1
|
Sedghi M, Javanmard F, Amoozmehr A, Zamany S, Mohammadi I, Kim W, Choppa VSR. Lysophospholipid Supplementation in Broiler Breeders' Diet Benefits Offspring's Productive Performance, Blood Parameters, and Hepatic β-Oxidation Genes. Animals (Basel) 2024; 14:3066. [PMID: 39518789 PMCID: PMC11545463 DOI: 10.3390/ani14213066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
The present study aimed to investigate whether supplementation of modified lysophospholipids (LPLs) in the diet of broiler breeders can benefit their offspring. A total of 264 49-week-old breeders (Ross 308) were allocated and fed based on a 2 × 2 factorial arrangement with two levels of dietary energy (normal energy = 2800 kcal/kg and low energy = 2760 kcal/kg) and two LPL levels (0 and 0.5 g/kg) for periods of 8 and 12 weeks. The offspring were assessed for growth performance, serum parameters, hepatic antioxidative capability, and expression of genes involved in liver β-oxidation at 7 days old. The LPL inclusion improved (p < 0.01) average body weight (ABW), average daily gain (ADG), and feed conversion ratio (FCR). The offspring of 61-week-old breeders fed with LPL exhibited reduced serum triglyceride levels (p < 0.01) but an increase in hepatic glutathione peroxidase (p < 0.05). The LPL increased (p < 0.001) the mRNA expression of the PGC-1α gene in the liver. Supplementing LPL in low-energy diets resulted in higher FABP1 gene expression (p < 0.05) in the intestine. In conclusion, LPL supplementation in the breeders' diet improved offspring performance by enhancing fatty acid absorption, hepatic indices, and the expression of genes involved in liver β-oxidation.
Collapse
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Fatemeh Javanmard
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Anvar Amoozmehr
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Shahid Beheshti Ave, Gorgan 49138-15739, Iran;
| | - Saeid Zamany
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.J.); (S.Z.); (I.M.)
| | - Woo Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (W.K.); (V.S.R.C.)
| | | |
Collapse
|
2
|
Fantini V, Ferrari RR, Bordoni M, Spampinato E, Pandini C, Davin A, Medici V, Gagliardi S, Guaita A, Pansarasa O, Cereda C, Poloni TE. Functional analysis and transcriptome profile of meninges and skin fibroblasts from human-aged donors. Cell Prolif 2024; 57:e13627. [PMID: 38421110 PMCID: PMC11294439 DOI: 10.1111/cpr.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is surrounded by three membranes called meninges. Specialised fibroblasts, originating from the mesoderm and neural crest, primarily populate the meninges and serve as a binding agent. Our goal was to compare fibroblasts from meninges and skin obtained from the same human-aged donors, exploring their molecular and cellular characteristics related to CNS functions. We isolated meningeal fibroblasts (MFs) from brain donors and skin fibroblasts (SFs) from the same subjects. A functional analysis was performed measuring cell appearance, metabolic activity, and cellular orientation. We examined fibronectin, serpin H1, β-III-tubulin, and nestin through qPCR and immunofluorescence. A whole transcriptome analysis was also performed to characterise the gene expression of MFs and SFs. MFs appeared more rapidly in the post-tissue processing, while SFs showed an elevated cellular metabolism and a well-defined cellular orientation. The four markers were mostly similar between the MFs and SFs, except for nestin, more expressed in MFs. Transcriptome analysis reveals significant differences, particularly in cyclic adenosine monophosphate (cAMP) metabolism and response to forskolin, both of which are upregulated in MFs. This study highlights MFs' unique characteristics, including the timing of appearance, metabolic activity, and gene expression patterns, particularly in cAMP metabolism and response to forskolin. These findings contribute to a deeper understanding of non-neuronal cells' involvement in CNS activities and potentially open avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Valentina Fantini
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
| | | | - Matteo Bordoni
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
| | - Eleonora Spampinato
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Cecilia Pandini
- Molecular Biology and Transcriptomics UnitIRCCS Mondino FoundationPaviaItaly
- Department of BiosciencesUniversity of MilanMilanItaly
| | - Annalisa Davin
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Valentina Medici
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics UnitIRCCS Mondino FoundationPaviaItaly
| | - Antonio Guaita
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of PediatricsBuzzi Children's HospitalMilanItaly
| | - Tino Emanuele Poloni
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
- Department of RehabilitationASP Golgi‐Redaelli Geriatric HospitalAbbiategrassoItaly
| |
Collapse
|
3
|
