications.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sílvia M Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Sónia Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Metabolomics profiling of human exhaled breath condensate by SPME/GC × GC-ToFMS: Exploratory study on the use of face masks at the level of lipid peroxidation volatile markers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Belinato JR, Costa CP, Almeida A, Rocha SM, Augusto F. Mapping Aspergillus niger Metabolite Biomarkers for In Situ and Early Evaluation of Table Grapes Contamination. Foods 2021; 10:2870. [PMID: 34829150 PMCID: PMC8624196 DOI: 10.3390/foods10112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
The Aspergillus niger exometabolome was recently investigated using advanced gas chromatography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to the amount of information made available, which may be useful in countless processes. One of the great challenges in microbial metabolomics is related to applications in more complex systems of metabolomics information obtained from studies carried out in culture media, as complications may occur due to the dynamic nature of biological systems. Thus, the main objective of this research was to evaluate the applicability of the A. niger metabololite biomarkers pattern for in situ and early evaluation of table grapes contamination, used as study model. A. niger is a ubiquitous fungus responsible for food contamination, being reported as one of the main agents of the black mold disease, a serious post-harvest pathology of table grapes. This work included analysis from 1 day of growth time of pure A. niger cultures, A. niger cultures obtained from previously contaminated grapes, and finally, an in situ solid-phase microextraction (SPME) approach directly on previously contaminated table grapes. Supervised multivariate analysis was performed which revealed that after 1 day of inoculation it was possible to detect A. niger biomarkers, which can be extremely useful in making this type of method possible for the rapid detection of food contamination. The results obtained confirm the potential applicability of the pattern of A. niger biomarkers for early detection of the fungi (after 1 day of contamination), and may be further explored for access food susceptibility to fungi contamination, based on direct analysis of the food item.
Collapse
Affiliation(s)
- Joao Raul Belinato
- Institute of Chemistry, University of Campinas and National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas 13083-970, Brazil;
| | - Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Silvia M. Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fabio Augusto
- Institute of Chemistry, University of Campinas and National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas 13083-970, Brazil;
| |
Collapse
|
5
|
Mixed invasive pulmonary Mucor and Aspergillus infection: a case report and literature review. Chin Med J (Engl) 2021; 135:854-856. [PMID: 34759224 PMCID: PMC9276213 DOI: 10.1097/cm9.0000000000001839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Birer-Williams CMC, Chu RK, Anderton CR, Wright ES. SubTap, a Versatile 3D Printed Platform for Eavesdropping on Extracellular Interactions. mSystems 2021; 6:e0090221. [PMID: 34427520 PMCID: PMC8422993 DOI: 10.1128/msystems.00902-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Communication within the microbiome occurs through an immense diversity of small molecules. Capturing these microbial interactions is a significant challenge due to the complexity of the exometabolome and its sensitivity to environmental stimuli. Traditional methods for acquiring exometabolomic data from interacting microorganisms are limited by their low throughput or lack of sampling depth. To address this challenge, we introduce subtapping (short for substrate tapping), a technique for tapping into extracellular metabolites that are being transferred through the growth substrate during coculture. High-throughput subtapping is made possible by a new coculturing platform, named SubTap, that we engineered to resemble a 96-well plate. The three-dimensional (3D) printed SubTap platform captures the exometabolome in an agar compartment that connects physically separated growth chambers, which permits cell growth without competition for space. We show how SubTap facilitates replicable and quick detection of exometabolites via direct infusion mass spectrometry analysis. Using bacterial isolates from the soil, we apply SubTap to characterize the effects of growth medium, growth duration, and mixed versus unmixed coculturing on the exometabolome. Finally, we demonstrate SubTap's versatility by interrogating microbial interactions in multicultures with up to four strains. IMPORTANCE Improvements in experimental techniques and instrumentation have led to the discovery that the microbiome plays an essential role in human and environmental health. Nevertheless, there remain major impediments to conducting large-scale interrogations of the microbiome in a high-throughput manner, particularly in the field of exometabolomics. Existing methods to coculture microorganisms and interrogate their interactions are labor-intensive and low throughput. This inspired us to develop a solution for coculturing that was (i) open source, (ii) inexpensive, (iii) scalable, (iv) customizable, and (v) compatible with existing mass spectrometry instrumentation. Here, we present SubTap-a 3D printed coculturing platform that permits tapping directly into the growth substrate between physically separated, but interconnected, growth compartments. SubTap allows multiculture (with up to four distinct growth compartments) in spatially mixed or unmixed configurations and enables repeatable results with mass spectrometry, as shown by our validation with known compounds and cultures of one to four organisms.
