1
|
Wu Z, Gao J, Wang X, Wang C, Zhang C, Li X, Zhang J, Sun Y. Soluble trehalase responds to heavy metal stimulation by regulating apoptosis in Neocaridina denticulata sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117072. [PMID: 39303639 DOI: 10.1016/j.ecoenv.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Trehalase plays an important role in insect metabolism and development by hydrolyzing blood sugar trehalose, but it seems to perform primarily an immunomodulatory function in crustaceans whose blood sugar is glucose. Metal ions as pollutants seriously affecting crustacean health, but studies on trehalase in metal immunity are still limited. In this study, a soluble trehalase (NdTre1) that could bind to multiple metals was identified from Neocaridina denticulata sinensis for investigating metal resistance. Expression profiling revealed that NdTre1 was mainly expressed in the gill and was significantly decreased following stimulation with copper (Cu²⁺) and cadmium (Cd²⁺). Transcriptomic analysis of gills revealed an increase in ecdysone synthesis after interference with NdTre1. Increased ecdysone activated the endogenous mitochondrial pathway and the mitogen activated protein kinase (MAPK) pathway to further induced apoptosis. In vitro, Escherichia coli overexpressing recombinant NdTre1 had higher survival and faster growth rates to better adapted the metal-containing medium. Overall, NdTre1 exercises an important immune function in shrimp resistance to metal stimulation by regulating apoptosis and molting. Further investigation can further explore specific response mechanisms of NdTre1 to multiple metals.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiyin Gao
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Xiongfei Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Cong Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Chunyu Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Xiao Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Tang B, Han Y, Mao Q, Fu H, Luo Y, Hua L, Liu B, Hu G, Wang S, Desneux N, Duan H, Wu Y. Regulation of three novel pepper thiothiazolidinones on the fecundity of Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106033. [PMID: 39277359 DOI: 10.1016/j.pestbp.2024.106033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Spodoptera frugiperda has emerged as a major invasive pest worldwide. The utilization of chemical pesticides not only poses numerous ecological concerns but also fosters resistance in S. frugiperda. In this study, we designed and synthesized three novel thiothiazolidinone compounds (6a, 7b, and 7e) and incorporated innovative thiothiazolidinone structural elements into the piperine skeleton. Treatment with compounds 6a and 7e resulted in the blackening and agglomeration of oviduct eggs within the ovaries of certain female moths, impeding the release of normal eggs. The levels of vitellogenin and vitellogenin receptor, along with three trehalase inhibitors, exhibited a dynamic equilibrium state, leading to no discernible change in egg production but a notable increase in the generation of low-hatching-rate egg fragments. Compared with the injection of 2%DMSO, the eclosion rate of 6a injection was significantly decreased, as followed the spawning time and longevity were prolonged or significantly prolonged in the trehalase inhibitors of 6a, 7b, and 7e. We aimed to investigate the regulatory impacts of three new pepper thiothiazolidinone compounds on the reproduction of S. frugiperda, and to authenticate the efficacy of novel alginase inhibitors in inhibiting the reproduction of S. frugiperda. This research endeavors to aid in the identification of efficient and steadfast trehalase inhibitors, thereby expediting the research and development of potent biological pesticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ye Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Haoyu Fu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China.
| |
Collapse
|
3
|
Zheng X, Yuan J, Qian K, Tang Y, Wang J, Zhang Y, Feng J, Cao H, Xu B, Zhang Y, Liang P, Wu Q. Identification and RNAi-based function analysis of trehalase family genes in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2024; 80:2839-2850. [PMID: 38323792 DOI: 10.1002/ps.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Insects utilize trehalases (TREs) to regulate energy metabolism and chitin biosynthesis, which are essential for their growth, development, and reproduction. TREs can therefore be used as potential targets for future insecticide development. However, the roles of TREs in Frankliniella occidentalis (Pergande), a serious widespread agricultural pest, remain unclear. RESULTS Three TRE genes were identified in F. occidentalis and cloned, and their functions were then investigated via feeding RNA interference (RNAi) and virus-induced gene silencing (VIGS) assays. The results showed that silencing FoTRE1-1 or FoTRE1-2 significantly decreased expression levels of FoGFAT, FoPGM, FoUAP, and FoCHS, which are members of the chitin biosynthesis pathway. Silencing FoTRE1-1 or FoTRE2 significantly down-regulated FoPFK and FoPK, which are members of the energy metabolism pathway. These changes resulted in 2-fold decreases in glucose and glycogen content, 2-fold increases in trehalose content, and 1.5- to 2.0-fold decreases in chitinase activity. Furthermore, knocking down FoTRE1-1 or FoTRE1-2 resulted in deformed nymphs and pupae as a result of hindered molting. The VIGS assay for the three FoTREs revealed that FoTRE1-1 or FoTRE2 caused shortened ovarioles, and reduced egg-laying and hatching rates. CONCLUSION The results suggest that FoTRE1-1 and FoTRE1-2 play important roles in the growth and development of F. occidentalis, while FoTRE1-1 and FoTRE2 are essential for its reproduction. These three genes could be candidate targets for RNAi-based management and control of this destructive agricultural pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuming Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zhao ST, Ran XT, Huang YY, Sang W, Derrick BE, Qiu BL. Transcriptomic response of citrus psyllid salivary glands to the infection of citrus Huanglongbing pathogen. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-20. [PMID: 38444234 DOI: 10.1017/s0007485324000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
Collapse
Affiliation(s)
- San-Tao Zhao
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Tong Ran
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Yang Huang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wen Sang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | | | - Bao-Li Qiu
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Jiang X, Zhong F, Chen Y, Shi D, Chao L, Yu L, He B, Xu C, Wu Y, Tang B, Duan H, Wang S. Novel compounds ZK-PI-5 and ZK-PI-9 regulate the reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae), with insecticide potential. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1850-1861. [PMID: 37478561 DOI: 10.1093/jee/toad140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Trehalase inhibitors prevent trehalase from breaking down trehalose to provide energy. Chitinase inhibitors inhibit chitinase activity affecting insect growth and development. This is an important tool for the investigation of regulation of trehalose metabolism and chitin metabolism in insect reproduction. There are few studies on trehalase or chitinase inhibitors' regulation of insect reproduction. In this study, ZK-PI-5 and ZK-PI-9 were shown to have a significant inhibitory effect on the trehalase, and ZK-PI-9 significantly inhibited chitinase activity in female pupae. We investigated the reproduction regulation of Spodoptera frugiperda using these new inhibitors and evaluated their potential as new insecticides. Compounds ZK-PI-5 and ZK-PI-9 were injected into the female pupae, and the control group was injected with solvent (2% DMSO). The results showed that the emergence failure rate for pupae treated with inhibitors increased dramatically and aberrant phenotypes such as difficulty in wings spreading occurred. The oviposition period and longevity of female adults in the treated group were significantly shorter than those in the control group, and the ovaries developed more slowly and shrank earlier. The egg hatching rate was significantly reduced by treatment with the inhibitor. These results showed that the two new compounds had a significant impact on the physiological indicators related to reproduction of S. frugiperda, and have pest control potential. This study investigated the effect of trehalase and chitin inhibitors on insect reproduction and should promote the development of green and efficient insecticides.
Collapse
Affiliation(s)
- Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Yan Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Dongmei Shi
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Caidi Xu
- Jing Hengyi School of Education, HangzhouNormal University, Hangzhou, Zhejiang 311121, P.R.China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department ,Guiyang University, Guiyang 550005, P.R.China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| | - Hongxia Duan
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
6
|
Wang Z, Long G, Zhu H, Jin D, Yang H, Zhou C. Silencing of Glutamine: Fructose-6-Phosphate Aminotransferase Impairs Growth and Development in Sogatella furcifera (Hemiptera: Delphacidae). Biomolecules 2023; 13:1433. [PMID: 37892115 PMCID: PMC10604220 DOI: 10.3390/biom13101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Glutamine: fructose-6-phosphate aminotransferase (GFAT), the fourth enzyme in the chitin synthesis pathway, exerts wide-ranging effects on the growth and development of organisms. However, the role of GFAT in Sogatella furcifera remains unknown. In this study, the functional significance of the GFAT gene of S. furcifera was analyzed using a reverse transcription-polymerase chain reaction and RNA interference (RNAi) analyses. The complementary DNA sequence of SfGFAT was 3162 bp in length and contained a 2067 bp open reading frame encoding 688 amino acid residues. Structural domain analysis indicated that the SfGFAT protein consisted of one glutamine aminotransferase class 2 domain and two sugar isomerase domains. Expression profile analysis revealed that SfGFAT was expressed throughout the egg, nymph, and adult phases and was strongly expressed on the first day of each nymph stage and in the integuments of five tissues. RNAi results revealed that SfGFAT gene silencing significantly inhibited the mRNA expression of the target gene and resulted in severe mortality among S. furcifera. In summary, these findings demonstrate that SfGFAT plays a critical role in the development of S. furcifera. Moreover, these results may aid in the development of methods to control the spread of S. furcifera.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China; (Z.W.); (H.Z.)
| | - Guiyun Long
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China;
| | - Huan Zhu
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China; (Z.W.); (H.Z.)
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Cao Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| |
Collapse
|
7
|
Si HR, Sun SS, Liu YK, Qiu LY, Tang B, Liu F, Fu Q, Xu CD, Wan PJ. Roles of GFAT and PFK genes in energy metabolism of brown planthopper, Nilaparvata lugens. Front Physiol 2023; 14:1213654. [PMID: 37415905 PMCID: PMC10320585 DOI: 10.3389/fphys.2023.1213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferases (GFATs) and phosphofructokinase (PFKs) are the principal rate-limiting enzymes involved in hexosamine biosynthesis pathway (HBP) and glycolysis pathway, respectively. In this study, the NlGFAT and NlPFK were knocked down through RNA interference (RNAi) in Nilaparvata lugens, the notorious brown planthopper (BPH), and the changes in energy metabolism were determined. Knockdown of either NlGFAT or NlPFK substantially reduced gene expression related to trehalose, glucose, and glycogen metabolism pathways. Moreover, trehalose content rose significantly at 72 h after dsGFAT injection, and glycogen content increased significantly at 48 h after injection. Glucose content remained unchanged throughout the experiment. Conversely, dsPFK injection did not significantly alter trehalose, but caused an extreme increase in glucose and glycogen content at 72 h after injection. The Knockdown of NlGFAT or NlPFK significantly downregulated the genes in the glycolytic pathway, as well as caused a considerable and significant decrease in pyruvate kinase (PK) activity after 48 h and 72 h of inhibition. After dsGFAT injection, most of genes in TCA cycle pathway were upregulated, but after dsNlPFK injection, they were downregulated. Correspondingly, ATP content substantially increased at 48 h after NlGFAT knockdown but decreased to an extreme extent by 72 h. In contrast, ATP content decreased significantly after NlPFK was knocked down and returned. The results have suggested the knockdown of either NlGFAT or NlPFK resulted in metabolism disorders in BPHs, highlighting the difference in the impact of those two enzyme genes on energy metabolism. Given their influence on BPHs energy metabolism, developing enzyme inhibitors or activators may provide a biological control for BPHs.