Xu F, Tian Z, Wang Z. Cilostazol protects against degenerative cervical myelopathy injury and cell pyroptosis via TXNIP-NLRP3 pathway. Cell Div 2024; 19:2. [PMID: 38233884 DOI: 10.1186/s13008-024-00108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) is one of the most common and serious neurological diseases. Cilostazol has protective effects of anterior horn motor neurons and prevented the cell apoptosis. However, there was no literatures of Cilostazol on DCM. In this study, we established the DCM rat model to detect the effects of Cilostazol. Meanwhile, the neurobehavioral assessments, histopathology changes, inflammatory cytokines, Thioredoxin-interacting protein (TXNIP), NOD‑like receptor pyrin domain containing 3 (NLRP3) and pro-caspase-1 expressions were detected by Basso, Beattie, and Bresnahan score assessment, Hematoxylin and Eosin Staining, Enzyme-linked immunosorbent assay, immunofluorescence and Western blotting, respectively. After treated with Cilostazol, the Basso, Beattie, and Bresnahan (BBB) score, inclined plane test and forelimb grip strength in DCM rats were significantly increased meanwhile the histopathology injury and inflammatory cytokines were decreased. Additionally, TXNIP, NLRP3 and pro-caspase-1 expressions levels were decreased in Cilostazol treated DCM rats. Interestingly, the using of siTXNIP significantly changed inflammatory cytokines, TXNIP, NLRP3 and pro-caspase-1 expressions, however there was no significance between siTXNIP and Cilostazol + siTXNIP group. These observations showed that Cilostazol rescues DCM injury and ameliorates neuronal destruction mediated by TXNIP/NLRP3/caspase-1 and pro-inflammatory cytokines. As a result of our study, these findings provide further evidence that Cilostazol may represent promising therapeutic candidates for DCM.
Collapse
Affiliation(s)
- Fei Xu
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China
| | - Zhuo Tian
- Department of General Surgery, Yantai hospital of traditional Chinese medicine, Yantai, Shandong, China
| | - Zhengguang Wang
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China.
| |
Collapse
|
4
|
De Jong KA, Ehret S, Heeren J, Nikolaev VO. Live-cell imaging identifies cAMP microdomains regulating β-adrenoceptor-subtype-specific lipolytic responses in human white adipocytes. Cell Rep 2023; 42:112433. [PMID: 37099421 DOI: 10.1016/j.celrep.2023.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
Lipolysis of stored triglycerides is stimulated via β-adrenergic receptor (β-AR)/3',5'-cyclic adenosine monophosphate (cAMP) signaling and inhibited via phosphodiesterases (PDEs). In type 2 diabetes, a dysregulation in the storage/lipolysis of triglycerides leads to lipotoxicity. Here, we hypothesize that white adipocytes regulate their lipolytic responses via the formation of subcellular cAMP microdomains. To test this, we investigate real-time cAMP/PDE dynamics at the single-cell level in human white adipocytes with a highly sensitive florescent biosensor and uncover the presence of several receptor-associated cAMP microdomains where cAMP signals are compartmentalized to differentially regulate lipolysis. In insulin resistance, we also detect cAMP microdomain dysregulation mechanisms that promote lipotoxicity, but regulation can be restored by the anti-diabetic drug metformin. Therefore, we present a powerful live-cell imaging technique capable of resolving disease-driven alterations in cAMP/PDE signaling at the subcellular level and provide evidence to support the therapeutic potential of targeting these microdomains.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Ehret
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Zuo Y, Xu H, Li Y, Zhang Z, Tao R, Wang M. Hsa_circ_0007707 participates in PDE3B-mediated apoptosis inhibition and inflammation promotion in fibroblast-like synoviocytes. Int Immunopharmacol 2023; 119:110157. [PMID: 37086679 DOI: 10.1016/j.intimp.2023.110157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Synovial samples collected from 30 rheumatoid arthritis (RA) patients and 30 normal controls were used to isolate fibroblast-like synoviocytes (FLSs) and named FLS-RA and FLS-Normal, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to detect circ_0007707 expression. Effects of circ_0007707 silencing on cell proliferation and apoptosis were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (Edu), and flow cytometry assays. Levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Increased circ_0007707 expression was observed in synovial samples from RA patients and FLS-RA cells. Functional analysis showed circ_0007707 silencing restrained cell proliferation, induced cell apoptosis, and decreased cell inflammatory response in FLS-RA cells. Mechanistic analysis revealed the sponge function of circ_0007707 on miR-27b-3p, and miR-27b-3p inhibition weakened circ_0007707 knockdown-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 could mediate PDE3B expression via sponging miR-27b-3p, and PDE3B overturned miR-27b-3p mimic-mediated effects on FLS-RA cell proliferation, apoptosis, and inflammatory response. Circ_0007707 mediated cell apoptosis and inflammatory response in FLS-RA cells through the miR-27b-3p/PDE3B axis, indicating the potential function of circ_0007707 as a target for RA treatment.