Collapse
Affiliation(s)
- Caroline M. C. Birer-Williams
- Biomolécules et Biotechnologies Végétales (BBV) EA 2106, Université de Tours, Tours, France
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Erik S. Wright
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Silva E, Belinato JR, Porto C, Nunes E, Guimarães F, Meyer MC, Pilau EJ. Soybean Metabolomics Based in Mass Spectrometry: Decoding the Plant's Signaling and Defense Responses under Biotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7257-7267. [PMID: 34180225 DOI: 10.1021/acs.jafc.0c07758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolomics is an omics technology that is extremely valuable to analyze all small-molecule metabolites in organisms. Recent advances in analytical instrumentation, such as mass spectrometry combined with data processing tools, chemometrics, and spectral data libraries, allow plant metabolomics studies to play a fundamental role in the agriculture field and food security. Few studies are found in the literature using the metabolomics approach in soybean plants on biotic stress. In this review, we provide a new perspective highlighting the potential of metabolomics-based mass spectrometry for soybean in response to biotic stress. Furthermore, we highlight the response and adaptation mechanisms of soybean on biotic stress about primary and secondary metabolism. Consequently, we provide subsidies for further studies of the resistance and improvement of the crop.
Collapse
Affiliation(s)
- Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790 Colombo Avenida, Maringá, Paraná 87020-080, Brazil
| | - Joao Raul Belinato
- Institute of Chemistry, University of Campinas and National Institute of Science and Technology in Bioanalysis (INCTBio), Campinas, São Paulo 13083-970, Brazil
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790 Colombo Avenida, Maringá, Paraná 87020-080, Brazil
- MsBioscience, 298 Quintino Bocaiúva Street, Maringá, Paraná 87020-160, Brazil
| | - Estela Nunes
- Brazilian Agricultural Research Corporation Swine & Poultry, BR-153 km 110 Road, Concórdia, Santa Catarina 89715-899, Brazil
| | - Francismar Guimarães
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Road, Londrina, Paraná 86001-970, Brazil
| | - Mauricio Conrado Meyer
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Road, Londrina, Paraná 86001-970, Brazil
| | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790 Colombo Avenida, Maringá, Paraná 87020-080, Brazil
| |
Collapse
|
8
|
Comprehensive Study of Variety Oenological Potential Using Statistic Tools for the Efficient Use of Non-Renewable Resources. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The evaluation of the variety suitability regarding each appellation’s specificities should be a strategy for maximizing the varieties’ oenological potential while contributing to the sustainable production of quality wines, keeping their typicity and rationalizing winemaking costs. Thus, the combination of several grape physicochemical attributes, modulated by climate and vineyard characteristics, providing knowledge for each grape variety’s oenological potential, is a relevant and reliable support for winemakers’ decisions. To prove this hypothesis, six mature grape varieties from three harvests, each one from three vineyard parcels with different topographical conditions from Bairrada Appellation (Portugal), were studied using analysis of variance–simultaneous components analysis (ASCA). The effects of harvest year and parcel on grape berry weight, pH, titratable acidity, total sugars, total phenolics, antiradical activity, and volatile composition in free and glycosidically-linked forms were analyzed. The compositional plasticity of autochthonous varieties (white Arinto and Bical and red Baga, Castelão, and Touriga Nacional) was observed. Sauvignon Blanc grape composition was significantly modulated by harvest. This study represents an important contribution for the maintenance of varieties’ biodiversity while contributing to establishing their peculiarities. Autochthonous varieties, if accurately exploited, can provide higher characteristic diversity than worldwide used varieties, an aspect to be more objectively taken into consideration by winemakers.