Collapse
Affiliation(s)
- Hui-Ru Si
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Si-Si Sun
- Guizhou Institute of Mountainous Environment and Climate, Guiyang, China
| | - Yong-Kang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling-Yu Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fang Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Cai-Di Xu
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhong F, Yu L, Jiang X, Chen Y, Wang S, Chao L, Jiang Z, He B, Xu C, Wang S, Tang B, Duan H, Wu Y. Potential inhibitory effects of compounds ZK-PI-5 and ZK-PI-9 on trehalose and chitin metabolism in Spodoptera frugiperda (J. E. Smith). Front Physiol 2023; 14:1178996. [PMID: 37064912 PMCID: PMC10090375 DOI: 10.3389/fphys.2023.1178996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction:Spodoptera frugiperda is an omnivorous agricultural pest which is great dangerous for grain output.Methods: In order to investigate the effects of potential trehalase inhibitors, ZK-PI-5 and ZK-PI-9, on the growth and development of S. frugiperda, and to identify new avenues for S. frugiperda control, we measured the content of the trehalose, glucose, glycogen and chitin, enzyme activity, and gene expression levels in trehalose and chitin metabolism of S. frugiperda. Besides, their growth and development were also observed.Results: The results showed that ZK-PI-9 significantly reduced trehalase activity and ZK-PI-5 significantly reduced membraned-bound trehalase activity. Moreover, ZK-PI-5 inhibited the expression of SfTRE2, SfCHS2, and SfCHT, thus affecting the chitin metabolism. In addition, the mortality of S. frugiperda in pupal stage and eclosion stage increased significantly after treatment with ZK-PI-5 and ZK-PI-9, which affected their development stage and caused death phenotype (abnormal pupation and difficulty in breaking pupa).Discussion: These results have provided a theoretical basis for the application of trehalase inhibitors in the control of agricultural pests to promote future global grain yield.
Collapse
Affiliation(s)
- Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liuhe Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Sitong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Biner He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Caidi Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Bin Tang, ; Hongxia Duan, ; Yan Wu,
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
- *Correspondence: Bin Tang, ; Hongxia Duan, ; Yan Wu,
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- *Correspondence: Bin Tang, ; Hongxia Duan, ; Yan Wu,
| |
Collapse
|
9
|
Yang HJ, Cui MY, Zhao XH, Zhang CY, Hu YS, Fan D. Trehalose-6-phosphate synthase regulates chitin synthesis in Mythimna separata. Front Physiol 2023; 14:1109661. [PMID: 36860522 PMCID: PMC9968958 DOI: 10.3389/fphys.2023.1109661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Trehalose is a substrate for the chitin synthesis pathway in insects. Thus, it directly affects chitin synthesis and metabolism. Trehalose-6-phosphate synthase (TPS) is a crucial enzyme in the trehalose synthesis pathway in insects, but its functions in Mythimna separata remain unclear. In this study, a TPS-encoding sequence in M. separata (MsTPS) was cloned and characterized. Its expression patterns at different developmental stages and in diverse tissues were investigated. The results indicated that MsTPS was expressed at all analyzed developmental stages, with peak expression levels in the pupal stage. Moreover, MsTPS was expressed in the foregut, midgut, hindgut, fat body, salivary gland, Malpighian tubules, and integument, with the highest expression levels in the fat body. The inhibition of MsTPS expression via RNA interference (RNAi) resulted in significant decreases in the trehalose content and TPS activity. It also resulted in significant changes in Chitin synthase (MsCHSA and MsCHSB) expression, and significantly decrease the chitin content in the midgut and integument of M. separata. Additionally, the silencing of MsTPS was associated with a significant decrease in M. separata weight, larval feed intake, and ability to utilize food. It also induced abnormal phenotypic changes and increased the M. separata mortality and malformation rates. Hence, MsTPS is important for M. separata chitin synthesis. The results of this study also suggest RNAi technology may be useful for enhancing the methods used to control M. separata infestations.
Collapse
Affiliation(s)
- Hong-Jia Yang
- College of Plant Protection, Northeast Agricultural University, Harbin, China
| | - Meng-Yao Cui
- College of Plant Protection, Northeast Agricultural University, Harbin, China
| | - Xiao-Hui Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin, China
| | - Chun-Yu Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, China
| | - Yu-Shuo Hu
- College of Plant Protection, Northeast Agricultural University, Harbin, China
| | | |
Collapse
|
10
|
Xie J, Peng G, Wang M, Zhong Q, Song X, Bi J, Tang J, Feng F, Gao H, Li B. RR-1 cuticular protein TcCPR69 is required for growth and metamorphosis in Tribolium castaneum. INSECT SCIENCE 2022; 29:1612-1628. [PMID: 35312233 DOI: 10.1111/1744-7917.13038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Cuticle is not only critical for protecting insects from noxious stimuli but is also involved in a variety of metabolic activities. Cuticular proteins (CPs) affect cuticle structure and mechanical properties during insect growth, reproduction, and environmental adaptation. Here, we describe the identification and characterization of a member of the RR-1 subfamily of CPs with an R&R consensus (CPR) in Tribolium castaneum (TcCPR69). Although it was previously reported to be highly expressed in the wings, we found that knocking down TcCPR69 by RNA interference (RNAi) did not cause obvious wing abnormalities but markedly disrupted the growth and metamorphosis of beetles with 100% cumulative mortality; additionally, the chitin content of the pharate adult was decreased and the new abdominal cuticle was significantly thinner before molting. TcCPR69 showed chitin-binding ability and the expression levels of key genes involved in chitin metabolism (trehalase [TcTRE], chitin synthase [TcCHSA and TcCHSB], and chitinase [TcCHT5 and TcCHT10]) were also decreased by TcCPR69 knockdown. TcCPR69 gene expression peaked shortly after molting and was increased 2.61 fold at 12 h after 20-hydroxyecdysone (20E) injection. This was reversed by RNAi of the ecdysone-related genes ecdysone receptor (TcECR) and fushi tarazu transcription factor 1 (TcFTZ-F1). These results indicate that TcCPR69 is positively regulated by 20E signaling to contribute to cuticle formation and maintain chitin accumulation during the growth and metamorphosis of beetles.
Collapse
Affiliation(s)
- Jia Xie
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Guifang Peng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Miao Wang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qisheng Zhong
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Feng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Wang Z, Long GY, Jin DC, Yang H, Zhou C, Yang XB. Knockdown of Two Trehalase Genes by RNA Interference Is Lethal to the White-Backed Planthopper Sogatella furcifera (Horváth) (Hemiptera:Delphacidae). Biomolecules 2022; 12:biom12111699. [PMID: 36421713 PMCID: PMC9687761 DOI: 10.3390/biom12111699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Trehalase (Tre) is a crucial enzyme involved in trehalose metabolism, and it plays pivotal roles in insect development and metamorphosis. However, the biological function of Tre genes in Sogatella furcifera remains unclear. In the present study, two Tre genes—SfTre1 and SfTre2—were cloned and identified based on the S. furcifera transcriptome data. Bioinformatic analysis revealed that the full-length complementary DNA of SfTre1 and SfTre2 genes were 3700 and 2757 bp long, with 1728- and 1902-bp open reading frame encoding 575 and 633 amino acid residues, respectively. Expression analysis indicated that SfTre1 and SfTre2 were expressed at all developmental stages, with the highest expression in day two adults. Furthermore, the highest expression levels of SfTre1 and SfTre2 were observed in the ovary; enriched expression was also noted in head tissues. The knockdown of SfTre1 and SfTre2 via injecting double-stranded RNAs decreased the transcription levels of the corresponding mRNAs and led to various malformed phenotypes and high lethality rates. The results of our present study indicate that SfTre1 and SfTre2 play crucial roles in S. furcifera growth and development, which can provide referable information for Tre genes as a potential target for planthopper control.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Wang X, Tang T. Effects of Polystyrene Diet on the Growth and Development of Tenebrio molitor. TOXICS 2022; 10:608. [PMID: 36287887 PMCID: PMC9610515 DOI: 10.3390/toxics10100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the role of Tenebrio molitor in degrading polystyrene foam through its gut microbes has become the focus of research. However, little literature has reported the effect of feeding on polystyrene foam on the growth and development of Tenebrio molitor. In this study, we investigated the impacts of different polystyrene by evaluating the vital signs of Tenebrio molitor fed in the intestines and excrement fluids using RNA-Seq t.echnology and then verifying the transcriptome sequencing findings using qRT-PCR technology. The average weight of Tenebrio molitor larvae in the wheat bran group increased significantly. Tenebrio molitor larvae in the PS group, on the other hand, didn't grow as much and had a much lower average weight than those in the wheat bran group. Compared to the bran group, the excrement of Tenebrio molitor fed only on polystyrene foam was flaky and coarse, increased nitrogen and phosphorus atomic concentration ratios by about 50%, decreased potassium atomic concentration ratios by 63%, with the enterocytes and circular muscle of Tenebrio molitor falling as well. Kyoto Encyclopedia of Genes and Genomes enrichment indicated that the differential genes were mainly related to metabolic pathways. There was an agreement between qRT-PCR and RNA-Seq analyses for the growth and development genes chitinase, heat shock protein 70, and cytochrome P450. Only feeding polystyrene foam shall lead to the growth and development retardation of Tenebrio molitor.