Collapse
Affiliation(s)
- Yanhua Zuo
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Huaheng Xu
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanxia Li
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zongfang Zhang
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ran Tao
- Department of Rheumatology and Immunology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Manxiang Wang
- Department of Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
6
|
Salicylate Sodium Suppresses Monocyte Chemoattractant Protein-1 Production by Directly Inhibiting Phosphodiesterase 3B in TNF-α-Stimulated Adipocytes. Int J Mol Sci 2022; 24:ijms24010320. [PMID: 36613764 PMCID: PMC9820166 DOI: 10.3390/ijms24010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
As a worldwide health issue, obesity is associated with the infiltration of monocytes/macrophages into the adipose tissue causing unresolved inflammation. Monocyte chemoattractant protein-1 (MCP-1) exerts a crucial effect on obesity-related monocytes/macrophages infiltration. Clinically, aspirin and salsalate are beneficial for the treatment of metabolic diseases in which adipose tissue inflammation plays an essential role. Herein, we investigated the effect and precise mechanism of their active metabolite salicylate on TNF-α-elevated MCP-1 in adipocytes. The results indicated that salicylate sodium (SAS) could lower the level of MCP-1 in TNF-α-stimulated adipocytes, which resulted from a previously unrecognized target phosphodiesterase (PDE), 3B (PDE3B), rather than its known targets IKKβ and AMPK. The SAS directly bound to the PDE3B to inactivate it, thus elevating the intracellular cAMP level and activating PKA. Subsequently, the expression of MKP-1 was increased, which led to the decrease in p-EKR and p-p38. Both PDE3B silencing and the pharmacological inhibition of cAMP/PKA compromised the suppressive effect of SAS on MCP-1. In addition to PDE3B, the PDE3A and PDE4B activity was also inhibited by SAS. Our findings identify a previously unrecognized pathway through which SAS is capable of attenuating the inflammation of adipocytes.
Collapse
|
7
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
8
|
Chandra A, Lagnado AB, Farr JN, Schleusner M, Monroe DG, Saul D, Passos JF, Khosla S, Pignolo RJ. Bone Marrow Adiposity in Models of Radiation- and Aging-Related Bone Loss Is Dependent on Cellular Senescence. J Bone Miner Res 2022; 37:997-1011. [PMID: 35247283 PMCID: PMC9526878 DOI: 10.1002/jbmr.4537] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Oxidative stress-induced reactive oxygen species, DNA damage, apoptosis, and cellular senescence have been associated with reduced osteoprogenitors in a reciprocal fashion to bone marrow adipocyte tissue (BMAT); however, a direct (causal) link between cellular senescence and BMAT is still elusive. Accumulation of senescent cells occur in naturally aged and in focally radiated bone tissue, but despite amelioration of age- and radiation-associated bone loss after senescent cell clearance, molecular events that precede BMAT accrual are largely unknown. Here we show by RNA-Sequencing data that BMAT-related genes were the most upregulated gene subset in radiated bones of C57BL/6 mice. Using focal radiation as a model to understand age-associated changes in bone, we performed a longitudinal assessment of cellular senescence and BMAT. Using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), RNA in situ hybridization of p21 transcripts and histological assessment of telomere dysfunction as a marker of senescence, we observed an increase in senescent cell burden of bone cells from day 1 postradiation, without the presence of BMAT. BMAT was significantly elevated in radiated bones at day 7, confirming the qRT-PCR data in which most BMAT-related genes were elevated by day 7, and the trend continued until day 42 postradiation. Similarly, elevation in BMAT-related genes was observed in bones of aged mice. The senolytic cocktail of Dasatinib (D) plus Quercetin (Q) (ie, D + Q), which clears senescent cells, reduced BMAT in aged and radiated bones. MicroRNAs (miRNAs or miRs) linked with senescence marker p21 were downregulated in radiated and aged bones, whereas miR-27a, a miR that is associated with increased BMAT, was elevated both in radiated and aged bones. D + Q downregulated miR-27a in radiated bones at 42 days postradiation. Overall, our study provides evidence that BMAT occurrence in oxidatively stressed bone environments, such as radiation and aging, is induced following a common pathway and is dependent on the presence of senescent cells. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anthony B. Lagnado