Collapse
|
9
|
Pollo BJ, Teixeira CA, Belinato JR, Furlan MF, Cunha ICDM, Vaz CR, Volpato GV, Augusto F. Chemometrics, Comprehensive Two-Dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Establishment of a New PNA-FISH Method for Aspergillus fumigatus Identification: First Insights for Future Use in Pulmonary Samples. Microorganisms 2020; 8:microorganisms8121950. [PMID: 33316925 PMCID: PMC7763223 DOI: 10.3390/microorganisms8121950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of Invasive Aspergillosis. This mold produces conidia that when inhaled by immunocompromized hosts can be deposited in the lungs and germinate, triggering disease. In this paper, the development of a method using peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) is described. The PNA-FISH probe was tested in several strains and a specificity and sensitivity of 100% was obtained. Detection of A. fumigatussensu stricto was then achieved in artificial sputum medium (ASM) pre-inoculated with 1 × 102 conidia·mL-1-1 × 103 conidia·mL-1, after a germination step of 24 h. The PNA-FISH method was evaluated in 24 clinical samples (10 sputum, 8 bronchoalveolar lavage (BAL), and 6 bronchial lavage (BL)) that were inoculated with 1 × 104 conidia·mL-1 in sputum; 1 × 103 conidia·mL-1 in BL and BAL, for 24 h. Despite a specificity of 100%, the sensitivity was 79%. This relatively low sensitivity can be explained by the fact that hyphae can yield "fungal ball" clusters, hindering pipetting procedures and subsequent detection, leading to false negative results. Nonetheless, this study showed the potential of the PNA-FISH method for A. fumigatussensu stricto detection since it takes only 1 h 30 m to perform the procedure with a pre-enrichment step of 6 h (pure cultures) and 24 h (clinical samples), and might provide a suitable alternative to the existing methods for studies in pure cultures and in clinical settings.
Collapse
|
11
|
Analysis of volatile emissions from grape berries infected with Aspergillus carbonarius using hyphenated and portable mass spectrometry. Sci Rep 2020; 10:21179. [PMID: 33273624 PMCID: PMC7713432 DOI: 10.1038/s41598-020-78332-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Mycotoxins represent a serious risk for human and animal health. Οchratoxin A (OTA) is a carcinogenic mycotoxin produced by A. carbonarius that constitutes a severe problem for viticulture. In this study, we investigate the development of novel detection and on-line monitoring approaches for the detection of OTA in the field (i.e. out of the chemical laboratory) using advanced molecular sensing. Both stand-alone and hyphenated mass spectrometry (MS) based systems (e.g. Time-of-Flight ToF-MS and gas chromatography GC combined with MS) and compact portable membrane inlet MS (MIMS) have been employed for the first time to detect and monitor volatile emissions of grape berries infected by the fungus Aspergillus carbonarius. In vacuo (electron impact-EI) and ambient ionisation (electrospray ionisation-ESI) techniques were also examined. On-line measurements of the volatile emissions of grape berries, infected by various strains of A. carbonarius with different toxicity levels, were performed resulting in different olfactory chemical profiles with a common core of characteristic mass fragments, which could be eventually used for on-site detection and monitoring allowing consequent improvement in food security.
Collapse
|
12
|
Costa CP, Bezerra AR, Almeida A, Rocha SM. Candida Species (Volatile) Metabotyping through Advanced Comprehensive Two-Dimensional Gas Chromatography. Microorganisms 2020; 8:E1911. [PMID: 33266330 PMCID: PMC7760324 DOI: 10.3390/microorganisms8121911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Microbial metabolomics is a challenge strategy that allows a comprehensive analysis of metabolites within a microorganism and may support a new approach in microbial research, including the microbial diagnosis. Thus, the aim of this research was to in-depth explore a metabolomics strategy based on the use of an advanced multidimensional gas chromatography for the comprehensive mapping of cellular metabolites of C. albicans and non-C. albicans (C. glabrata and C. tropicalis) and therefore contributing for the development of a comprehensive platform for fungal detection management and for species distinction in early growth times (6 h). The volatile fraction comprises 126 putatively identified metabolites distributed over several chemical families: acids, alcohols, aldehydes, hydrocarbons, esters, ketones, monoterpenic and sesquiterpenic compounds, norisoprenoids, phenols and sulphur compounds. These metabolites may be related with different metabolic pathways, such as amino acid metabolism and biosynthesis, fatty acids metabolism, aromatic compounds degradation, mono and sesquiterpenoid synthesis and carotenoid cleavage. These results represent an enlargement of ca. 70% of metabolites not previously reported for C. albicans, 91% for C. glabrata and 90% for C. tropicalis. This study represents the most detailed study about Candida species exometabolome, allowing a metabolomic signature of each species, which signifies an improvement towards the construction of a Candida metabolomics platform whose application in clinical diagnostics can be crucial to guide therapeutic interventions.