Collapse
Affiliation(s)
- Xiaosu Wang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Tianle Tang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
13
|
Liu XY, Wang SS, Zhong F, Zhou M, Jiang XY, Cheng YS, Dan YH, Hu G, Li C, Tang B, Wu Y. Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front Physiol 2022; 13:1034926. [PMID: 36262255 PMCID: PMC9574123 DOI: 10.3389/fphys.2022.1034926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chitin is the main component of insect exoskeleton and midgut peritrophic membrane. Insect molting is the result of the balance and coordination of chitin synthesis and degradation in chitin metabolism under the action of hormones. In this study, a 678 bp dsRNA fragment was designed and synthesized according to the known CHI (Chitinase) sequence of Spodoptera frugiperda. It was injected into the larvae to observe the molting and development of S. frugiperda. At the same time, the activities of trehalase and chitinase, the contents of trehalose, chitin and other substances were detected, and the expression of related genes in the chitin synthesis pathway was determined. The results showed that CHI gene was highly expressed at the end of each instar, prepupa and pupal stage before molting; At 12 and 24 h after dsRNA injection of CHI gene of S. frugiperda, the expression of CHI gene decreased significantly, and the chitinase activity decreased significantly from 12 to 48 h. The expression of chitin synthase (CHSB) gene decreased significantly, and the chitin content increased significantly. Some larvae could not molt normally and complete development, leading to certain mortality. Secondly, after RNAi of CHI gene, the content of glucose and glycogen increased first and then decreased, while the content of trehalose decreased significantly or showed a downward trend. The activities of the two types of trehalase and the expression levels of trehalase genes decreased first and then increased, especially the trehalase activities increased significantly at 48 h after dsCHI injection. And trehalose-6-phosphate synthase (TPS), glutamine: fructose-6-phosphate amidotransferase (GFAT), UDP-N-acetylglucosamine pyrophosphorylases (UAP), hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and phosphoacetylglucosamine mutase (PAGM) all decreased significantly at 24 h, and then increased or significantly increased at 48 h. These results indicated that when the expression of chitinase gene of S. frugiperda was inhibited, it affected the degradation of chitin in the old epidermis and the formation of new epidermis, and the content of chitin increased, which led to the failure of larvae to molt normally. Moreover, the chitin synthesis pathway and trehalose metabolism were also regulated. The relevant results provide a theoretical basis for screening target genes and developing green insecticides to control pests by using the chitin metabolism pathway.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Sha-Sha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Xin-Yi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yi-Sha Cheng
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Yi-Hao Dan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- *Correspondence: Yan Wu,
| |
Collapse
|
14
|
Yang S, Zou Z, Xin T, Cai S, Wang X, Zhang H, Zhong L, Xia B. Knockdown of hexokinase in Diaphorina citri Kuwayama (Hemiptera: Liviidae) by RNAi inhibits chitin synthesis and leads to abnormal phenotypes. PEST MANAGEMENT SCIENCE 2022; 78:4303-4313. [PMID: 35731692 DOI: 10.1002/ps.7049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Silencing specific genes in pests using RNA interference (RNAi) technology is a promising new pest-control strategy. The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important citrus pest because it transmits Candidatus Liberibacter asiaticus, which causes huanglongbing. Chitin is essential for insect development, and enzymes in this pathway are attractive targets for pest control. RESULTS The hexokinase gene DcHK was characterized from D. citri to impair proper growth and chitin synthesis through RNAi. The transcription of DcHK was more highly developed in third-instar nymphs, adults and the Malpighian tube. The RNAi needed for D. citri is dose-dependent, with 600 ng μl-1 dsDcHK sufficient to knockdown endogenous DcHK expression. The messenger RNA (mRNA) level was lowest at 36 h after dosing, and there were significant effects on the relative levels of mRNA in the chitin synthesis pathway (DcTre, DcG6PI, DcGNAT, DcGFAT, DcPGM, DcUAP and DcCHS), leading to mortality, reduced body weight and abnormal or lethal phenotypes. CONCLUSION RNAi can be triggered by orally delivered double-stranded RNA in D. citri. These results can provide support for HK genes as a new potential target for citrus psyllid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan Yang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhiwen Zou
- School of Life Science, Nanchang University, Nanchang, China
| | - Tianrong Xin
- School of Life Science, Nanchang University, Nanchang, China
| | - Shiyu Cai
- School of Life Science, Nanchang University, Nanchang, China
| | - Xi Wang
- School of Life Science, Nanchang University, Nanchang, China
- Administration of Plant Protection and Quarantine of Jiangxi Province, Nanchang, China
| | - Huijie Zhang
- School of Life Science, Nanchang University, Nanchang, China
| | - Ling Zhong
- Administration of Plant Protection and Quarantine of Jiangxi Province, Nanchang, China
| | - Bin Xia
- School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Wang Q, Fang K, Qi L, Wang X, Pan Y, Li Y, Xi J, Zhang J. Purification and Functional Characterization of a Soluble Trehalase in Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). INSECTS 2022; 13:insects13100867. [PMID: 36292815 PMCID: PMC9604388 DOI: 10.3390/insects13100867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/16/2023]
Abstract
Trehalase is the only enzyme known for the irreversible splitting of trehalose and plays a major role in insect growth and development. In this report, we describe a basic study of the trehalase gene fragment encoding a soluble trehalase from Lissorhoptrus oryzophilus (LoTRE1). Sequence alignment and phylogenetic analysis suggested that LoTRE1 was similar to some known insect trehalases and belongs to the Coleoptera trehalase group. Additionally, LoTRE1 was expressed mainly in the fat body. Purified protein was obtained using heterologous expression of LoTRE1 in Escherichia coli, and the recombinant protein exhibited the ability to decompose trehalose. Enzyme-substrate docking indicated the potential involvement of other residues in the catalytic activity, in addition to Asp 333. Moreover, feeding of adults on LoTRE1 dsRNA silenced the transcription of LoTRE1 and thereby reduced the activity of trehalase and increased the trehalose content; it also led to a 12% death rate. This study reveals essential molecular features of trehalase and offers insights into the structural aspects of this enzyme, which might be related to its function. Taken together, the findings demonstrate that LoTRE1 is indispensable for adults of this pest and provide a new target for the control of L. oryzophilus.
Collapse
Affiliation(s)
- Qingtai Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Kui Fang
- Technical Center of Kunming Customs, Kunming 650228, China
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yunshuo Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.X.); (J.Z.)
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.X.); (J.Z.)
| |
Collapse
|
16
|
Song Y, Gu F, Zhou W, Li P, Wu F, Sheng S. Parasitoid Wasps Can Manipulate Host Trehalase to the Benefit of Their Offspring. INSECTS 2022; 13:833. [PMID: 36135534 PMCID: PMC9500599 DOI: 10.3390/insects13090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Trehalase is an essential hydrolase of trehalose in insects. However, whether and how trehalase performs in the association of parasitoid wasps and their hosts still remains unknown. Here, the exact function of trehalase of the general cutworm Spodoptera litura after it was parasitized by its predominant endoparasitoid Meterous pulchricornis was elucidated. Two trehalase genes (SlTre1, SlTre2) were identified, and they were highly expressed five days after parasitization by M. pulchricornis. Then, we successfully silenced SlTre1 and SlTre2 in parasitized third instar S. litura larvae. The content of glucose, which is the hydrolysate of trehalose, was significantly decreased after silencing SlTres in parasitized S. litura larvae, and the activities of trehalase were also notably reduced. In addition, the cocoon weight, the emergence rate, proportion of normal adults, and the body size of parasitoid offsprings were significantly decreased in SlTre1- or SlTre2-silenced groups compared to the controls. These results implied that parasitization by parasitoids regulated the trehalase of host larvae to create a suitable nutritional environment for the parasitoid offspring. The present study broadens the knowledge of trehalase in the interaction between parasitoids and their hosts and is of benefit to biological control of S. litura acting by parasitoid wasps.
Collapse
Affiliation(s)
- Yan Song
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fengming Gu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weihong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ping Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fuan Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| |
Collapse
|
17
|
Zeng QH, Long GY, Yang XB, Jia ZY, Jin DC, Yang H. SfDicer2 RNA Interference Inhibits Molting and Wing Expansion in Sogatella furcifera. INSECTS 2022; 13:insects13080677. [PMID: 36005304 PMCID: PMC9408908 DOI: 10.3390/insects13080677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Endoribonuclease 2 (Dicer2) plays various physiological roles in the RNA interference (RNAi) pathway by fragmenting double-stranded RNA to generate small interfering RNA, which then mediates gene silencing. In this study, the role of Dicer2 in the regulation of molting and wing expansion in Sogatella furcifera (white-backed planthopper) was investigated. In particular, SfDicer2-mediated RNAi resulted in wing deformities and lethal modifications in S. furcifera, which are attributable to the significant inhibition of chitin synthesis and degradation and wing expansion genes. This study provides insights into the biological functions of Dicer2 in insects, which can aid in RNAi-mediated pest control. Abstract Endoribonuclease 2 (Dicer2) is a key nicking endonuclease involved in the small interfering RNA biosynthesis, and it plays important roles in gene regulation and antiviral immunity. The Dicer2 sequence was obtained using the transcriptomic and genomic information of Sogatella furcifera (Horváth), and the spatiotemporal characteristics and functions of molting and wing expansion regulation were studied using real-time quantitative polymerase chain reaction and RNA interference (RNAi) technology. The expression of SfDicer2 fluctuated during the nymphal stage of S. furcifera. Its expression decreased significantly over the course of molting. SfDicer2 exhibited the highest transcript level in the nymphal stage and adult fat body. After SfDicer2 was silenced, the total mortality rate was 42.69%; 18.32% of the insects died because of their inability to molt. Compared with the effects of dsGFP or water, 44.38% of the insects subjected to the silencing of SfDicer2 exhibited wing deformities after successful eclosion. After SfDicer2 RNAi, the expression of chitinase, chitin deacetylase, trehalase, chitin synthase 1, and wing expansion-related genes was significantly inhibited. These findings indicate that SfDicer2 controls molting by affecting genes associated with chitin synthesis and degradation and regulates wing expansion by altering the expression of wing expansion-related genes in S. furcifera.