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joshua N. Farr
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Megan Schleusner
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David G. Monroe
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert J. Pignolo
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
9
|
Wang Z, Hao D, Fang D, Yu J, Wang X, Qin G. Transcriptome Analysis Reveal Candidate Genes and Pathways Responses to Lactate Dehydrogenase Inhibition (Oxamate) in Hyperglycemic Human Renal Proximal Epithelial Tubular Cells. Front Endocrinol (Lausanne) 2022; 13:785605. [PMID: 35370938 PMCID: PMC8970056 DOI: 10.3389/fendo.2022.785605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of both chronic kidney disease (CKD) and end-stage renal disease (ESRD). Previous studies showed that oxamate could regulate glycemic homeostasis and impacted mitochondria respiration in a hyperglycemia-dependent manner in the rat proximal tubular cells. To explore the transcriptome gene expression profiling of kidney tissues in human renal proximal epithelial tubular cell line (HK-2), we treated HK-2 cells with high D-glucose (HG) for 7 days before the addition of 40 mM oxamate for a further 24 hours in the presence of HG in this study. Afterwards, we identified 3,884 differentially expressed (DE) genes based on adjusted P-value ≤ 0.05 and investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). After qRT-PCR validations, MAP1LC3A, MAP1LC3B (P-value < 0.01) and BECN1 were found to show relatively higher expression levels in the treated groups than the control groups, while PGC1α (P-value < 0.05) showed the lower expressions. Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways [e.g., lysosome pathway (hsa04142) and p53 signaling pathway (hsa04115)] may be involved in the response of HK-2 cells to oxamate. Moreover, via WGCNA, we identified two modules: both the turquoise and blue modules were enriched in pathways associated with lysosome. However, the p53 signaling pathway was only found using all 3,884 DE genes. Furthermore, the key hub genes IGFBP3 (adjusted P-value = 1.34×10-75 and log2(FC) = 2.64) interacted with 6 up-regulated and 12 down-regulated DE genes in the network that were enriched in the p53 signaling pathway. This is the first study reporting co-expression patterns of a gene network after lactate dehydrogenase inhibition in HK-2 cells. Our results may contribute to our understanding of the underlying molecular mechanism of in vitro reprogramming under hyperglycemic stress that orchestrates the survival and functions of HK-2 cells.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, Beijing, China
| | - Jiating Yu
- Division of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
- *Correspondence: Xiao Wang, ; Guijun Qin,
| | - Guijun Qin
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiao Wang, ; Guijun Qin,
| |
Collapse
|
10
|
Tiozzo C, Bustoros M, Lin X, Manzano De Mejia C, Gurzenda E, Chavez M, Hanna I, Aguiari P, Perin L, Hanna N. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am J Obstet Gynecol 2021; 225:681.e1-681.e20. [PMID: 34181894 PMCID: PMC8633060 DOI: 10.1016/j.ajog.2021.06.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pregnancy represents a unique challenge for the maternal-fetal immune interface, requiring a balance between immunosuppression, which is essential for the maintenance of a semiallogeneic fetus, and proinflammatory host defense to protect the maternal-fetal interface from invading organisms. Adaptation to repeated inflammatory stimuli (endotoxin tolerance) may be critical in preventing inflammation-induced preterm birth caused by exaggerated maternal inflammatory responses to mild or moderate infections that are common during pregnancy. However, the exact mechanisms contributing to the maintenance of tolerance to repeated infections are not completely understood. MicroRNAs play important roles in pregnancy with several microRNAs implicated in