Collapse
Affiliation(s)
- Carina Pedrosa Costa
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| | - Ana Rita Bezerra
- Health Sciences Department, Institute for Biomedicine—iBiMED, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Sílvia M. Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
13
|
Kalalian C, Abis L, Depoorter A, Lunardelli B, Perrier S, George C. Influence of indoor chemistry on the emission of mVOCs from Aspergillus niger molds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140148. [PMID: 32610229 DOI: 10.1016/j.scitotenv.2020.140148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
People spend 80% of their time indoors exposed to poor air quality due to mold growth in humid air as well as human activities (painting, cooking, cleaning, smoking…). To better understand the impact of molds on indoor air quality, we studied the emission of microbial Volatile Organic Compounds (mVOCs) from Aspergillus niger, cultivated on malt agar extract, using a high-resolution proton transfer reaction- time of flight- mass spectrometer (PTR-TOF-MS). These emissions were studied for different cultivation time and indoor relative humidities. Our results show that the concentration of the known C4-C9 mVOCs tracers of the microbial activity (like 1-octen-3-ol, 3-methylfuran, 2-pentanone, dimethyl sulfide, dimethyl disulfide, nitromethane, 1,3-octadiene…) was the highest in the early stage of growth. However, these emissions decreased substantially after a cultivation time of 10-14 days and were highly affected by the relative humidity. In addition, the emissions of certain mVOCs were sensitive to indoor light, suggesting an impact of photochemistry on the relative amounts of indoor mVOCs. Based on this study, an estimation of the mVOC concentration for a standard living room was established at different air exchange rates and their indoor lifetimes toward hydroxyl radicals and ozone were also estimated. These findings give insights on possible mVOCs levels in moisture-damaged buildings for an early detection of microbial activity and new evidences about the effect of indoor light on their emission.
Collapse
Affiliation(s)
- Carmen Kalalian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Letizia Abis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Antoine Depoorter
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Bastien Lunardelli
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Sébastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France.
| |
Collapse
|
14
|
Critical thresholds of 1-Octen-3-ol shape inter-species Aspergillus interactions modulating the growth and secondary metabolism. Sci Rep 2020; 10:11116. [PMID: 32632328 PMCID: PMC7338521 DOI: 10.1038/s41598-020-68096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In fungi, contactless interactions are mediated via the exchange of volatile organic compounds (VOCs). As these pair-wise interactions are fundamental to complex ecosystem, we examined the effects of inter-species VOCs trade-offs in Aspergillus flavus development. First, we exposed A. flavus to the A. oryzae volatilome (Treatment-1) with highest relative abundance of 1-Octen-3-ol (~ 4.53 folds) among the C-8 VOCs. Further, we examined the effects of gradient titers of 1-Octen-3-ol (Treatment-2: 100–400 ppm/day) in a range that elicits natural interactions. On 7-day, VOC-treated A. flavus displayed significantly reduced growth and sclerotial counts (p < 0.01) coupled with higher conidial density (T2100-200 ppm/day, p < 0.01) and α-amylase secretion (T2200 ppm/day, p < 0.01), compared to the untreated sets. Similar phenotypic trends except for α-amylases were evident for 9-day incubated A. flavus in T2. The corresponding metabolomics data displayed a clustered pattern of secondary metabolite profiles for VOC-treated A. flavus (PC1-18.03%; PC2-10.67%). Notably, a higher relative abundance of aflatoxin B1 with lower levels of most anthraquinones, indole-terpenoids, and oxylipins was evident in VOC-treated A. flavus. The observed correlations among the VOC-treatments, phenotypes, and altered metabolomes altogether suggest that the distant exposure to the gradient titers of 1-Octen-3-ol elicits an attenuated developmental response in A. flavus characterized by heightened virulence.
Collapse
|
15
|
Erler A, Riebe D, Beitz T, Löhmannsröben HG, Grothusheitkamp D, Kunz T, Methner FJ. Characterization of volatile metabolites formed by molds on barley by mass and ion mobility spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4501. [PMID: 31945247 DOI: 10.1002/jms.4501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS.