Collapse
|
18
|
Liu WT, Chen CC, Ji DD, Tu WC. The cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function in mosquitoes. iScience 2022; 25:104478. [PMID: 35712072 PMCID: PMC9194137 DOI: 10.1016/j.isci.2022.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
This study's aim was to investigate whether the cecropin-prophenoloxidase regulatory mechanism is a cross-species physiological function among mosquitoes. BLAST and phylogenetic analysis revealed that three mosquito cecropin Bs, namely Aedes albopictus cecropin B (Aalcec B), Armigeres subalbatus cecropin B2 (Ascec B2), and Culex quinquefasciatus cecropin B1 (Cqcec B1), play crucial roles in cuticle formation during pupal development via the regulation of prophenoloxidase 3 (PPO 3). The effects of cecropin B knockdown were rescued in a cross-species manner by injecting synthetic cecropin B peptide into pupae. Further investigations showed that these three cecropin B peptides bind to TTGG(A/C)A motifs within each of the PPO 3 DNA fragments obtained from these three mosquitoes. These results suggest that Aalcec B, Ascec B2, and Cqcec B1 each play an important role as a transcription factor in cuticle formation and that similar cecropin-prophenoloxidase regulatory mechanisms exist in multiple mosquito species. Cecropin B is able to regulate PPO 3 expression in the pupae Cecropin B binds to TTGG(A/C)A motifs within the PPO 3 DNA The knockdown of cecropin B was rescued by sequence-similar cecropin B peptides The cecropin B-prophenoloxidase 3 regulatory mechanism is conserved in mosquitoes
Collapse
|
19
|
Zhou M, Shen Q, Wang S, Li G, Wu Y, Xu C, Tang B, Li C. Regulatory function of the trehalose-6-phosphate synthase gene TPS3 on chitin metabolism in brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2022; 31:241-250. [PMID: 34923699 DOI: 10.1111/imb.12754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Brown planthopper (Nilaparvata lugens) is one of the important pests that damage rice. Trehalose-6-phosphate synthase (TPS) is a key enzyme responsible for catalysing the biosynthesis of trehalose, which is the energy substance of insects. In this study, combined with the reported N. lugens TPS1, TPS2 and newly discovered TPS3, we studied the regulation of TPS in chitin metabolism by RNA interference. Firstly, we found that the relative expression levels of TRE1-1, TRE1-2 and TRE2 increased significantly after 48 h of dsTPS3 injection, and the activity of TRE1 enhanced significantly. Secondly, abnormal and lethal phenotypes were observed after dsTPS3 and dsTPSs injection. The relative expression levels of PGM2, G6PI2, Cht1-4, Cht6-10 and IDGF decreased significantly after 48 h of dsTPS3 injection. At 72 h after injection of dsTPS3, the relative expression levels of CHS1, Cht2, Cht4, Cht7 and Cht8 reduced significantly, but the expression levels of G6PI1, Cht5 and ENGase increased significantly. The relative expression levels of GFAT, UAP, PGM2, G6PI2, CHS1, CHS1a, CHS1b, Cht2, Cht4, Cht8, Cht9 and Cht10 decreased significantly after 48 h of dsTPSs injection. However, at 72 h after the injection of dsTPSs, the expression levels of GNPNA, UAP, PGM1, G6PI1, HK, CHS1, CHS1a, CHS1b, Cht3, Cht5, Cht7 and ENGase increased significantly. Finally, the chitin content decreased in dsTPS1, dsTPS2 and dsTPSs treatments. In conclusion, the inhibition of TPS expression affected the metabolism of trehalose and chitin in N. lugens. The related research results provide a theoretical basis for pest control.
Collapse
Affiliation(s)
- Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Qida Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guoyong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Caidi Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
20
|
Tamayo B, Kercher K, Vosburg C, Massimino C, Jernigan MR, Hasan DL, Harper D, Mathew A, Adkins S, Shippy T, Hosmani PS, Flores-Gonzalez M, Panitz N, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of glycolysis, gluconeogenesis, and trehaloneogenesis pathways provide insight into carbohydrate metabolism in the Asian citrus psyllid. GIGABYTE 2022; 2022:gigabyte41. [PMID: 36824510 PMCID: PMC9933520 DOI: 10.46471/gigabyte.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Citrus greening disease is caused by the pathogen Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, Diaphorina citri. No curative treatment or significant prevention mechanism exists for this disease, which causes economic losses from reduced citrus production. A high-quality genome of D. citri is being manually annotated to provide accurate gene models to identify novel control targets and increase understanding of this pest. Here, we annotated 25 D. citri genes involved in glycolysis and gluconeogenesis, and seven in trehaloneogenesis. Comparative analysis showed that glycolysis genes in D. citri are highly conserved but copy numbers vary. Analysis of expression levels revealed upregulation of several enzymes in the glycolysis pathway in the thorax, consistent with the primary use of glucose by thoracic flight muscles. Manually annotating these core metabolic pathways provides accurate genomic foundation for developing gene-targeting therapeutics to control D. citri.
Collapse
Affiliation(s)
- Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Kyle Kercher
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | | | - Anuja Mathew
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Samuel Adkins
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | - Wayne B. Hunter
- US Department of Agriculture-Agricultural Research Service (USDA-ARS), US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson InstituteIthaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Dang C, Zhang Y, Sun C, Li R, Wang F, Fang Q, Yao H, Stanley D, Ye G. dsRNAs Targeted to the Brown Planthopper Nilaparvata lugens: Assessing Risk to a Non-Target, Beneficial Predator, Cyrtorhinus lividipennis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:373-380. [PMID: 34967611 DOI: 10.1021/acs.jafc.1c05487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RNA interference (RNAi) technology is becoming a maturing insect management approach. Before commercial-scale application, however, it is necessary to assess risks to non-target organisms (NTOs). Here, we evaluated the influence of RNAi technology, targeted to the brown planthopper (BPH, Nilaparvata lugens, Hemiptera: Delphacidae), a serious pest of Asian rice cropping systems, by dsRNA feeding. Three dsRNA fragments, targeting sodium channel protein Nach-like (dsNlNa), autophagy protein 5 (dsNlAup5), and V-type proton ATPase catalytic subunit A (dsNlvATP-A), which were highly lethal to BPH, were selected to evaluate their effects on an important predator of BPH, Cyrtorhinus lividipennis (Hemiptera: Miridae). It showed that these three dsRNA fragments posed no risks to C. lividipennis at worst-case treatments when fed with high concentrations (10×) dsRNAs. These findings not only establish part of a risk assessment protocol for RNAi-based products on NTOs but also contribute to the development and deployment of new technologies for BPH management.
Collapse
Affiliation(s)
- Cong Dang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Yupan Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Chuyi Sun
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Ran Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| | - David Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, 1503 S. Providence Road, Columbia, Missouri 65203, United States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058 Zhejiang Province, China
| |
Collapse
|
22
|
Purification and Characterization of Trehalase From Acyrthosiphon pisum, a Target for Pest Control. Protein J 2021; 41:189-200. [PMID: 34845557 DOI: 10.1007/s10930-021-10032-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Insect trehalases are glycoside hydrolases essential for trehalose metabolism and stress resistance. We here report the extraction and purification of Acyrthosiphon pisum soluble trehalase (ApTreh-1), its biochemical and structural characterization, as well as the determination of its kinetic properties. The protein has been purified by ammonium sulphate precipitation, first followed by an anion-exchange and then by an affinity chromatography. The SDS-PAGE shows a main band at 70 kDa containing two isoforms of ApTreh-1 (X1 and X2), identified by mass spectrometry and slightly contrasting in the C-terminal region. A phylogenetic tree, a multiple sequence alignment, as well as a modelled 3D-structure were constructed and they all reveal the ApTreh-1 similarity to other insect trehalases, i.e. the two signature motifs 179PGGRFRELYYWDTY192 and 479QWDFPNAWPP489, a glycine-rich region 549GGGGEY554, and the catalytic residues Asp336 and Glu538. The optimum enzyme activity occurs at 45 °C and pH 5.0, with Km and Vmax values of ~ 71 mM and ~ 126 µmol/min/mg, respectively. The present structural and functional characterization of soluble A. pisum trehalase enters the development of new strategies to control the aphids pest without significant risk for non-target organisms and human health.
Collapse
|
23
|
Yang X, Zhou C, Long G, Yang H, Chen C, Jin D. Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. INSECT SCIENCE 2021; 28:901-916. [PMID: 32536018 DOI: 10.1111/1744-7917.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Chitinase degrades chitin in the old epidermis or peritrophic matrix of insects, which ensures normal development and metamorphosis. In our previous work, we comprehensively studied the function of SfCht7 in Sogatella furcifera. However, the number and function of chitinase genes in S. furcifera remain unknown. Here, we identified 12 full-length chitinase transcripts from S. furcifera, which included nine chitinase (Cht), two imaginal disc growth factor (IDGF), and one endo-β-N-acetylglucosaminidase (ENGase) genes. Expression analysis results revealed that the expression levels of eight genes (SfCht3, SfCht5, SfCht6-1, SfCht6-2, SfCht7, SfCht8, SfCht10, and SfIDGF2) with similar transcript levels peaked prior to molting of each nymph and were highly expressed in the integument. Based on RNA interference (RNAi), description of the functions of each chitinase gene indicated that the silencing of SfCht5, SfCht10, and SfIDGF2 led to molting defects and lethality. RNAi inhibited the expressions of SfCht5, SfCht7, SfCht10, and SfIDGF2, which led to downregulated expressions of chitin synthase 1 (SfCHS1, SfCHS1a, and SfCHS1b) and four chitin deacetylase genes (SfCDA1, SfCDA2, SfCDA3, and SfCDA4), and caused a change in the expression level of two trehalase genes (TRE1 and TRE2). Furthermore, silencing of SfCht7 induced a significant decrease in the expression levels of three wing development-related genes (SfWG, SfDpp, and SfHh). In conclusion, SfCht5, SfCht7, SfCht10, and SfIDGF2 play vital roles in nymph-adult transition and are involved in the regulation of chitin metabolism, and SfCht7 is also involved in wing development; therefore, these genes are potential targets for control of S. furcifera.
Collapse
Affiliation(s)
- Xibin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guiyun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
| | - Chen Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang, China
| |
Collapse
|
24
|
Lin Y, Ji H, Cao X, Cen Y, Chen Y, Ji S, Zheng S. Knockdown of AMP-activated protein kinase increases the insecticidal efficiency of pymetrozine to Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104856. [PMID: 33993974 DOI: 10.1016/j.pestbp.2021.104856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are the main tools used to control Nilaparvata lugens (Stål), a serious pest of rice in Asia. However, repeated application of insecticides has caused many negative effects. Reducing the amount of insecticide used, while maintaining good pest population control, would be valuable. AMP-activated protein kinase (AMPK), a sensor of cellular energy status, helps to maintain insect energy balance at the cellular and whole-body level. The role of AMPK in insect response to insecticide stimulation is unknown. We studied the functions of AMPK catalytic subunit alpha (NlAMPKα) in the development of N. lugens and in response to pymetrozine, an insecticide used to control insect pests with piercing-sucking mouthparts. A phylogenetic analysis of protein sequences from 12 species in six orders showed that insects have only the AMPKα 2 subtype. RNA interference against NlAMPKα demonstrated that blocking the AMPK pathway led to a decrease in the systemic ATP level and an increase in N. lugens mortality. NlAMPKα responded to the energy stress caused by pymetrozine treatment, which activated downstream energy metabolic pathways to compensate for the energy imbalance. However, the ATP level in pymetrozine- treated nymphs was not increased, suggesting that ATP is consumed more than synthesized. When NlAMPKα expression was reduced in pymetrozine-treated nymphs by RNAi, the ATP level was decreased and the mortality was significantly increased. At day eight post 0.5 g/3 L of pymetrozine and dsNlAMPKα treatment, nymph survival was 29.33%, which was similar to the 27.33% survival of 1 g/3 L pymetrozine-treated nymphs. Addition of dsNlAMPKα can reduce the concentration of pymetrozine used by 50% while providing comparable efficacy. These results indicate that AMPK helps maintain the energy metabolism of N. lugens in response to pymetrozine treatment. Knockdown of NlAMPKα increases the insecticidal efficiency of pymetrozine to N. lugens.