gestational tissue function and in pathologic pregnancy conditions. MicroRNA-519c, a member of the chromosome 19 microRNA cluster, is a human-specific microRNA mainly expressed in the placenta. However, its role in pregnancy is largely unknown. OBJECTIVE This study aimed to explore the role of "endotoxin tolerance" failure in the pathogenesis of an exaggerated inflammatory response often seen in inflammation-mediated preterm birth. In this study, we investigated the role of microRNA-519c, a placenta-specific microRNA, as a key regulator of endotoxin tolerance at the maternal-fetal interface. STUDY DESIGN Using a placental explant culture system, samples from term and second-trimester placentas were treated with lipopolysaccharide. After 24 hours, the conditioned media were collected for analysis, and the placental explants were re-exposed to repeated doses of lipopolysaccharide for 3 days. The supernatant was analyzed for inflammatory markers, the presence of extracellular vesicles, and microRNAs. To study the possible mechanism of action of the microRNAs, we evaluated the phosphodiesterase 3B pathway involved in tumor necrosis factor alpha production using a microRNA mimic and phosphodiesterase 3B small interfering RNA transfection. Finally, we analyzed human placental samples from different gestational ages and from women affected by inflammation-associated pregnancies. RESULTS Our data showed that repeated exposure of the human placenta to endotoxin challenges induced a tolerant phenotype characterized by decreased tumor necrosis factor alpha and up-regulated interleukin-10 levels. This reaction was mediated by the placenta-specific microRNA-519c packaged within placental extracellular vesicles. Lipopolysaccharide treatment increased the extracellular vesicles that were positive for the exosome tetraspanin markers, namely CD9, CD63, and CD81, and secreted primarily by trophoblasts. Primary human trophoblast cells transfected with a microRNA-519c mimic decreased phosphodiesterase 3B, whereas a lack of phosphodiesterase 3B, achieved by small interfering RNA transfection, led to decreased tumor necrosis factor alpha production. These data support the hypothesis that the anti-inflammatory action of microRNA-519c was mediated by a down-regulation of the phosphodiesterase 3B pathway, leading to inhibition of tumor necrosis factor alpha production. Furthermore, human placentas from normal and inflammation-associated pregnancies demonstrated that a decreased placental microRNA-519c level was linked to infection-induced inflammatory pathologies during pregnancy. CONCLUSION We identified microRNA-519c, a human placenta-specific microRNA, as a novel regulator of immune adaptation associated with infection-induced preterm birth at the maternal-fetal interface. Our study serves as a basis for future experiments to explore the potential use of microRNA-519c as a biomarker for infection-induced preterm birth.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Mark Bustoros
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY; Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Ellen Gurzenda
- Research and Academic Center, New York University Long Island School of Medicine, Mineola, NY
| | - Martin Chavez
- Department of Obstetrics-Gynecology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Iman Hanna
- Department of Pathology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY.
| |
Collapse
|
11
|
Yang T, Jackson VE, Smith AV, Chen H, Bartz TM, Sitlani CM, Psaty BM, Gharib SA, O'Connor GT, Dupuis J, Xu J, Lohman K, Liu Y, Kritchevsky SB, Cassano PA, Flexeder C, Gieger C, Karrasch S, Peters A, Schulz H, Harris SE, Starr JM, Deary IJ, Manichaikul A, Oelsner EC, Barr RG, Taylor KD, Rich SS, Bonten TN, Mook-Kanamori DO, Noordam R, Li-Gao R, Jarvelin MR, Wielscher M, Terzikhan N, Lahousse L, Brusselle G, Weiss S, Ewert R, Gläser S, Homuth G, Shrine N, Hall IP, Tobin M, London SJ, Wei P, Morrison AC. Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function. Sci Rep 2021; 11:19365. [PMID: 34588469 PMCID: PMC8481467 DOI: 10.1038/s41598-021-98120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were significantly associated with FEV1. This study investigates the utility of assessing gene-by-smoking interactions and underscores their effects on potential pulmonary function.