Collapse
Affiliation(s)
- Alexander Erler
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Daniel Riebe
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Toralf Beitz
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Hans-Gerd Löhmannsröben
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Daniela Grothusheitkamp
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestr. 13, 13353 Berlin, Germany
| | - Thomas Kunz
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestr. 13, 13353 Berlin, Germany
| | - Frank-Jürgen Methner
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestr. 13, 13353 Berlin, Germany
| |
Collapse
|
16
|
Paulsen E, Andersen F. Fragrant and sticky allergens from the pinewood: Cohabiting and coreacting. Contact Dermatitis 2019; 81:374-377. [PMID: 31281968 DOI: 10.1111/cod.13348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tree moss (Pseudevernia furfuracea [L.] Zopf.), a lichen growing on conifers, is a frequent fragrance sensitizer. Previous studies have shown two subgroups of tree moss-allergic patients: a group sensitized to common allergens of tree and oak moss (Evernia prunastri), and another group sensitized to colophonium-derived allergens, which may contaminate tree moss extract. OBJECTIVES To report the results of including tree moss extract in the baseline series and discuss the clinical implications. METHODS Tree moss extract was included in the baseline series and sensitized patients were assessed for concomitant allergy to colophonium and oak moss, and the relevance of these reactions was analyzed. RESULTS Altogether, 22 of 632 patients (3.5%) had positive reactions to tree moss. Eight patients were sensitized to tree moss only (among fragrance allergens) and 75% had relevant reactions to colophonium. Fourteen patients were sensitized to other fragrance allergens as well and 28.5% had relevant colophonium reactions. CONCLUSIONS The prevalence of positive tree moss reactions is high enough to justify its inclusion in the baseline series. If tree moss is not included, patients with positive colophonium reactions should be informed of possible (false) cross-reactivity to tree moss to avoid this labeled fragrance allergen.
Collapse
Affiliation(s)
- Evy Paulsen
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
17
|
Singh D, Lee S, Lee CH. Fathoming Aspergillus oryzae metabolomes in formulated growth matrices. Crit Rev Biotechnol 2019; 39:35-49. [PMID: 30037282 DOI: 10.1080/07388551.2018.1490246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
The stochasticity of Aspergillus oryzae (Trivially: the koji mold) pan-metabolomes commensurate with its ubiquitously distributed landscapes, i.e. growth matrices have been seemed uncharted since its food fermentative systems are mostly being investigated. In this review, we explicitly have discussed the likely tendencies of A. oryzae metabolomes pertaining to its growth milieu formulated with substrate matrices of varying nature, composition, texture, and associated physicochemical parameters. We envisaged typical food matrices, namely, meju, koji, and moromi as the semi-natural cultivation models toward delineating the metabolomic patterns of the koji mold, which synergistically influences the organoleptic and functional properties of the end products. Further, we highlighted how tailored conditions in sub-natural growth matrices, i.e. synthetic cultivation media blends, inducers, and growth surfaces, may influence A. oryzae metabolomes and targeted phenotypes. In general, the sequential or synchronous growth of A. oryzae on formulated matrices results in a number of metabolic tradeoffs with its immediate microenvironment influencing its adaptive and regulatory metabolomes. In broader context, evaluating the metabolic plasticity of A. oryzae relative to the tractable variables in formulated growth matrices might help approximate its growth and metabolism in the more complex natural matrices and environs. These approaches may considerably help in the design and manipulation of hybrid cultivation systems towards the efficient harnessing of commercial molds.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
18
|
Baptista I, Santos M, Rudnitskaya A, Saraiva JA, Almeida A, Rocha SM. A comprehensive look into the volatile exometabolome of enteroxic and non-enterotoxic Staphylococcus aureus strains. Int J Biochem Cell Biol 2019; 108:40-50. [PMID: 30648622 DOI: 10.1016/j.biocel.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/06/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023]
Abstract
Staphylococcal food poisoning is a disease that originates significant health and economic losses and is caused by Staphylococcus aureus strains able to produce enterotoxins. The aim of this work is to go further on the study of the volatile exometabolome of S. aureus using an advanced gas chromatographic technique. Enterotoxic and non-enterotoxic strains were assessed. The volatile exometabolome profile comprised 240 volatiles belonging to ten chemical families. This volatiles were mainly by-products of branched-chain amino acids and methionine degradation, pyruvate metabolism, diacetyl pathway, oxidative stress and carotenoid cleavage. Metabolites released by the first two pathways were produced in higher contents by the enterotoxic strains. This study add further insights to S. aureus volatile exometabolome, and also shows that by applying it, it is possible to distinguish strains of S. aureus by the number of produced enterotoxins, which is especially important from the food safety point of view.