Collapse
Affiliation(s)
- Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huijun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaocong Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yumei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuangshun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
25
|
Yu HZ, Huang YL, Lu ZJ, Zhang Q, Su HN, Du YM, Yi L, Zhong BL, Chen CX. Inhibition of trehalase affects the trehalose and chitin metabolism pathways in Diaphorina citri (Hemiptera: Psyllidae). INSECT SCIENCE 2021; 28:718-734. [PMID: 32428381 DOI: 10.1111/1744-7917.12819] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 05/14/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri is the principal vector of huanglongbing, which transmits Candidatus Liberibacter asiaticus. Trehalase is a key enzyme involved in trehalose hydrolysis and plays an important role in insect growth and development. The specific functions of this enzyme in D. citri have not been determined. In this study, three trehalase genes (DcTre1-1, DcTre1-2, and DcTre2) were identified based on the D. citri genome database. Bioinformatic analysis showed that DcTre1-1 and DcTre1-2 are related to soluble trehalase, whereas DcTre2 is associated with membrane-bound trehalase. Spatiotemporal expression analysis indicated that DcTre1-1 and DcTre1-2 had the highest expression levels in the head and wing, respectively, and DcTre2 had high expression levels in the fat body. Furthermore, DcTre1-1 and DcTre1-2 expression levels were induced by 20-hydroxyecdysone and juvenile hormone Ⅲ, but DcTre2 was unaffected. The expression levels of DcTre1-1, DcTre1-2, and DcTre2 were significantly upregulated, which resulted in high mortality after treatment with validamycin. Trehalase activities and glucose contents were downregulated, but the trehalose content increased after treatment with validamycin. In addition, the expression levels of chitin metabolism-related genes significantly decreased at 24 and 48 h after treatment with validamycin. Furthermore, silencing of DcTre1-1, DcTre1-2, and DcTre2 reduced the expression levels of chitin metabolism-related genes and led to a malformed phenotype of D. citri. These results indicate that D. citri trehalase plays an essential role in regulating chitin metabolism and provides a new target for control of D. citri.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Yu-Ling Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
- China-USA Citrus Huanglongbing Joint Laboratory, A Joint Laboratory of The University of Florida and Gannan Normal University, Ganzhou, Jiangxi, China
| | - Qin Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Hua-Nan Su
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Yi-Ming Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
- China-USA Citrus Huanglongbing Joint Laboratory, A Joint Laboratory of The University of Florida and Gannan Normal University, Ganzhou, Jiangxi, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Ba-Lian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | | |
Collapse
|
26
|
Bao J, Mo B, An G, Luo J, Poncz M, Pan G, Li T, Zhou Z. Von Willebrand Factor Facilitates Intravascular Dissemination of Microsporidia Encephalitozoon hellem. Front Cell Infect Microbiol 2021; 11:694957. [PMID: 34095003 PMCID: PMC8176104 DOI: 10.3389/fcimb.2021.694957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are a group of spore-forming, fungus-related pathogens that can infect both invertebrates and vertebrates including humans. The primary infection site is usually digestive tract, but systemic infections occur as well and cause damages to organs such as lung, brain, and liver. The systemic spread of microsporidia may be intravascular, requiring attachment and colonization in the presence of shear stress. Von Willebrand Factor (VWF) is a large multimeric intravascular protein and the key attachment sites for platelets and coagulation factors. Here in this study, we investigated the interactions between VWF and microsporidia Encephalitozoon hellem (E. hellem), and the modulating effects on E. hellem after VWF binding. Microfluidic assays showed that E. hellem binds to ultra-large VWF strings under shear stress. In vitro germination assay and infection assay proved that E. hellem significantly increased the rates of germination and infection, and these effects would be reversed by VWF blocking antibody. Mass spectrometry analysis further revealed that VWF-incubation altered various aspects of E. hellem including metabolic activity, levels of structural molecules, and protein maturation. Our findings demonstrated that VWF can bind microsporidia in circulation, and modulate its pathogenicity, including promoting germination and infection rate. VWF facilitates microsporidia intravascular spreading and systemic infection.
Collapse
Affiliation(s)
- Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Biying Mo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guozhen An
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Mortimer Poncz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
27
|
Shao ZM, Ding JH, Jiang DL, Liu ZX, Li YJ, Wang J, Wang J, Sheng S, Wu FA. Characterization and Functional Analysis of trehalase Related to Chitin Metabolism in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). INSECTS 2021; 12:insects12040370. [PMID: 33924270 PMCID: PMC8074895 DOI: 10.3390/insects12040370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Sericulture has always been threatened by Glyphodes pyloalis Walker (G. pyloalis). Trehalase is an essential enzyme in chitin metabolism and energy supply. In this study, two trehalase genes in G. pyloalis (GpTre1 and GpTre2) were identified and functionally analyzed. Knockdown of the two genes led to the significant downregulation of chitin metabolism pathway-related genes, the difficulty in molting of larvae, and the deformation of adult wings. Moreover, the trehalase inhibitor, Validamycin A, treatment increased GpTre1 and GpTre2 expression and affected the expressions of chitin metabolism pathway-related genes. The inhibitor also caused a significantly increased cumulative mortality of larvae. The results suggested that GpTre1 and GpTre2 played a vital role on G. pyloalis development, which could be useful for providing information for insect pest control in the future. Abstract Glyphodes pyloalis Walker (G. pyloalis) is a serious pest on mulberry. Due to the increasing pesticide resistance, the development of new and effective environmental methods to control G. pyloalis is needed. Trehalase is an essential enzyme in trehalose hydrolysis and energy supply, and it has been considered a promising target for insect pest control. However, the specific function of trehalase in G. pyloalis has not been reported. In this study, two trehalase genes (GpTre1 and GpTre2) were identified from our previous transcriptome database. The functions of the trehalase in chitin metabolism were studied by injecting larvae with dsRNAs and trehalase inhibitor, Validamycin A. The open reading frames (ORFs) of GpTre1 and GpTre2 were 1,704 bp and 1,869 bp, which encoded 567 and 622 amino acid residues, respectively. Both of GpTre1 and GpTre2 were mainly expressed in the head and midgut. The highest expression levels of them were in 5th instar during different development stages. Moreover, knockdown both of GpTre1 and GpTre2 by the dsRNAs led to significantly decreased expression of chitin metabolism pathway-related genes, including GpCHSA, GpCDA1, GpCDA2, GpCHT3a, GpCHT7, GpCHSB, GpCHT-h, GpCHT3b, GpPAGM, and GpUAP, and abnormal phenotypes. Furthermore, the trehalase inhibitor, Validamycin A, treatment increased the expressions of GpTre1 and GpTre2, increased content of trehalose, and decreased the levels of glycogen and glucose. Additionally, the inhibitor caused a significantly increased cumulative mortality of G. pyloalis larvae on the 2nd (16%) to 6th (41.3%) day, and decreased the rate of cumulative pupation (72.3%) compared with the control group (95.6%). After the activities of trehalase were suppressed, the expressions of 6 integument chitin metabolism-related genes decreased significantly at 24 h and increased at 48 h. The expressions of GpCHSB and GpCHT-h, involved in chitin metabolism pathway of peritrophic membrane in the midgut, increased at 24 h and 48 h, and there were no changes to GpCHT3b and GpPAGM. These results reveal that GpTre1 and GpTre2 play an essential role in the growth of G. pyloalis by affecting chitin metabolism, and this provides useful information for insect pest control in the future.
Collapse
Affiliation(s)
- Zuo-min Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
| | - Jian-hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
| | - De-lei Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
| | - Zhi-xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
| | - Yi-jiangcheng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
| | - Jiao Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Fu-an Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (J.-h.D.); (D.-l.J.); (Z.-x.L.); (Y.-j.L.); (J.W.); (J.W.); (S.S.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence:
| |
Collapse
|
28
|
Cloning, Characterization, and RNA Interference Effect of the UDP-N-Acetylglucosamine Pyrophosphorylase Gene in Cnaphalocrocis medinalis. Genes (Basel) 2021; 12:genes12040464. [PMID: 33805104 PMCID: PMC8064113 DOI: 10.3390/genes12040464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis is a major pest of rice and is difficult to control. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is a key enzyme in the chitin synthesis pathway in insects. In this study, the UAP gene from C. medinalis (CmUAP) was cloned and characterized. The cDNA of CmUAP is 1788 bp in length, containing an open reading frame of 1464 nucleotides that encodes 487 amino acids. Homology and phylogenetic analyses of the predicted protein indicated that CmUAP shared 91.79%, 87.89%, and 82.75% identities with UAPs of Glyphodes pyloalis, Ostrinia furnacalis, and Heortia vitessoides, respectively. Expression pattern analyses by droplet digital PCR demonstrated that CmUAP was expressed at all developmental stages and in 12 tissues of C. medinalis adults. Silencing of CmUAP by injection of double-stranded RNA specific to CmUAP caused death, slow growth, reduced feeding and excretion, and weight loss in C. medinalis larvae; meanwhile, severe developmental disorders were observed. The findings suggest that CmUAP is essential for the growth and development of C. medinalis, and that targeting the CmUAP gene through RNAi technology can be used for biological control of this insect.
