1
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Xiang ZD, Guan HD, Zhao X, Xie Q, Cai FJ, Xie ZJ, Dang R, Li ML, Wang CH. Protoberberine alkaloids: A review of the gastroprotective effects, pharmacokinetics, and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155444. [PMID: 38367423 DOI: 10.1016/j.phymed.2024.155444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-β1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.
Collapse
Affiliation(s)
- Ze-Dong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hui-Da Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Fu-Jie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Zhe-Jun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Man-Lin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| | - Chang-Hong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Dehau T, Cherlet M, Croubels S, Van De Vliet M, Goossens E, Van Immerseel F. Berberine-microbiota interplay: orchestrating gut health through modulation of the gut microbiota and metabolic transformation into bioactive metabolites. Front Pharmacol 2023; 14:1281090. [PMID: 38130410 PMCID: PMC10733463 DOI: 10.3389/fphar.2023.1281090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Berberine is an isoquinoline alkaloid found in plants. It presents a wide range of pharmacological activities, including anti-inflammatory and antioxidant properties, despite a low oral bioavailability. Growing evidence suggests that the gut microbiota is the target of berberine, and that the microbiota metabolizes berberine to active metabolites, although little evidence exists in the specific species involved in its therapeutic effects. This study was performed to detail the bidirectional interactions of berberine with the broiler chicken gut microbiota, including the regulation of gut microbiota composition and metabolism by berberine and metabolization of berberine by the gut microbiota, and how they contribute to berberine-mediated effects on gut health. As previous evidence showed that high concentrations of berberine may induce dysbiosis, low (0.1 g/kg feed), middle (0.5 g/kg feed) and high (1 g/kg feed) doses were here investigated. Low and middle doses of in-feed berberine stimulated potent beneficial bacteria from the Lachnospiraceae family in the large intestine of chickens, while middle and high doses tended to increase villus length in the small intestine. Plasma levels of the berberine-derived metabolites berberrubine, thalifendine and demethyleneberberine were positively correlated with the villus length of chickens. Berberrubine and thalifendine were the main metabolites of berberine in the caecum, and they were produced in vitro by the caecal microbiota, confirming their microbial origin. We show that members of the genus Blautia could demethylate berberine into mainly thalifendine, and that this reaction may stimulate the production of short-chain fatty acids (SCFAs) acetate and butyrate, via acetogenesis and cross-feeding respectively. We hypothesize that acetogens such as Blautia spp. are key bacteria in the metabolization of berberine, and that berberrubine, thalifendine and SCFAs play a significant role in the biological effect of berberine.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Marc Cherlet
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michiel Van De Vliet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| |
Collapse
|
5
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
6
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends Microbiol 2022; 30:1084-1100. [PMID: 35697586 DOI: 10.1016/j.tim.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiome of neonates, infants, and toddlers (NITs) is very dynamic, and only begins to stabilize towards the third year of life. Within this period, exposure to xenobiotics may perturb the gut environment, thereby driving or contributing to microbial dysbiosis, which may negatively impact health into adulthood. Despite exposure of NITs globally, but especially in Africa, to copious amounts and types of xenobiotics - such as mycotoxins, pesticide residues, and heavy metals - little is known about their influence on the early-life microbiome or their effects on acute or long-term health. Within the African context, the influence of fermented foods, herbal mixtures, and the delivery environment on the early-life microbiome are often neglected, despite being potentially important factors that influence the microbiome. Consequently, data on in-depth understanding of the microbiome-exposome interactions is lacking in African cohorts. Collecting and evaluating such data is important because exposome-induced gut dysbiosis could potentially favor disease progression.