Collapse
Affiliation(s)
- Inês Baptista
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Magda Santos
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Alisa Rudnitskaya
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Jorge A Saraiva
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sílvia M Rocha
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Chaves-Lopez C, Nguyen HN, Oliveira RC, Nadres ET, Paparella A, Rodrigues DF. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles. NANOSCALE 2018; 10:20702-20716. [PMID: 30398279 DOI: 10.1039/c8nr06470a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study compares for the first time the effects of h-MoO3 and α-MoO3 against two fungal strains: Aspergillus niger and Aspergillus flavus. The h-MoO3 nanoparticles were more toxic to both fungi than α-MoO3. The toxic effects of h-MoO3 were more pronounced toward A. flavus, which presented a growth inhibition of 67.4% at 200 mg L-1. The presence of the nanoparticles affected drastically the hyphae morphology by triggering nuclear condensation and compromising the hyphae membrane. Further analysis of the volatile organic compounds (VOCs) produced by both fungi in the presence of the nanomaterials indicated important metabolic changes related to programmed cell death. These nanomaterials induced the production of specific antifungal VOCs, such as β-Elemene and t-Cadinol, by the fungi. The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, naphthol-As-BI-phosphohydrolase, β-galactosidase, β-glucosidase and N-acetyl-β-glucosaminidase, reduced significantly in the presence of the nanomaterials. The changes in enzymatic production and VOCs corroborate the fact that these nanoparticles, especially h-MoO3, exert changes in the fungal metabolism, triggering apoptotic-like cell death responses in these fungi.
Collapse
Affiliation(s)
- Clemencia Chaves-Lopez
- Facoltà di Bioscenze e Tecnologie Agroalimentari ed ambientali, Università degli Studi di Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
21
|
Erler A, Riebe D, Beitz T, Löhmannsröben HG, Grothusheitkamp D, Kunz T, Methner FJ. Detection of volatile organic compounds in the headspace above mold fungi by GC-soft X-radiation-based APCI-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:911-920. [PMID: 29896877 DOI: 10.1002/jms.4210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/09/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Mold fungi on malting barley grains cause major economic loss in malting and brewery facilities. Possible proxies for their detection are volatile and semivolatile metabolites. Among those substances, characteristic marker compounds have to be identified for a confident detection of mold fungi in varying surroundings. The analytical determination is usually performed through passive sampling with solid phase microextraction, gas chromatographic separation, and detection by electron ionization mass spectrometry (EI-MS), which often does not allow a confident determination due to the absence of molecular ions. An alternative is GC-APCI-MS, generally, allowing the determination of protonated molecular ions. Commercial atmospheric pressure chemical ionization (APCI) sources are based on corona discharges, which are often unspecific due to the occurrence of several side reactions and produce complex product ion spectra. To overcome this issue, an APCI source based on soft X-radiation is used here. This source facilitates a more specific ionization by proton transfer reactions only. In the first part, the APCI source is characterized with representative volatile fungus metabolites. Depending on the proton affinity of the metabolites, the limits of detection are up to 2 orders of magnitude below those of EI-MS. In the second part, the volatile metabolites of the mold fungus species Aspergillus, Alternaria, Fusarium, and Penicillium are investigated. In total, 86 compounds were found with GC-EI/APCI-MS. The metabolites identified belong to the substance classes of alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, terpenes, and sesquiterpenes. In addition to substances unspecific for the individual fungus species, characteristic patterns of metabolites, allowing their confident discrimination, were found for each of the 4 fungus species. Sixty-seven of the 86 metabolites are detected by X-ray-based APCI-MS alone. The discrimination of the fungus species based on these metabolites alone was possible. Therefore, APCI-MS in combination with collision induced dissociation alone could be used as a supervision method for the detection of mold fungi.