Collapse
Affiliation(s)
- Tianzhong Yang
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Washington, Seattle, WA, USA
| | - George T O'Connor
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jiayi Xu
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, USA
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Karrasch
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Sarah E Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth C Oelsner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - R G Barr
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Medicine, Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Kent D Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Tobias N Bonten
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Division of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Oulu, Finland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Division of Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Sven Gläser
- Division of Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- Department of Internal Medicine, Vivantes Hospital Berlin Spandau, Berlin, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Martin Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research, Glenfield Hospital, Leicester, UK
| | - Stephanie J London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
12
|
Meliț LE, Mărginean CO, Mărginean CD, Săsăran MO. The Peculiar Trialogue between Pediatric Obesity, Systemic Inflammatory Status, and Immunity. BIOLOGY 2021; 10:biology10060512. [PMID: 34207683 PMCID: PMC8229553 DOI: 10.3390/biology10060512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
Pediatric obesity is not only an energetic imbalance, but also a chronic complex multisystem disorder that might impair both the life length and quality. Its pandemic status should increase worldwide awareness regarding the long-term life-threatening associated complications. Obesity related complications, such as cardiovascular, metabolic, or hepatic ones, affect both short and long-term wellbeing, and they do not spare pediatric subjects, defined as life-threatening consequences of the systemic inflammatory status triggered by the adipose tissue. The energetic imbalance of obesity clearly results in adipocytes hypertrophy and hyperplasia expressing different degrees of chronic inflammation. Adipose tissue might be considered an immune organ due to its rich content in a complex array of immune cells, among which the formerly mentioned macrophages, neutrophils, mast cells, but also eosinophils along with T and B cells, acting together to maintain the tissue homeostasis in normal weight individuals. Adipokines belong to the class of innate immunity humoral effectors, and they play a crucial role in amplifying the immune responses with a subsequent trigger effect on leukocyte activation. The usefulness of complete cellular blood count parameters, such as leukocytes, lymphocytes, neutrophils, erythrocytes, and platelets as predictors of obesity-triggered inflammation, was also proved in pediatric patients with overweight or obesity. The dogma that adipose tissue is a simple energy storage tissue is no longer accepted since it has been proved that it also has an incontestable multifunctional role acting like a true standalone organ resembling to endocrine or immune organs.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
- Correspondence: ; Tel.: +40-723-278543
| | - Cristian Dan Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania; (L.E.M.); (C.D.M.)
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
13
|
Wang R, Sun Y, Jin X, Wen W, Cao Y. Diosgenin Inhibits Excessive Proliferation and Inflammatory Response of Synovial Fibroblasts in Rheumatoid Arthritis by Targeting PDE3B. Inflammation 2020; 44:946-955. [PMID: 33237390 DOI: 10.1007/s10753-020-01389-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammation that can lead to loss of range of joint abnormalities in severe cases. Diosgenin has anti-inflammatory effects. This paper discussed the effect and mechanism of diosgenin on excessive proliferation and inflammatory response of synovial cells in RA. CCK-8 detected the cell viability, TUNEL assay detected the apoptosis of cells and western blot detected the expression of apoptosis-related proteins. Wound healing was used to detect cell migration and western blot detected the expression of migration-related proteins. ELISA kits were used to detect the levels of inflammatory cytokines in cells. Diosgenin can inhibit the proliferation and migration of RA synovial cells. At the same time, diosgenin could reduce the inflammatory response of RA synovial cells, during which the expression of PDE3B was significantly decreased. By overexpressing PDE3B, we found that diosgenin inhibited the proliferation, migration, and inflammatory response of RA synovial cells by downregulating PDE3B. Diosgenin can inhibit excessive proliferation and inflammatory response of synovial fibroblasts by targeting PDE3B.