Collapse
|
8
|
Khoshandam A, Imenshahidi M, Hosseinzadeh H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother Res 2022; 36:4063-4079. [PMID: 36221815 DOI: 10.1002/ptr.7589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Barberry (Berberis vulgaris L.) is a medicinal plant and its main constituent is an isoquinoline alkaloid named berberine that has multiple pharmacological effects such as antioxidant, anti-microbial, antiinflammatory, anticancer, anti-diabetes, anti-dyslipidemia, and anti-obesity. However, it has restricted clinical uses due to its very poor solubility and bioavailability (less than 1%). It undergoes demethylenation, reduction, and cleavage of the dioxymethylene group in the first phase of metabolism. Its phase two reactions include glucuronidation, sulfation, and methylation. The liver is the main site for berberine distribution. Berberine could excrete in feces, urine, and bile. Fecal excretion of berberine (11-23%) is higher than urinary and biliary excretion routes. However, a major berberine metabolite is excreted in urine greater than in feces. Concomitant administration of berberine with other drugs such as metformin, cyclosporine A, digoxin, etc. may result in important interactions. Thus, in this review, we gathered and dissected any related animal and human research articles regarding the pharmacokinetic parameters of berberine including bioavailability, metabolism, distribution, excretion, and drug-drug interactions. Also, we discussed and gathered various animal and human studies regarding the developed products of berberine with better bioavailability and consequently, better therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Xiao G, Zheng L, Yan X, Gong L, Yang Y, Qi Q, Zhang X, Zhang H. Effects of Dietary Essential Oils Supplementation on Egg Quality, Biochemical Parameters, and Gut Microbiota of Late-Laying Hens. Animals (Basel) 2022; 12:ani12192561. [PMID: 36230302 PMCID: PMC9558990 DOI: 10.3390/ani12192561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to explore the effects of adding essential oils (EO) to diets on egg quality, biochemical parameters and intestinal flora of late laying hens. The number of 252 Dawu Golden Phoenix laying hens (55 weeks old) were randomly sorted into two groups: the control group (CG) fed a basal diet and the EO group fed a basal diet with 300 mg/kg of essential oils. The average egg weight, feed-to-egg ratio, and egg production rate were determined every week. The trial started at week 55 and lasted for 8 weeks. During the experiment’s last week, 36 eggs out of each group were chosen at random to test. In our study, dietary supplementation with EO considerably decreased the egg breaking rate (p = 0.01) and increased the shell-breaking strength (p = 0.04). The treatment group’s alanine aminotransferase (ALT) levels were considerably lower than those of the control group (p = 0.03). The EO group had substantially higher total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) (p = 0.04 and p =0.03, respectively). However, there were no differences in alpha diversity indicators between the two groups. It is worth noting that Firmicutes were increased considerably (p < 0.05), while Spirochaetota and Proteobacteria were significantly reduced in the EO group. At genus levels, the EO supplementation increased the relative abundance of Intestinimonas (p < 0.05) and Megamonas (p < 0.01). In conclusion, a dietary supplementation of 300 mg/kg EO can improve the production performance of laying hens and the egg quality. It can also regulate the abundance of cecal flora and serum biochemical indicators.
Collapse
Affiliation(s)
- Gengsheng Xiao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Liwei Zheng
- Guangdong Guangken Animal Husbandry Engineering Research Institute, Guangzhou 510000, China
| | - Xia Yan
- Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Li Gong
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yang Yang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Xiangbin Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (H.Z.)
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
- Correspondence: (X.Z.); (H.Z.)
| |
Collapse
|
10
|
Wang X, Chen Z, Qiao S, Zhu Q, Zuo Z, Guo B. Analysis of Alterations of the Gut Microbiota in Moderate to Severe Psoriasis Patients Using 16S rRNA Gene Sequencing. Indian J Dermatol 2022; 67:495-503. [PMID: 36865841 PMCID: PMC9971763 DOI: 10.4103/ijd.ijd_297_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Background Psoriasis is an inflammatory skin disease. The correlation between intestinal microbiota and immune-mediated diseases makes scientists pay attention to the pathogenic role of microbiota. Objective The aim of this study was to identify the gut microbial composition of patients with psoriasis. Methods 16S rRNA gene sequencing method was used to analyse the faecal samples which was collected from 28 moderately severe psoriasis patients and 21 healthy controls and was followed by the analysing of informatics methods. Results No visible differences can be observed in the diversity of gut microbiota between the psoriasis and the healthy patients, but the composition of the gut microbiota illustrate significant distinction between these two groups. At the phylum level, compared to the healthy control group, the psoriasis group shows higher relative abundance of Bacteroidetes and lower relative abundance of Proteobacteria (P < 0.05). At the genus level, unidentified_Enterobacteriaceae, unidentified_Lachnospiraceae, Romboutsia, Subdoligranulum, unidentified_Erysipelotrichaceae, Dorea were relatively less abundant in psoriasis patients, whereas Lactobacillus, Dialister were relatively more abundant in psoriasis group (all P < 0.05). LefSe analysis (linear discriminant analysis effect size) indicated that Negativicutes and Bacteroidia were potential biomarkers for psoriasis. Conclusion This study identified the intestinal microecological environment of patients with psoriasis and healthy people, proving that psoriasis patients have a remarkably disturbed microbiome, and found several biomarkers of intestinal microorganisms in patients with psoriasis.