Collapse
Affiliation(s)
- A Erler
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - D Riebe
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - T Beitz
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - H-G Löhmannsröben
- Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - D Grothusheitkamp
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestr. 13, Berlin, 13353, Germany
| | - T Kunz
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestr. 13, Berlin, 13353, Germany
| | - F-J Methner
- Department of Food Technology and Food Chemistry, Technische Universität Berlin, Seestr. 13, Berlin, 13353, Germany
| |
Collapse
|
22
|
Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach. Eur J Clin Microbiol Infect Dis 2018; 37:1393-1403. [DOI: 10.1007/s10096-018-3251-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
|
23
|
Singh D, Lee CH. Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes. Front Microbiol 2018; 9:628. [PMID: 29670599 PMCID: PMC5893800 DOI: 10.3389/fmicb.2018.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD), is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs) mediated interactions (VMI) pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1VMI: KACC 44967) opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345), conditioning VMI in a specially designed “twin plate assembly.” Notably, SD in S1VMI was delayed relative to its non-conditioned control (S1) cultivated without partner strain (S2) in twin plate. Selectively evaluating A. oryzae RIB 40 (S1VMI vs. S1) for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1VMI < S1)7days, media pH (S1VMI > S1)7days, and biochemical characteristics viz., protease (S1VMI > S1)7days, amylase (S1VMI > nS1)3–7days, and antioxidants (S1VMI > S1)7days levels. The partial least squares—discriminant analysis (PLS-DA) of gas chromatography—time of flight—mass spectrometry (GC-TOF-MS) datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%), with 7 days incubated S1VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1VMI. Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02%) based on liquid chromatography—mass spectrometry (LC-MS) datasets exhibited a notable disparity for post-SD (9–11 days) sample extracts with higher oxylipins and 13-desoxypaxilline levels in S1VMI relative to S1, intertwining Aspergillus morphogenesis and secondary metabolism. The analysis of VOCs for the 7 days incubated samples displayed considerably higher accumulation of C-8 compounds in the headspace of twin-plate experimental sets (S1VMI:S2) compared to those in non-conditioned controls (S1 and S2—without respective partner strains), potentially triggering altered morpho-transformation and concurring biochemical as well as metabolic states in molds.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Choong H Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
24
|
Rees CA, Burklund A, Stefanuto PH, Schwartzman JD, Hill JE. Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J Breath Res 2018; 12:026001. [PMID: 28952968 PMCID: PMC5832594 DOI: 10.1088/1752-7163/aa8f7f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of pathogen-specific volatile metabolic 'fingerprints' could lead to the rapid identification of disease-causing organisms either directly from ex vivo patient bio-specimens or from in vitro cultures. In the present study, we have evaluated the volatile metabolites produced by 100 clinical isolates belonging to ten distinct pathogen groups that, in aggregate, account for 90% of bloodstream infections, 90% of urinary tract infections, and 80% of infections encountered in the intensive care unit setting. Headspace volatile metabolites produced in vitro were concentrated using headspace solid-phase microextraction and analyzed via two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). A total of 811 volatile metabolites were detected across all samples, of which 203 were: (1) detected in 9 or 10 (of 10) isolates belonging to one or more pathogen groups, and (2) significantly more abundant in cultures relative to sterile media. Network analysis revealed a distinct metabolic fingerprint associated with each pathogen group, and analysis via Random Forest using leave-one-out cross-validation resulted in a 95% accuracy for the differentiation between groups. The present findings support the results of prior studies that have reported on the differential production of volatile metabolites across pathogenic bacteria and fungi, and provide additional insight through the inclusion of pathogen groups that have seldom been studied previously, including Acinetobacter spp., coagulase-negative Staphylococcus, and Proteus mirabilis, as well as the utilization of HS-SPME-GC×GC-TOFMS for improved sensitivity and resolution relative to traditional gas chromatography-based techniques.
Collapse
Affiliation(s)
| | - Alison Burklund
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | | | - Joseph D Schwartzman
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Jane E Hill
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Ahmed WM, Geranios P, White IR, Lawal O, Nijsen TM, Bromley MJ, Goodacre R, Read ND, Fowler SJ. Development of an adaptable headspace sampling method for metabolic profiling of the fungal volatome. Analyst 2018; 143:4155-4162. [DOI: 10.1039/c8an00841h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Culture headspace sampling and analysis of aspergillus fumigatus volatile metabolites by TD-GC-MS.