Collapse
|
29
|
Xu CD, Liu YK, Qiu LY, Wang SS, Pan BY, Li Y, Wang SG, Tang B. GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens. Sci Rep 2021; 11:5246. [PMID: 33664411 PMCID: PMC7933274 DOI: 10.1038/s41598-021-84760-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Collapse
Affiliation(s)
- Cai-Di Xu
- College of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yong-Kang Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Sha-Sha Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bi-Ying Pan
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yan Li
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Dong C, Fan Q, Li X, Huang Y, Han J, Fang X, Huan M, Ye X, Li Z, Cui Z. Expression and characterization of a novel trehalase from Microvirga sp. strain MC18. Protein Expr Purif 2021; 182:105846. [PMID: 33592252 DOI: 10.1016/j.pep.2021.105846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/30/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Trehalase catalyzes the hydrolysis of trehalose into two glucose molecules and is present in nearly all tissues in various forms. In this study, a putative bacterial trehalase gene, encoding a glycoside hydrolase family 15 (GH15) protein was identified in Microvirga sp. strain MC18 and heterologously expressed in E. coli. The specific activity of the purified recombinant trehalase MtreH was 24 U/mg, with Km and Vmax values of 23.45 mg/mL and 184.23 μmol/mg/min, respectively. The enzyme exhibited optimal activity at 40 °C and pH 7.0, whereby Ca2+ had a considerable positive effects on the catalytic activity and thermostability. The optimized enzymatic reaction conditions for the bioconversion of trehalose using rMtreH were determined as 40 °C, pH 7.0, 10 h and 1% trehalose concentration. The characterization of this bacterial trehalase improves our understanding of the metabolism and biological role of trehalose in prokaryotic organism.
Collapse
Affiliation(s)
- Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jian Han
- College of Agriculture, Xinjiang Agricultural University, XinJiang, 830052, China
| | - Xiaodong Fang
- Guangzhou Hanyun Pharmaceutical Technology Co. Ltd. Guangzhou, 510000, China
| | - Minghui Huan
- Microbial Research Institute of Liaoning Province, Chaoyang, 122000, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
31
|
Wang G, Gou Y, Guo S, Zhou JJ, Liu C. RNA interference of trehalose-6-phosphate synthase and trehalase genes regulates chitin metabolism in two color morphs of Acyrthosiphon pisum Harris. Sci Rep 2021; 11:948. [PMID: 33441844 PMCID: PMC7806880 DOI: 10.1038/s41598-020-80277-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Trehalose-6-phosphate synthase (TPS) and trehalase (TRE) directly regulate trehalose metabolism and indirectly regulate chitin metabolism in insects. Real-time quantitative PCR (RT-qPCR) and RNA interference (RNAi) were used to detect the expressions and functions of the ApTPS and ApTRE genes. Abnormal phenotypes were found after RNAi of ApTRE in the Acyrthosiphon pisum. The molting deformities were observed in two color morphs, while wing deformities were only observed in the red morphs. The RNAi of ApTPS significantly down-regulated the expression of chitin metabolism-related genes, UDP-N-acetyglucosamine pyrophosphorylase (ApUAP), chitin synthase 2 (Apchs-2), Chitinase 2, 5 (ApCht2, 5), endo-beta-N-acetylglucosaminidase (ApENGase) and chitin deacetylase (ApCDA) genes at 24 h and 48 h; The RNAi of ApTRE significantly down-regulated the expression of ApUAP, ApCht1, 2, 8 and ApCDA at 24 h and 48 h, and up-regulated the expression of glucose-6-phosphate isomerase (ApGPI) and Knickkopf protein (ApKNK) genes at 48 h. The RNAi of ApTRE and ApTPS not only altered the expression of chitin metabolism-related genes but also decreased the content of chitin. These results demonstrated that ApTPS and ApTRE can regulate the chitin metabolism, deepen our understanding of the biological functions, and provide a foundation for better understanding the molecular mechanism of insect metamorphosis.
Collapse
Affiliation(s)
- Guang Wang
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Yuping Gou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Sufan Guo
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Jing-Jiang Zhou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| | - Changzhong Liu
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 Gansu China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 Gansu China
| |
Collapse
|
32
|
The Developmental Transcriptome of Bagworm, Metisa plana (Lepidoptera: Psychidae) and Insights into Chitin Biosynthesis Genes. Genes (Basel) 2020; 12:genes12010007. [PMID: 33374651 PMCID: PMC7822449 DOI: 10.3390/genes12010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/11/2023] Open
Abstract
Bagworm, Metisa plana (Lepidoptera: Psychidae) is a ubiquitous insect pest in the oil palm plantations. M. plana infestation could reduce the oil palm productivity by 40% if it remains untreated over two consecutive years. Despite the urgency to tackle this issue, the genome and transcriptome of M. plana have not yet been fully elucidated. Here, we report a comprehensive transcriptome dataset from four different developmental stages of M. plana, comprising of egg, third instar larva, pupa and female adult. The de novo transcriptome assembly of the raw data had produced a total of 193,686 transcripts, which were then annotated against UniProt, NCBI non-redundant (NR) database, Gene Ontology, Cluster of Orthologous Group, and Kyoto Encyclopedia of Genes and Genomes databases. From this, 46,534 transcripts were annotated and mapped to 146 known metabolic or signalling KEGG pathways. The paper further identified 41 differentially expressed transcripts encoding seven genes in the chitin biosynthesis pathways, and their expressions across each developmental stage were further analysed. The genetic diversity of M. plana was profiled whereby there were 21,516 microsatellite sequences and 379,895 SNPs loci found in the transcriptome of M. plana. These datasets add valuable transcriptomic resources for further study of developmental gene expression, transcriptional regulations and functional gene activities involved in the development of M. plana. Identification of regulatory genes in the chitin biosynthesis pathway may also help in developing an RNAi-mediated pest control management by targeting certain pathways, and functional studies of the genes in M. plana.
Collapse
|
33
|
Ding YJ, Li GY, Xu CD, Wu Y, Zhou ZS, Wang SG, Li C. Regulatory Functions of Nilaparvata lugens GSK-3 in Energy and Chitin Metabolism. Front Physiol 2020; 11:518876. [PMID: 33324230 PMCID: PMC7723894 DOI: 10.3389/fphys.2020.518876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Glucose metabolism is a biologically important metabolic process. Glycogen synthase kinase (GSK-3) is a key enzyme located in the middle of the sugar metabolism pathway that can regulate the energy metabolism process in the body through insulin signaling. This paper mainly explores the regulatory effect of glycogen synthase kinase on the metabolism of glycogen and trehalose in the brown planthopper (Nilaparvata lugens) by RNA interference. In this paper, microinjection of the target double-stranded GSK-3 (dsGSK-3) effectively inhibited the expression of target genes in N. lugens. GSK-3 gene silencing can effectively inhibit the expression of target genes (glycogen phosphorylase gene, glycogen synthase gene, trehalose-6-phosphate synthase 1 gene, and trehalose-6-phosphate synthase 2 gene) in N. lugens and trehalase activity, thereby reducing glycogen and glucose content, increasing trehalose content, and regulating insect trehalose balance. GSK-3 can regulate the genes chitin synthase gene and glucose-6-phosphate isomerase gene involved in the chitin biosynthetic pathway of N. lugens. GSK-3 gene silencing can inhibit the synthesis of chitin N. lugens, resulting in abnormal phenotypes and increased mortality. These results indicated that a low expression of GSK-3 in N. lugens can regulate the metabolism of glycogen and trehalose through the insulin signal pathway and energy metabolism pathway, and can regulate the biosynthesis of chitin, which affects molting and wing formation. The relevant research results will help us to more comprehensively explore the molecular mechanism of the regulation of energy and chitin metabolism of insect glycogen synthase kinases in species such as N. lugens.
Collapse
Affiliation(s)
- Yan-Juan Ding
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Cai-Di Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
34
|
Tevatiya S, Kumari S, Sharma P, Rani J, Chauhan C, Das De T, Pandey KC, Pande V, Dixit R. Molecular and Functional Characterization of Trehalase in the Mosquito Anopheles stephensi. Front Physiol 2020; 11:575718. [PMID: 33329025 PMCID: PMC7710876 DOI: 10.3389/fphys.2020.575718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Like other insects, in blood-feeding mosquitoes, trehalase (TRE; EC 3.2.1.28), an enzyme that metabolizes trehalose, may influence a wide array of functions including flight, survival, reproduction, and vectorial capacity, but its role has not been investigated in detail. Here, we characterized a 1,839-bp-long transcript, encoding a 555-aa-long trehalase-2 homolog protein from the mosquito Anopheles stephensi. With a conserved insect homology, and in silico predicted membrane-bound protein, we tested whether trehalase (As-TreH) also plays a role in mosquito physiologies. Constitutive expression during aquatic development or adult mosquito tissues, and a consistent upregulation until 42 h of starvation, which was restored to basal levels after sugar supply, together indicated that As-TreH may have a key role in stress tolerance. A multifold enrichment in the midgut (p < 0.001819) and salivary glands (p < 4.37E-05) of the Plasmodium vivax-infected mosquitoes indicated that As-TreH may favor parasite development and survival in the mosquito host. However, surprisingly, after the blood meal, a consistent upregulation until 24 h in the fat body, and 48 h in the ovary, prompted to test its possible functional correlation in the reproductive physiology of the adult female mosquitoes. A functional knockdown by dsRNA-mediated silencing confers As-TreH ability to alter reproductive potential, causing a significant loss in the egg numbers (p < 0.001), possibly by impairing energy metabolism in the developing oocytes. Conclusively, our data provide initial evidence that As-TreH regulates multiple physiologies and may serve as a suitable target for designing novel strategies for vector control.
Collapse
Affiliation(s)
- Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
35
|
Yang C, Ou D, Guo W, Lü J, Guo C, Qiu B, Pan H. De Novo Assembly of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Psyllidae) Transcriptome across Developmental Stages. Int J Mol Sci 2020; 21:ijms21144974. [PMID: 32674498 PMCID: PMC7404022 DOI: 10.3390/ijms21144974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Asian citrus psyllid Diaphorina citri Kuwayama is an important economic pest of citrus, as it transmits Candidatus Liberibacter asiaticus, the causative agent of huanglongbing. In this study, we used RNA-seq to identify novel genes and provide the first high-resolution view of the of D. citri transcriptome throughout development. The transcriptomes of D. citri during eight developmental stages, including the egg, five instars, and male and female adults were sequenced. In total, 115 million clean reads were obtained and assembled into 354,726 unigenes with an average length of 925.65 bp and an N50 length of 1733 bp. Clusters of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to functionally annotate the genes. Differential expression analysis highlighted developmental stage-specific expression patterns. Furthermore, two trehalase genes were characterized with lower expression in adults compared to that in the other stages. The RNA interference (RNAi)-mediated suppression of the two trehalase genes resulted in significantly high D. citri mortality. This study enriched the genomic information regarding D. citri. Importantly, these data represent the most comprehensive transcriptomic resource currently available for D. citri and will facilitate functional genomics studies of this notorious pest.