Collapse
Affiliation(s)
- Xiaomeng Wang
- From the Department of Dermatology, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Zheng Chen
- From the Department of Dermatology, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Song Qiao
- From the Department of Dermatology, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Qiming Zhu
- From the Department of Dermatology, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Zongbao Zuo
- Department of Plastic Surgery, The Second People's Hospital of Anhui Province, Hefei, Anhui, China
| | - Birong Guo
- From the Department of Dermatology, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, Anhui, China
| |
Collapse
|
11
|
Madhogaria B, Bhowmik P, Kundu A. Correlation between human gut microbiome and diseases. INFECTIOUS MEDICINE 2022; 1:180-191. [PMID: 38077626 PMCID: PMC10699709 DOI: 10.1016/j.imj.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Human gut microbiome is a major source of human bacterial population and a significant contribution to both positive and harmful effects. Due to its involvement in a variety of interactions, gut microorganisms have a great impact on our health throughout our lives. The impact of gut microbial population is been studied intensively in last two decades. Extensive literature survey focusing developments in the field were searched in English language Electronic Databases like PubMed, Google Scholar, Pubag, Google books, and Research Gate were mostly used to understand the role of human gut mirobiome and its role in different human diseases. Gut microbiome in healthy subjects differs from those who suffer from diseases. Type 2 diabetes, obesity, non-alcoholic liver disease, and cardiometabolic diseases have all been linked to dysbiosis of the gut microbiota. Pathogenesis of many disorders is also linked to changes in gut microbiota. Other diseases like cancer, arithritis, autism, depression, anxiety, sleep disorder, HIV, hypertension, and gout are also related to gut microbiota dysbiosis. We focus in this review on recent studies looking into the link between gut microbiome dysbiosis and disease etiology. Research on how gut microbiota affects host metabolism has been changed in past decades from descriptive analyses to high throughput integrative omics data analysis such as metagenomics and metabolomics. Identification of molecular mechanisms behind reported associations is been carried out in human, animals, and cells for measure of host physiology and mechanics. Still many the mechanisms are not completely understood.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Priyanka Bhowmik
- Department of Biological Sciences, Adamas University, Barrackpore-Barasat Road, 24 Paragnas North, Jagannathpur, Kolkata, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
12
|
Effects of Berberine on Liver Cancer. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Liver cancer, otherwise known as hepatocellular carcinoma, is a chronic disease condition with an excessive deposition and growth of malignant cells in the body. The high incidence and prevalence rates of liver cancer continue to be problems, as well as its poor prognosis and therapeutic limitations involving severe drug adverse reactions linked to the use of synthetic chemotherapeutic compounds. Continuous experimental studies, as well as utilization of pure herbal-based compounds, are essential towards finding more potent cures for liver cancer. Natural bioactive compounds, particularly alkaloids (eg, berberine), have been shown to be highly beneficial in the treatment of various diseases. Berberine (BBR), an isoquinoline alkaloid, is obtained from stem, bark, roots, rhizomes, and leaves of several medicinal plants, including Berberis species. It is commonly synthesized from the benzyltetrahydroisoquinoline system with the incorporation of an additional carbon atom as a bridge. The multiple attributes of BBR involving effective inhibitory and cytotoxic actions against the proliferation of cancer cells have been demonstrated. The use of BBR in experimental studies (in vivo and in vitro) for over a decade for liver cancer treatment has proven to be highly effective, safe, and potent. Until now, the poor solubility of BBR remains one of the contributing factors leading to its minimal clinical bioavailability. Therefore, BBR could serve as a prospective drug candidate in the future towards drug formulation for liver cancer treatment. The relevant information regarding this review was obtained electronically through the use of databases such as PubMed, Google Scholar, Springer, Hindawi, Embase, Web of Science, and China National Knowledge Infrastructure. All the aforementioned databases were searched from 1981 to 2020. This literature represents an update of previous review papers discussing the various positive pharmacological and mechanistic effects (oxidative stress regulation, inflammation reduction, apoptosis activation, overcoming drug resistance, and metastasis inhibition) of BBR for liver cancer treatment, which would be of great significance to drug development and clinical research.
Collapse
|
13
|
Lee CK, Zhang S, Venkatesan G, Lim I, Chong SY, Wang JW, Goh WJ, Panczyk T, Tay YZ, Hu J, Ng WK, Wacker MG, Toh WS, Pastorin G. Enhanced skin penetration of berberine from proniosome gel attenuates pain and inflammation in a mouse model of osteoarthritis. Biomater Sci 2022; 10:1752-1764. [DOI: 10.1039/d1bm01733k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dermal delivery of bioactive molecules remains an attractive route of administration in osteoarthritis (OA) due to the local accumulation of drugs while avoiding their systemic side effects. In this study...