Collapse
Affiliation(s)
| | | | - Iain R. White
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- UK
| | | | | | | | - Royston Goodacre
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- UK
| | - Nick D. Read
- School of Biological Sciences
- University of Manchester
- UK
| | - Stephen J. Fowler
- School of Biological Sciences
- University of Manchester
- UK
- Manchester Academic Health Science Centre
- Manchester University Hospitals NHS Foundation Trust
| |
Collapse
|
26
|
Cardoso P, Santos M, Freitas R, Rocha SM, Figueira E. Response of Rhizobium to Cd exposure: A volatile perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:802-811. [PMID: 28865386 DOI: 10.1016/j.envpol.2017.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The volatile metabolome of Rhizobium sp. strain E20-8 exposed to three concentrations of cadmium (2.5, 5.0 and 7.5 μM) was screened using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-ToFMS), combined with headspace solid phase microextraction (HS-SPME). Cd exposure induced a global increase in the concentration of volatile organic compounds (VOCs) both intra and extracellularly. Peak areas of several linear alkanes, ketones, aldehydes, alcohols, terpenic and volatile sulfur compounds, and one ester (ethyl acetate), were especially increased when compared with the control condition (no Cd). These compounds might originate from the metabolization of toxic membrane peroxidation products, the proteolysis of oxidized proteins or the alteration of metabolic pathways, resulting from the oxidative stress imposed by Cd. Several VOCs are related to oxidative damage, but the production of VOCs involved in antioxidant response (menthol, α-pinene, dimethyl sulfide, disulfide and trisulfide, 1-butanol and 2-butanone) and in cell aggregation (2,3-butanedione, 3-methyl-1-butanol and 2-butanone) is also observed. These results bring new information that highlights the role of VOCs on bacteria response to Cd stress, identify a novel set of biomarkers related with metal stress and provide information to be applied in biotechnological and remediation contexts.
Collapse
Affiliation(s)
- Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Magda Santos
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Sílvia M Rocha
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal.
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
27
|
Rees CA, Stefanuto PH, Beattie SR, Bultman KM, Cramer RA, Hill JE. Sniffing out the hypoxia volatile metabolic signature of Aspergillus fumigatus. J Breath Res 2017; 11:036003. [PMID: 28825403 DOI: 10.1088/1752-7163/aa7b3e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invasive aspergillosis (IA) is a life-threatening infectious disease caused by fungi from the genus Aspergillus, with an associated mortality as high as 90% in certain populations. IA-associated pulmonary lesions are characteristically depleted in oxygen relative to normal lung tissue, and it has been shown that the most common causal agent of IA, Aspergillus fumigatus, must respond to low-oxygen environments for pathogenesis and disease progression. Previous studies have demonstrated marked alterations to the Aspergillus fumigatus transcriptome in response to low-oxygen environments that induce a 'hypoxia response'. Consequently, we hypothesized that these transcriptomic changes would alter the volatile metabolome and generate a volatile hypoxia signature. In the present study, we analyzed the volatile molecules produced by A. fumigatus in both oxygen replete (normoxia) and depleted (hypoxia) environments via headspace solid-phase micro-extraction coupled to two-dimensional gas chromatography-time-of-flight mass spectrometry. Using the machine learning algorithm random forest, we identified 19 volatile molecules that were discriminatory between the four growth conditions assessed in this study (i.e., early hypoxia (1 h), late hypoxia (8 h), early normoxia (1 h), and late normoxia (8 h)), as well as a set of 19 that were discriminatory between late hypoxia cultures and all other growth conditions in aggregate. Nine molecules were common to both comparisons, while the remaining 20 were specific to only one of two. We assigned putative identifications to 13 molecules, of which six were most highly abundant in late hypoxia cultures. Previously acquired transcriptomic data identified putative biochemical pathways induced in hypoxia conditions that plausibly account for the production of a subset of these molecules, including 2,3-butanedione and 3-hydroxy-2-butanone. These two molecules may represent a novel hypoxia fitness pathway in A. fumigatus, and could be useful in the detection of hypoxia-associated A. fumigatus lesions that develop in established IA infections.
Collapse
Affiliation(s)
- Christiaan A Rees
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | | | | | | | | | | |
Collapse
|
28
|
Martins C, Brandão T, Almeida A, Rocha SM. Metabolomics strategy for the mapping of volatile exometabolome from Saccharomyces
spp. widely used in the food industry based on comprehensive two-dimensional gas chromatography. J Sep Sci 2017; 40:2228-2237. [DOI: 10.1002/jssc.201601296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Cátia Martins
- Departamento de Química & QOPNA; Universidade de Aveiro; Aveiro Portugal
- Departamento de Biologia & CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Tiago Brandão
- Unicer Bebidas, SA; Rua do Mosteiro; Leça do Balio Portugal
| | - Adelaide Almeida
- Departamento de Biologia & CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Sílvia M. Rocha
- Departamento de Química & QOPNA; Universidade de Aveiro; Aveiro Portugal
| |
Collapse
|