Collapse
Affiliation(s)
- Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Changfei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- Correspondence: (B.Q.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China; (D.O.); (W.G.); (J.L.); (C.G.)
- Correspondence: (B.Q.); (H.P.)
| |
Collapse
|
36
|
Zeng B, Wang S, Li Y, Xiao Z, Zhou M, Wang S, Zhang D. Effect of long-term cold storage on trehalose metabolism of pre-wintering Harmonia axyridis adults and changes in morphological diversity before and after wintering. PLoS One 2020; 15:e0230435. [PMID: 32191747 PMCID: PMC7082016 DOI: 10.1371/journal.pone.0230435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/01/2020] [Indexed: 11/20/2022] Open
Abstract
Harmonia axyridis is a major bio-control agent of pests in agriculture and forest ecosystems. It is also a globally important invasive insect species. To test whether dark elytra colour is associated with greater cold hardiness, we compared the survival rate of prolonged cold exposure in both yellow and black colour morphs of female and male H. axyridis. We determined the trehalose and glycogen content, trehalase activity, and the dynamics of genes associated with the trehalose metabolic pathway. Yellow forms predominated before winter began, however black forms increased from 11.15 to 30.46% after overwintering. There was no significant difference in trehalose content between the females and males during overwintering. Glycogen content in over-wintering yellow females and black males increased significantly, while it decreased in black females. Soluble trehalase activity increased significantly in all the insects except black females. Membrane-bound trehalase activity increased in black males, and decreased in black females. Trehalose and glycogen content and trehalase activity were regulated by differential expression of TRE and TPS genes. Female beetles weighed more than males and survived in low temperatures for longer periods of time, regardless of elytra colour, suggesting that mass is a stronger predictor of overwintering survival rather than colour morph. Our results provide a guide for comparing cold resistance in insects and a theoretical basis for cold storage of H. axyridis for use as natural enemies of pests in biological control programs.
Collapse
Affiliation(s)
- Boping Zeng
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhongjiu Xiao
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| | - Min Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Daowei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, Guizhou, China
| |
Collapse
|
37
|
Pan BY, Liu YK, Wu HK, Pang XQ, Wang SG, Tang B, Xu CD. Role of phosphoglucomutase in regulating trehalose metabolism in Nilaparvata lugens. 3 Biotech 2020; 10:61. [PMID: 32030330 PMCID: PMC6977789 DOI: 10.1007/s13205-020-2053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 11/30/2022] Open
Abstract
Phosphoglucomutase (PGM) is a key enzyme in glycolysis and gluconeogenesis, regulating both glycogen and trehalose metabolism in insects. In this study, we explored the potential function of phosphoglucomutase (PGM) using RNA interference technology in Nilaparvata lugens, the brown planthopper. PGM1 and PGM2 were found highly expressed in the midgut of brown planthoppers, with different expression levels in different instar nymphs. The glycogen, glucose, and trehalose levels were also significantly increased after brown planthoppers were injected with dsRNA targeting PGM1 (dsPGM1) or PGM2 (dsPGM2). In addition, injection of dsPGM1 or dsPGM2 resulted in increased membrane-bound trehalase activity but not soluble trehalase activity. Furthermore, the expression of genes related to trehalose and glycogen metabolism decreased significantly after injection with dsPGM1 and dsPGM2. The expression levels of genes involved in chitin metabolism in the brown planthopper were also significantly decreased and the insects showed wing deformities and difficulty molting following RNAi. We suggest that silencing of PGM1 and PGM2 expression directly inhibits trehalose metabolism, leading to impaired chitin synthesis.
Collapse
Affiliation(s)
- Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Yong-Kang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Hong-Kai Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Xiao-Qing Pang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| | - Cai-Di Xu
- College of Education, Hangzhou
Normal University, Hangzhou, 310036 Zhejiang People’s Republic of China
| |
Collapse
|
38
|
Zhang W, Liu Z, Tang S, Li D, Jiang Q, Zhang T. Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex. CHEMOSPHERE 2020; 238:124563. [PMID: 31454744 DOI: 10.1016/j.chemosphere.2019.124563] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Nanoplastic pollution is widespread and persistent across global water systems and can cause a negative effect on aquatic organisms, especially the zooplankter which is the keystone of the food chain. The present study uses RNA sequencing to assess the global change in gene expression caused by 21 days of exposure to 75 nm polystyrene (PS) nanoplastics on Daphnia pulex, a model organism for ecotoxicity. With the threshold value at P value < 0.05 and fold change >2, 244 differentially expressed genes were obtained. Combined with real-time PCR validation of several selected genes, our results indicated that a distinct expression profile of key genes, including downregulated trehalose transporter, trehalose 6-phosphate synthase/phosphatase, chitinase and cathepsin-L as well as upregulated doublesex 1 and doublesex and mab-3 related transcription factor-like protein, contributed to the toxic effects of chronic nanoplastic exposure on Daphnia, such as slowed growth, subdued reproductive ability and reproductive pattern shifting. Our study also showed that chronic exposure to nanoplastic changed the sex ratio of D. pulex neonates. By integrating the gene expression pattern in an important model organism, this study gained insight into the molecular mechanisms of the toxic effect of chronic PS nanoplastic exposure on D. pulex, which may also extend to other nanoplastics or aquatic animals.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing, 210017, China
| | - Daming Li
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing, 210017, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing, 210017, China.
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
39
|
Improving expression of thermostable trehalase from Myceliophthora sepedonium in Aspergillus niger mediated by the CRISPR/Cas9 tool and its purification, characterization. Protein Expr Purif 2020; 165:105482. [DOI: 10.1016/j.pep.2019.105482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022]
|
40
|
Li Y, Chen X, Wang SS, Pan BY, Wang SG, Wang S, Tang B. Evaluation of the Expression and Function of the TRE2-like and TRE2 Genes in Ecdysis of Harmonia axyridis. Front Physiol 2019; 10:1371. [PMID: 31736789 PMCID: PMC6839538 DOI: 10.3389/fphys.2019.01371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Harmonia axyridis is an important predatory insect and widely used in biological control of agricultural and forestry pests. Trehalose is directly involved in the energy storage of the H. axyridis and in the oxidative function of various physiological activities thereby providing an energy source for its growth and development. The aim of this study was to explore the potential function of membrane-bound-like trehalase (TRE2-like) and membrane-bound trehalase (TRE2) genes in H. axyridis by RNAi. In addition, the activity of soluble and membrane-bound trehalase and the expression of genes related to trehalose and glycogen metabolism were determined in the larvae injected with dsTRE2-like or dsTRE2. The results showed that wing abnormality and mortality appeared in adults, as well as the activity of soluble trehalase and glycogen contents increased when interfering with TRE2-like gene. However, the activity of membrane-bound trehalase, trehalose and glucose contents in the larvae decreased. The expression of glycogen synthase (GS) and glycogen phosphorylase (GP) genes were decreased after RNAi in the ecdysis stage. The expression of chitin synthase gene A (CHSA), chitin synthase gene B (CHSB), and trehalose-6-phosphate synthase genes (TPS) were decreased significantly after RNAi, especially in the ecdysis stage. These results indicated that RNA interference is capable of knocking down gene expression of TRE2-like and TRE2, thereby disrupting trehalose metabolism which affects the chitin synthesis pathway in turn and also leads to developmental defects, such as wing deformities. This study could provide some theoretical guidance for the function of TRE2 gene in other insects.
Collapse
Affiliation(s)
- Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xu Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sha-Sha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
41
|
Liu X, Cooper AMW, Yu Z, Silver K, Zhang J, Zhu KY. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:33-46. [PMID: 31685194 DOI: 10.1016/j.pestbp.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Chitin is a structural component of the arthropod cuticular exoskeleton and the peritrophic matrix of the gut, which play crucial roles in growth and development. In the past few decades, our understanding of the composition, biosynthesis, assembly, degradation, and regulation of chitinous structures has increased. Many chemicals have been developed that target chitin biosynthesis (benzoyphenyl ureas, etoxazole), chitin degradation (allosamidin, psammaplin), and chitin regulation (benzoyl hydrazines), thus resulting in molting deformities and lethality. In addition, proteins that disrupt chitin structures, such as lectins, proteases, and chitinases have been utilized to halt feeding and induce mortality. Chitin-degrading enzymes, such as chitinases are also useful for improving the efficacy of bio-insecticides. Transgenic plants, baculoviruses, fungi, and bacteria have been engineered to express chitinases from a variety of organisms for control of arthropod pests. In addition, RNA interference targeting genes involved in chitin pathways and structures are now being investigated for the development of environmentally friendly pest management strategies. This review describes the chemicals and proteins used to target chitin structures and enzymes for arthropod pest management, as well as pest management strategies based upon these compounds, such as plant-incorporated-protectants and recombinant entomopathogens. Recent advances in RNA interference-based pest management, and how this technology can be used to target chitin pathways and structures are also discussed.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | - Zhitao Yu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
42
|
Three novel trehalase genes from Harmonia axyridis (Coleoptera: Coccinellidae): cloning and regulation in response to rapid cold and re-warming. 3 Biotech 2019; 9:321. [PMID: 31406643 PMCID: PMC6684730 DOI: 10.1007/s13205-019-1839-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Trehalose is the main blood sugar in insects. To study the function of trehalase during exposure to low temperatures, three other novel cDNAs of trehalase were cloned from Harmonia axyridis by transcriptome sequencing and rapid amplification of cDNA ends. One of the cloned cDNAs encoded a soluble trehalase, the second trehalase cDNA encoded a transmembrane-like domain, and the third cDNA encoded a membrane-bound protein. Therefore, these cDNAs were, respectively, named HaTreh1-5, HaTreh2-like, and HaTreh2. HaTreh1-5, HaTreh2-like, and HaTreh2 cDNAs encoded proteins containing 586, 553, and 633 amino acids with predicted masses of approximately 69.47, 63.46, and 73.66 kDa, and pIs of 9.20, 5.52, and 6.31, respectively. All three novel trehalases contained signal motifs "PGGINKESYYLDSY", "QWDYPNAWPP", and a highly conserved glycine-rich (GGGGEY) region. The expression levels of HaTreh1-5 and HaTreh2 mRNAs were high during adult stages, whereas HaTreh2-like was expressed in low amounts in the fourth larval stage. The results showed that the activity of membrane-bound trehalases decreased from 25 to 10 °C and from 5 to - 5 °C during cooling. The results also revealed a decreasing trend in expression of the three HaTreh mRNAs during the cooling treatment, and an initial decrease followed by an increase during the process of re-warming.