Collapse
|
14
|
He Q, Dong H, Guo Y, Gong M, Xia Q, Lu F, Wang D. Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1074348. [PMID: 36465656 PMCID: PMC9715767 DOI: 10.3389/fendo.2022.1074348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications are major public health problems that seriously affect the quality of human life. The modification of intestinal microbiota has been widely recognized for the management of diabetes. The relationship between T2DM, intestinal microbiota, and active ingredient berberine (BBR) in intestinal microbiota was reviewed in this paper. First of all, the richness and functional changes of intestinal microbiota disrupt the intestinal environment through the destruction of the intestinal barrier and fermentation/degradation of pathogenic/protective metabolites, targeting the liver, pancreas, visceral adipose tissue (VAT), etc., to affect intestinal health, blood glucose, and lipids, insulin resistance and inflammation. Then, we focus on BBR, which protects the composition of intestinal microbiota, the changes of intestinal metabolites, and immune regulation disorder of the intestinal environment as the therapeutic mechanism as well as its current clinical trials. Further research can analyze the mechanism network of BBR to exert its therapeutic effect according to its multi-target compound action, to provide a theoretical basis for the use of different phytochemical components alone or in combination to prevent and treat T2DM or other metabolic diseases by regulating intestinal microbiota.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fuer Lu, ; Dingkun Wang,
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Fuer Lu, ; Dingkun Wang,
| |
Collapse
|
15
|
Lohan S, Sharma T, Saini S, Singh A, Kumar A, Raza K, Kaur J, Singh B. Galactosylated nanoconstructs of Berberine with enhanced Biopharmaceutical and cognitive potential: A preclinical evidence in Alzheimer ‘s disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
17
|
Zhao MM, Lu J, Li S, Wang H, Cao X, Li Q, Shi TT, Matsunaga K, Chen C, Huang H, Izumi T, Yang JK. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun 2021; 12:5616. [PMID: 34556670 PMCID: PMC8460738 DOI: 10.1038/s41467-021-25952-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet β-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels.
Collapse
Affiliation(s)
- Miao-Miao Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Sen Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Hao Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Xi Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China.
| |
Collapse
|
18
|
Preparation of magnetic yolk-shell structured metal-organic framework material and its application in pharmacokinetics study of alkaloids. Anal Bioanal Chem 2021; 413:6987-6999. [PMID: 34535814 DOI: 10.1007/s00216-021-03656-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
In this study, a magnetic yolk-shell structured metal-organic framework material (Fe3O4@YS-UiO-66-NH2) is prepared by the directional etching of Co2+/peroxymonosulfate and in situ magnetization. The characteristic properties of the material were investigated by using field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometer, Brunauer-Emmett-Teller, and contact angle test. The Fe3O4@YS-UiO-66-NH2 shows the advantages of large surface area, good magnetic property, and satisfactory stability, as well as giving high affinity to alkaloids (ALs) via hydrophilic interaction, hydrogen bonding, and π-π interaction. The results of static adsorption experiment indicate that the Fe3O4@YS-UiO-66-NH2 possesses high adsorption capacity towards ALs and the adsorption behaviors are fitted with Langmuir adsorption isotherm model. Furthermore, a magnetic solid-phase extraction using Fe3O4@YS-UiO-66-NH2 and HPLC method was developed for the analysis of ALs in spiked samples with the recovery of 89.6-100.8%. In addition, the proposed method was successfully applied in the pharmacokinetics study of berberine, coptisine, and palmatine in the rat. In short, the developed method might be used for high-efficient recognition and determination of ALs in plasma sample, which would also provide a new way to fabricate magnetic functionalized metal-organic framework in separation science.
Collapse
|
19
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
20
|
Yang S, Li D, Yu Z, Li Y, Wu M. Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Front Pharmacol 2021; 12:709629. [PMID: 34305616 PMCID: PMC8299362 DOI: 10.3389/fphar.2021.709629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS), especially atherosclerotic cardiovascular diseases (ASCVDs), and metabolic diseases (such as diabetes, obesity, dyslipidemia, and nonalcoholic fatty liver disease) are major public health issues worldwide that seriously threaten human health. Exploring effective natural product-based drugs is a promising strategy for the treatment of AS and metabolic diseases. Berberine (BBR), an important isoquinoline alkaloid found in various medicinal plants, has been shown to have multiple pharmacological effects and therapeutic applications. In view of its low bioavailability, increasing evidence indicates that the gut microbiota may serve as a target for the multifunctional effects of BBR. Under the pathological conditions of AS and metabolic diseases, BBR improves intestinal barrier function and reduces inflammation induced by gut microbiota-derived lipopolysaccharide (LPS). Moreover, BBR reverses or induces structural and compositional alterations in the gut microbiota and regulates gut microbe-dependent metabolites as well as related downstream pathways; this improves glucose and lipid metabolism and energy homeostasis. These findings at least partly explain the effect of BBR on AS and metabolic diseases. In this review, we elaborate on the research progress of BBR and its mechanisms of action in the treatment of AS and metabolic diseases from the perspective of gut microbiota, to reveal the potential contribution of gut microbiota to the multifunctional biological effects of BBR.