Collapse
|
43
|
Liu X, Cooper AMW, Zhang J, Zhu KY. Biosynthesis, modifications and degradation of chitin in the formation and turnover of peritrophic matrix in insects. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:109-115. [PMID: 30902530 DOI: 10.1016/j.jinsphys.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
The peritrophic matrix (PM) is an extracellular, semi-permeable biocomposite that lines the midgut of most insects. The PM serves as the first defense in the midgut to resist microorganisms such as viruses, bacteria and other pathogens, and to protect epithelial cells from mechanical damage. The PM also separates the midgut lumen into different compartments, which play important roles in nutrient ingestion and digestion. The PM is a highly dynamic structure that consists mainly of chitin fibers cross-linked by proteins, glycoproteins, and proteoglycans. The PM is continuously biosynthesized, assembled, and degraded in response to feeding and development. Chitin chains are synthesized by several enzymes and organized in several hierarchical levels, in which various PM-associated proteins appear to be essential for maintaining the structural integrity and physiological function of the PM. This review summarizes research advances on molecular components of the PM and their functions, as well as related proteins and enzymes that contribute to PM formation and modification. Crucial gaps in our current understanding of the PM are also addressed.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
44
|
Wang Z, Yang H, Zhou C, Yang WJ, Jin DC, Long GY. Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci Rep 2019; 9:1087. [PMID: 30705372 PMCID: PMC6355952 DOI: 10.1038/s41598-018-37488-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Chitin synthase is responsible for chitin synthesis in the cuticles and cuticular linings of other tissues in insects. We cloned two alternative splicing variants of the chitin synthase 1 gene (SfCHS1) from the white-backed planthopper, Sogatella furcifera. The full-length cDNA of the two variants (SfCHS1a and SfCHS1b) consists of 6408 bp, contains a 4719-bp open reading frame encoding 1572 amino acids, and has 5′ and 3′ non-coding regions of 283 and 1406 bp, respectively. The two splicing variants occur at the same position in the cDNA sequence between base pairs 4115 and 4291, and consist of 177 nucleotides that encode 59 amino acids but show 74.6% identity at the amino acid level. Analysis in different developmental stages showed that expression of SfCHS1 and SfCHS1a were highest just after molting, whereas SfCHS1b reached its highest expression level 2 days after molting. Further, SfCHS1 and SfCHS1a were mainly expressed in the integument, whereas SfCHS1b was predominately expressed in the gut and fat body. RNAi-based gene silencing inhibited transcript levels of the corresponding mRNAs in S. furcifera nymphs injected with double-stranded RNA of SfCHS1, SfCHS1a, and SfCHS1b, resulted in malformed phenotypes, and killed most of the treated nymphs. Our results indicate that SfCHS1 may be a potential target gene for RNAi-based S. furcifera control.
Collapse
Affiliation(s)
- Zhao Wang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China.,College of Environment and Life Sciences, Kaili University, Kaili, 556011, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China. .,College of Tobacco Science of Guizhou University, Guiyang, 550025, P. R. China.
| | - Cao Zhou
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China
| | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, 550005, P. R. China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China.
| | - Gui-Yun Long
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, 550025, P. R. China
| |
Collapse
|
45
|
Liu X, Zhang J, Zhu KY. Chitin in Arthropods: Biosynthesis, Modification, and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:169-207. [PMID: 31102247 DOI: 10.1007/978-981-13-7318-3_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
46
|
Wang W, Wan P, Lai F, Zhu T, Fu Q. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2018; 74:1711-1719. [PMID: 29381254 DOI: 10.1002/ps.4865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Calmodulin (CaM) is an essential protein in cellular activity and plays important roles in many processes in insect development. RNA interference (RNAi) has been hypothesized to be a promising method for pest control. CaM is a good candidate for RNAi target. However, the sequence and function of CaM in Nilaparvata lugens are unknown. Furthermore, the double-stranded RNA (dsRNA) target to CaM gene in pest control is still unavailable. RESULTS In the present study, two alternatively spliced variants of CaM transcripts, designated NlCaM1 and NlCaM2, were cloned from N. lugens. The two cDNA sequences exhibited 100% identity to each other in the open reading frame (ORF), and only differed in the 3' untranslated region (UTR). NlCaM including NlCaM1 and NlCaM2 mRNA was detectable in all developmental stages and tissues of N. lugens, with significantly increased expression in the salivary glands. Knockdown of NlCaM expression by RNAi with different dsRNAs led to an inability to molt properly, increased mortality, which ranged from 49.7 to 92.5%, impacted development of the ovaries and led to female infertility. There were no significant reductions in the transcript levels of vitellogenin and its receptor or in the total vitellogenin protein level relative to the control group. However, a significant reduction in vitellogenin protein was detected in ovaries injected with dsNlCaM. In addition, a specific dsRNA of NlCaM for control of N. lugens was designed and tested. CONCLUSION NlCaM plays important roles mainly in nymph development and uptake of vitellogenin by ovaries in vitellogenesis in N. lugens. dsRNA derived from the less conserved 3'-UTR of NlCaM shows great potential for RNAi-based N. lugens management. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weixia Wang
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| | - Pinjun Wan
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| | - Fengxiang Lai
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| | - Tingheng Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiang Fu
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Chen QW, Jin S, Zhang L, Shen QD, Wei P, Wei ZM, Wang SG, Tang B. Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum (Coleoptera: Tenebrionidae) revealed by RNA interference. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:388-399. [PMID: 28920565 DOI: 10.1017/s000748531700089x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA interference (RNAi) is a very effective technique for studying gene function and may be an efficient method for controlling pests. Trehalose-6-phosphate synthase (TPS), which plays a key role in the synthesis of trehalose and insect development, was cloned in Tribolium castaneum (Herbst) (TcTPS) and the putative functions were studied using RNAi via the injection of double-stranded RNA (dsRNA) corresponding to conserved TPS and trehalose-6-phosphate phosphatase domains. Expression analyses show that TcTPS is expressed higher in the fat body, while quantitative real-time polymerase chain reaction results show that the expression of four trehalase isoforms was significantly suppressed by dsTPS injection. Additionally, the expression of six chitin synthesis-related genes, such as hexokinase 2 and glutamine-fructose-6-phosphate aminotransferase, was suppressed at 48 and 72 h post-dsTPS-1 and dsTPS-2 RNA injection, which were two dsTPS fragments that had been designed for two different locations in TcTPS open reading frame, and that trehalose content and trehalase 1 activity decreased significantly at 72 h post-dsRNA injection. Furthermore, T. castaneum injected with dsTPS-1 and dsTPS-2 RNA displayed significantly lower levels of chitin and could not complete the molting process from larvae to pupae, revealing abnormal molting phenotypes. These results demonstrate that silencing TPS gene leads to molting deformities and high mortality rates via regulation of gene expression in the chitin biosynthetic pathway, and may be a promising approach for pest control in the future.
Collapse
Affiliation(s)
- Q W Chen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| | - S Jin
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| | - L Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| | - Q D Shen
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| | - P Wei
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| | - Z M Wei
- College of Life Sciences,Shaanxi Normal University,Xi'an,Shaanxi 710119,China
| | - S G Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| | - B Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution,College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou,Zhejiang 310036,China
| |
Collapse
|
48
|
Tang B, Wang S, Wang SG, Wang HJ, Zhang JY, Cui SY. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications. Front Physiol 2018; 9:30. [PMID: 29445344 PMCID: PMC5797772 DOI: 10.3389/fphys.2018.00030] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia-Yong Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, China
| | - Shuai-Ying Cui
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
49
|
Zhai Y, Fan X, Yin Z, Yue X, Men X, Zheng L, Zhang W. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, Mythimna separata. Proteomics 2017; 17. [PMID: 28941069 DOI: 10.1002/pmic.201700165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Indexed: 11/09/2022]
Abstract
Chitin synthases are very important enzymes for chitin synthesis in various species, which makes them a specific target of insecticides. In the present study, the function of the chitin synthase A (CHSA) gene isolated from Mythimna separate is investigated. The majority of dsMysCHSA treated larvae (89.50%) exhibit lethal phenotypes, including three phenotypes with severe cuticle deformations. The dsMysCHSA treatment in adult females affects oogenesis, and significantly reduce the ovary size and the oviposition number compared with controls. To determine how MysCHSA affects female fecundity, combined analyses of RNA-sequencing (RNA-Seq) transcriptome and TMT proteome (tandem mass tags) data in M. separata after treatment with MysCHSA-RNAi is performed. The differentially expressed proteins and genes affect fecundity-related proteins, energy metabolism, fatty acid metabolism, amino sugars, and nucleotide sugar metabolism pathways. Taken together, these results suggest that MysCHSA acts on M. separata ecdysis and fecundity, and has the potential as a target gene for pest control.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaobin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Xiangzhao Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
50
|
Zhang L, Qiu LY, Yang HL, Wang HJ, Zhou M, Wang SG, Tang B. Study on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene. Front Physiol 2017; 8:750. [PMID: 29033849 PMCID: PMC5627005 DOI: 10.3389/fphys.2017.00750] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the regulating role of trehalase (TRE) genes on wing bud formation has been studied by RNAi. In this paper, the activity levels of TRE and the contents of the two sugars trehalose and glucose were negatively correlated indicating the potential role of TRE in the molting process. In addition, NlTRE1-1 and NlTRE2 were expressed at higher levels in wing bud tissue than in other tissues, and abnormal molting and wing deformity or curling were noted 48 h after the insect was injected with any double-stranded TRE (dsTRE), even though different TREs have compensatory functions. The expression levels of NlCHS1b, NlCht1, NlCht2, NlCht6, NlCht7, NlCht8, NlCht10, NlIDGF, and NlENGase decreased significantly 48 h after the insect was injected with a mixture of three kinds of dsTREs. Similarly, the TRE inhibitor validamycin can inhibit NlCHS1 and NlCht gene expression. However, the wing deformity was the result of the NlIDGF, NlENGase, NlAP, and NlTSH genes being inhibited when a single dsTRE was injected. These results demonstrate that silencing of TRE gene expression can lead to wing deformities due to the down-regulation of the AP and TSH genes involved in wing development and that the TRE inhibitor validamycin can co-regulate chitin metabolism and the expression of wing development-related genes in wing bud tissue. The results provide a new approach for the prevention and management of N. lugens.
Collapse
Affiliation(s)
- Lu Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Li Yang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Min Zhou
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|