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Feng X, Wang K, Cao S, Ding L, Qiu F. Pharmacokinetics and Excretion of Berberine and Its Nine Metabolites in Rats. Front Pharmacol 2021; 11:594852. [PMID: 33584274 PMCID: PMC7874128 DOI: 10.3389/fphar.2020.594852] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Berberine, a well-known alkaloid, has been proved to possess various pharmacological activities. Previous studies demonstrated that berberine could be extensively metabolized and the metabolites also contributed to its therapeutic effects. However, as for berberine’s metabolites, especially phase II metabolites, pharmacokinetics and excretion studies were rarely reported. The objective of this study was to thoroughly investigate the pharmacokinetic and excretion profiles of berberine and its nine metabolites, namely, berberrubine (M1), demethyleneberberine (M2), jatrorrhizine (M3), jatrorrhizine-3-O-β-D-glucuronide (M4), jatrorrhizine-3-O-sulfate (M5), thalfendine-10-O-β-D-glucuronide (M6), berberrubine-9-O-β-D-glucuronide (M7), demethyleneberberine-2-O-sulfate (M8) and demethyleneberberine-2-O-β-D-glucuronide (M9) in rats. An accurate and reliable LC-MS/MS method was developed and validated for the determination of berberine and its nine metabolites in rat biosamples. Pharmacokinetic profiles of berberine and its nine metabolites were obtained after a single intravenous administration (4.0 mg/kg) and oral administration (48.2, 120 or 240 mg/kg) of berberine in rats. For excretion study, rats were intragastrically administered a single dose of 48.2 mg/kg berberine. Our results showed that berberine could be metabolized rapidly and all the nine metabolites could be detected in vivo. The absolute bioavailability of berberine was 0.37 ± 0.11%. As for the AUC0–48 h values, phase II metabolites were much higher than those of phase I metabolites, suggesting that phase II metabolites were the major metabolites exist in blood circulation. 18.6% of the berberine was excreted in feces as berberrubine (M1). The total recovery of berberine and its nine metabolites from urine, bile and feces was 41.2%. This is the first systematic study about the pharmacokinetics and excretion of berberine and its nine metabolites, which will be beneficial for both better understanding the clinical effects and further development of berberine.
Collapse
Affiliation(s)
- Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, Salehi B, Cruz-Martins N, Abdulwanis Mohamed Z, Sani Jaafaru M, Abdull Razis AF, Sharifi-Rad J. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power. Front Mol Biosci 2021; 7:624494. [PMID: 33521059 PMCID: PMC7843460 DOI: 10.3389/fmolb.2020.624494] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/11/2020] [Indexed: 02/03/2023] Open
Abstract
Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | | | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Office of Research Innovation and Commercialization, Lahore Garrison University, Sector-C Phase VI, Defense Housing Authority (DHA), Lahore, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Zeinab Abdulwanis Mohamed
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammed Sani Jaafaru
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
23
|
Quasi-Irreversible Inhibition of CYP2D6 by Berberine. Pharmaceutics 2020; 12:pharmaceutics12100916. [PMID: 32987920 PMCID: PMC7600264 DOI: 10.3390/pharmaceutics12100916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In our previous study, Hwang-Ryun-Hae-Dok-Tang, which contains berberine (BBR) as a main active ingredient, inhibited cytochrome P450 (CYP) 2D6 in a quasi-irreversible manner. However, no information is available on the detailed mechanism of BBR-induced CYP2D6 inhibition. Thus, the present study aimed to characterize the inhibition mode and kinetics of BBR and its analogues against CYP2D6 using pooled human liver microsomes (HLM). BBR exhibited selective quasi-irreversible inhibition of CYP2D6 with inactivation rate constant (kinact) of 0.025 min−1, inhibition constant (KI) of 4.29 µM, and kinact/KI of 5.83 mL/min/µmol. In pooled HLM, BBR was metabolized to thalifendine (TFD), demethyleneberberine (DMB), M1 (proposed as demethylene-TFD), and to a lesser extent berberrubine (BRB), showing moderate metabolic stability with a half-life of 35.4 min and a microsomal intrinsic clearance of 7.82 µL/min/mg protein. However, unlike BBR, those metabolites (i.e., TFD, DMB, and BRB) were neither selective nor potent inhibitors of CYP2D6, based on comparison of half-maximal inhibitory concentration (IC50). Notably, TFD, but not DMB, exhibited metabolism-dependent CYP2D6 inhibition as in the case of BBR, which suggests that methylenedioxybenzene moiety of BBR may play a critical role in the quasi-irreversible inhibition. Moreover, the metabolic clearance of nebivolol (β-blocker; CYP2D6 substrate) was reduced in the presence of BBR. The present results warrant further evaluation of BBR–drug interactions in clinical situations.
Collapse
|
24
|
Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics 2020; 10:11278-11301. [PMID: 33042283 PMCID: PMC7532689 DOI: 10.7150/thno.47289] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Intra- and interindividual variation in drug responses is one major reason for the failure of drug therapy, drug toxicity, and even the death of patients. Precision medicine, or personalized medicine, is a field of medicine that customizes an individual's medical diagnosis and treatment based on his/her genes, microbiomes, environments, etc. Over the past decade, a large number of studies have demonstrated that gut microbiota can modify the efficacy and toxicity of drugs, and the extent of the modification varies greatly from person to person because of the variability of the gut microbiota. Personalized manipulation of gut microbiota is an important approach to rectify the abnormal drug response. In this review, we aim to improve drug efficacy and reduce drug toxicity by combining precision medicine and gut microbiota. After describing the interactions between gut microbiota and xenobiotics, we discuss (1) the effects of gut microbiota on drug efficacy and toxicity and the corresponding mechanisms, (2) the variability of gut microbiota, which leads to variation in drug responses, (3) the biomarkers used for the patient stratification and treatment decisions before the use of drugs, and (4) the methods used for the personalized manipulation of gut microbiota to improve drug outcomes. Overall, we hope to improve the drug response by incorporating the knowledge of gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Mari G, De Crescentini L, Benedetti S, Palma F, Santeusanio S, Mantellini F. Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells. Beilstein J Org Chem 2020; 16:1606-1616. [PMID: 32704327 PMCID: PMC7356317 DOI: 10.3762/bjoc.16.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023] Open
Abstract
Dihydroberberine (DHBER), the partially reduced form of the alkaloid berberine (BER), is known to exhibit important biological activities. Despite this fact, there have been only few studies that concern the biological properties of functionalized DHBER. Attracted by the potentiality of this latter compound, we have realized the preparation of new arylhydrazono-functionalized DHBERs, starting from BER and some α-bromohydrazones. On the other hand, also the fully reduced form of BER, namely tetrahydroberberine (THBER), and its derivatives have proven to present different biological activities. Therefore, the obtained arylhydrazono-functionalized DHBERs were reduced to the corresponding arylhydrazono-THBERs. The antiproliferative activity of both arylhydrazono-DHBERs and -THBERs has been evaluated on NCI-H1975 lung cancer cells.
Collapse
Affiliation(s)
- Giacomo Mari
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Lucia De Crescentini
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Serena Benedetti
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Saffi 2, 61029 Urbino, Italy
| | - Francesco Palma
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Saffi 2, 61029 Urbino, Italy
| | - Stefania Santeusanio
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Fabio Mantellini
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| |
Collapse
|
26
|
Habtemariam S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol Res 2020; 155:104722. [PMID: 32105754 DOI: 10.1016/j.phrs.2020.104722] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Berberine is a natural pentacyclic isoquinoline alkaloid that has been isolated as the principal component of many popular medicinal plants such as the genus Berberis, Coptis and Hydrastis. The multifunctional nature of berberine as a therapeutic agent is an attribute of its diverse effects on enzymes, receptors and cell signalling pathways. Through specific and general antioxidant and anti-inflammatory mechanisms, its polypharmacology has been established. Intriguingly, this is despite the poor bioavailability of berberine in animal models and hence begging the question how it induces its reputed effects in vivo. A growing evidence now suggest the role of the gut microbiota, the so-called the hidden organ, as targets for the multifunctional role of berberine. Evidences are herein scrutinised to show that the structural and numerical changes in the gut microbiota under pathological conditions are reversed by berberine. Examples in the pharmacokinetics field, obesity, hyperlipidaemia, diabetes, cancer, inflammatory disease conditions, etc. are used to show the link between the gut microbiota and the polypharmacology of berberine.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
27
|
Zhang C, Sheng J, Li G, Zhao L, Wang Y, Yang W, Yao X, Sun L, Zhang Z, Cui R. Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review. Front Pharmacol 2020; 10:1461. [PMID: 32009943 PMCID: PMC6974675 DOI: 10.3389/fphar.2019.01461] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that berberine and its derivatives demonstrate important anti-tumor effects. However, the specific underlying mechanism remains unclear. Therefore, based on systems pharmacology, this review summarizes the information available on the anti-tumor effects and mechanism of berberine and its derivatives. The action and potential mechanism of action of berberine and its derivatives when used in the treatment of complex cancers are systematically examined at the molecular, cellular, and organismic levels. It is concluded that, with further in-depth investigations on their toxicity and efficacy, berberine and its derivatives have the potential for use as drugs in cancer therapy, offering improved clinical efficacy and safety.
Collapse
Affiliation(s)
- Chaohe Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Lihuan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Yue SJ, Wang WX, Yu JG, Chen YY, Shi XQ, Yan D, Zhou GS, Zhang L, Wang CY, Duan JA, Tang YP. Gut microbiota modulation with traditional Chinese medicine: A system biology-driven approach. Pharmacol Res 2019; 148:104453. [PMID: 31541688 DOI: 10.1016/j.phrs.2019.104453] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023]
Abstract
With the development of system biology, traditional Chinese medicine (TCM) is drawing more and more attention nowadays. However, there are still many enigmas behind this ancient medical system because of the arcane theory and complex mechanism of actions. In recent decades, advancements in genome sequencing technologies, bioinformatics and culturomics have led to the groundbreaking characterization of the gut microbiota, a 'forgotten organ', and its role in host health and disease. Notably, gut microbiota has been emerging as a new avenue to understanding TCM. In this review, we will focus on the structure, composition, functionality and metabolites of gut microbiota affected by TCM so as to conversely understand its theory and mechanisms. We will also discuss the potential areas of gut microbiota for exploring Chinese material medica waste, Chinese marine material medica, add-on therapy and personalized precise medication of TCM. The review will conclude with future perspectives and challenges of gut microbiota in TCM intervention.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266000, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jin-Gao Yu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Yan
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266000, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
29
|
Pryor R, Martinez-Martinez D, Quintaneiro L, Cabreiro F. The Role of the Microbiome in Drug Response. Annu Rev Pharmacol Toxicol 2019; 60:417-435. [PMID: 31386593 DOI: 10.1146/annurev-pharmtox-010919-023612] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microbiome is known to regulate many aspects of host health and disease and is increasingly being recognized as a key mediator of drug action. However, investigating the complex multidirectional relationships between drugs, the microbiota, and the host is a challenging endeavor, and the biological mechanisms that underpin these interactions are often not well understood. In this review, we outline the current evidence that supports a role for the microbiota as a contributor to both the therapeutic benefits and side effects of drugs, with a particular focus on those used to treat mental disorders, type 2 diabetes, and cancer. We also provide a snapshot of the experimental and computational tools that are currently available for the dissection of drug-microbiota-host interactions. The advancement of knowledge in this area may ultimately pave the way for the development of novel microbiota-based strategies that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Rosina Pryor
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Leonor Quintaneiro
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom.,Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 6BT, United Kingdom
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom; .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| |
Collapse
|
30
|
Nuli R, Cai J, Kadeer A, Zhang Y, Mohemaiti P. Integrative Analysis Toward Different Glucose Tolerance-Related Gut Microbiota and Diet. Front Endocrinol (Lausanne) 2019; 10:295. [PMID: 31191448 PMCID: PMC6546033 DOI: 10.3389/fendo.2019.00295] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: There is evidence that type 2 diabetes (T2DM) is affected by gut microbiota, and gut microbiota diversity modified by diet. To investigate its modifications in Uyghur patients with different glucose tolerance, we enrolled 561 subjects: newly diagnosed T2DM (n = 145), impaired glucose regulation (IGR) patients (n = 138) and in normal control (NC) population (n = 278). Methods: The nutrient intake in food frequency questionnaire was calculated by R language. The regions V3-V4 of 16S ribosomal RNA were sequenced by using Illumina Miseq platform. Sequences were clustered by operational taxonomy units, gut microbiota composition, and diversity was analyzed. Correlations between bacterial composition at different level and dietary factors were evaluated. Results: The α-diversity was highest in NC, followed by T2DM and IGR; β-diversity distinguished between patients and NC. Compared to NC, Saccharibacteria was significantly increased in T2DM and IGR. Deferribacteres was significantly increased in T2DM compared to NC and IGR. Veillonella, Pasteurellaceae, and Haemophilus were over-represented in IGR. Abundance of Bacteroidetes was negatively correlated with LDL-C; Abundance of Tenericutes was negatively correlated with hip circumference and total cholesterol, positively correlated with HDL-C and cake intake; Actinobacteria was positively correlated with BMI and folic acid intake, negatively correlated with oil intake. Firmicutes was negatively correlated with beverage and alcohol intake. Spirochaetae was negatively correlated with fungus, fruits, beans, vitamin C, dietary fiber, and calcium. Fusobacteria was positively correlated with beans intake, and was negatively correlated with fat intake. Proteobacteria was positively correlated with tuber crops intake. Synergistetes was positively correlated with cholesterol, nicotinic acid, and selenium intake. Deferribacteres was negatively correlated with magnesium intake. Conclusions: At the phylum and genus level, the structure and diversity of intestinal microbiota of T2DM and IGR was altered, the number of OTUs, the relative abundance, and diversity were all decreased. The gut microbiota of the newly diagnosed T2DM, IGR, and NC were related to age, blood lipids, BMI, blood pressure, and dietary nutrient intake. Unbalanced nutrient intake in the three groups may affect the structure and abundance of the gut microbiota, which may play a role in the occurrence and development of T2DM.
Collapse
Affiliation(s)
- Rebiya Nuli
- School of Public Health, Xinjiang Medical University, Ürümqi, China
- College of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Junxiu Cai
- Medical Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | | | - Yangyi Zhang
- Health Management Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Patamu Mohemaiti
- School of Public Health, Xinjiang Medical University, Ürümqi, China
- *Correspondence: Patamu Mohemaiti
| |
Collapse
|
31
|
The gut microbiome of Mexican children affected by obesity. Anaerobe 2018; 55:11-23. [PMID: 30366118 DOI: 10.1016/j.anaerobe.2018.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Obesity is a metabolic disorder and global health issue. In Mexico 34.4% of children between 5 and 11 years-old are overweight or obese. Here we address this issue studying the gut microbiome in a sample of Mexican children affected by obesity. We performed metagenomic shotgun-sequencing of DNA isolated from fecal samples from a cohort of normal weight and obese Mexican children using Illumina platform with HiSeq 2500. We also examined their metabolic factors and fecal short-chain fatty acids concentration. The results show that a remarkable dysbiosis of bacteria, archaea and viruses was not observed in the obese children group compared to the normal weight group; however, the archaeal community exhibited an increase of unclassified Methanobrevibacter spp. in obese children. The bacterial communities of all participants were clustered into three different enterotypes. Most normal weight children have a gut bacterial community dominated by Ruminococcus spp. (Enterotype 3), while most obese children had a community dominated by Prevotella spp. (Enterotype 2). On the other hand, changes in the gut microbiome were correlated with clinical metadata and could be used to stratify individuals based on their phenotype. The species Megamonas spp. were over-represented in obese children, whereas members of the family Oscillospiraceae were depleted in the same individuals and negatively correlated with levels of serum cholesterol. A microbiome comparative metabolic pathway analysis showed that two KEGG pathway modules of glycolysis, Glycolysis I (from Glucose 6-Phosphate), and Glycolysis II (from Fructose 6-Phosphate) were significantly overrepresented in normal weight children. Our results establish specific alterations in the gut microbiome of Mexican children affected of obesity, along with clinical alterations, providing information on the microbiome composition that may be useful for prognosis, diagnosis, and treatment.
Collapse
|
32
|
Guan C, Qiao S, Lv Q, Cao N, Wang K, Dai Y, Wei Z. Orally administered berberine ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting activation of PPAR-γ and subsequent expression of HGF in colons. Toxicol Appl Pharmacol 2018; 343:1-15. [DOI: 10.1016/j.taap.2018.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/27/2022]
|
33
|
Comparative analyses of fecal microbiota in Chinese isolated Yao population, minority Zhuang and rural Han by 16sRNA sequencing. Sci Rep 2018; 8:1142. [PMID: 29348587 PMCID: PMC5773753 DOI: 10.1038/s41598-017-17851-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome in humans is associated with geography, diet, lifestyles and so on, but its relationship with some isolated populations is not clear. We used the 16sRNA technique to sequence the fecal microbiome in the Chinese isolated Yao population and compared it with the major minority Zhuang and the major ethnic Han populations living in the same rural area. Information about diet frequency and health status and routine serum measurements were collected. The unweighted UniFrac principal coordinates analysis showed significant structural differences in fecal microbiota among the three ethnic groups. Statistically significant differences were observed in the community richness estimator (chaos) and the diversity estimator (Shannon) among the three groups. At the genus level, the fecal samples of the isolated Yao population presented the lowest relative abundance of the Megamonas genus, which was potentially related to the high frequency of bean consumption in the diet. Two enterotypes were identified in the overall fecal microbiota in the three populations. In the isolated Yao population, a higher Bacteroides abundance was observed, but the Prevotella abundance decreased with increased alcohol consumption.
Collapse
|
34
|
Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis. SCIENCE CHINA-LIFE SCIENCES 2017; 61:1537-1544. [DOI: 10.1007/s11427-017-9202-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/16/2017] [Indexed: 12/17/2022]
|
35
|
Bhattacharyya R, Saha B, Tyagi M, Bandyopadhyay SK, Patro BS, Chattopadhyay S. Differential modes of photosensitisation in cancer cells by berberine and coralyne. Free Radic Res 2017; 51:723-738. [DOI: 10.1080/10715762.2017.1368506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Bhaskar Saha
- Department of Biochemistry, KPC Medical College, Kolkata, India
| | - Mrityunjaya Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | | | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
36
|
Affiliation(s)
- Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|