Collapse
Affiliation(s)
- Roujun Wang
- Department of Diabetes and Endocrinology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yumeng Sun
- Department of Diabetes and Endocrinology, Affiliated Traditional Chinese Medicine Hospital of Nantong University, 41 Jianshe Road, Nantong City, 226001, Jiangsu, China
| | - Xiaowen Jin
- Department of Diabetes and Endocrinology, Affiliated Traditional Chinese Medicine Hospital of Nantong University, 41 Jianshe Road, Nantong City, 226001, Jiangsu, China
| | - Weibo Wen
- Department of Diabetes and Endocrinology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, Yunnan, China
| | - Yongjun Cao
- Department of Diabetes and Endocrinology, Affiliated Traditional Chinese Medicine Hospital of Nantong University, 41 Jianshe Road, Nantong City, 226001, Jiangsu, China.
| |
Collapse
|
14
|
Luo J, Wang X, Jiang X, Liu C, Li Y, Han X, Zuo X, Li Y, Li N, Xu Y, Si S. Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome-related inflammation and modulating cholesterol transport. FASEB J 2019; 34:1398-1411. [PMID: 31914630 DOI: 10.1096/fj.201900903rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a chronic disease characterized by lipid deposition and inflammatory response. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-facilitated inflammatory responses are crucial in the pathogenesis of atherosclerosis, and thus new therapeutic approaches are emerging that target NLRP3 and inflammation. Here, we explored the anti-atherosclerotic effect and mechanisms of a new rutaecarpine derivative, 5-deoxy-rutaecarpine (R3) in vitro and in vivo. R3 treatment attenuated atherosclerosis development and increased plaque stability in Apoe-/- mice fed a high-fat diet, and decreased levels of inflammatory mediators, such as interleukin-1β, in the serum of Apoe-/- mice and in oxidized low-density lipoprotein (ox-LDL)-stimulated murine macrophages. R3 treatment inhibited NLRP3 inflammasome activation in the livers of Apoe-/- mice and ox-LDL-stimulated murine macrophages by inhibiting NF-κB and MAPK pathways. Additionally, R3 significantly decreased total cholesterol in the serum and livers of Apoe-/- mice and promoted cholesterol efflux in murine macrophages through upregulating protein expression of ATP-binding cassette subfamily A member 1 and scavenger receptor class B type I/human CD36 and lysosomal integral membrane protein-II analogous-1. Our results demonstrated that R3 prevented atherosclerotic progression via attenuating NLRP3 inflammasome-related inflammation and modulating cholesterol transport.
Collapse
Affiliation(s)
- Jinque Luo
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Zuo
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ni Li
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Del Cornò M, Baldassarre A, Calura E, Conti L, Martini P, Romualdi C, Varì R, Scazzocchio B, D'Archivio M, Masotti A, Gessani S. Transcriptome Profiles of Human Visceral Adipocytes in Obesity and Colorectal Cancer Unravel the Effects of Body Mass Index and Polyunsaturated Fatty Acids on Genes and Biological Processes Related to Tumorigenesis. Front Immunol 2019; 10:265. [PMID: 30838002 PMCID: PMC6389660 DOI: 10.3389/fimmu.2019.00265] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
Obesity, a low-grade inflammatory condition, represents a major risk factor for the development of several pathologies including colorectal cancer (CRC). Although the adipose tissue inflammatory state is now recognized as a key player in obesity-associated morbidities, the underlying biological processes are complex and not yet precisely defined. To this end, we analyzed transcriptome profiles of human visceral adipocytes from lean and obese subjects affected or not by CRC by RNA sequencing (n = 6 subjects/category), and validated selected modulated genes by real-time qPCR. We report that obesity and CRC, conditions characterized by the common denominator of inflammation, promote changes in the transcriptional program of adipocytes mostly involving pathways and biological processes linked to extracellular matrix remodeling, and metabolism of pyruvate, lipids and glucose. Interestingly, although the transcriptome of adipocytes shows several alterations that are common to both disorders, some modifications are unique under obesity (e.g., pathways associated with inflammation) and CRC (e.g., TGFβ signaling and extracellular matrix remodeling) and are influenced by the body mass index (e.g., processes related to cell adhesion, angiogenesis, as well as metabolism). Indeed, cancer-induced transcriptional program is deeply affected by obesity, with adipocytes from obese individuals exhibiting a more complex response to the tumor. We also report that in vitro exposure of adipocytes to ω3 and ω6 polyunsaturated fatty acids (PUFA) endowed with either anti- or pro-inflammatory properties, respectively, modulates the expression of genes involved in processes potentially relevant to carcinogenesis, as assessed by real-time qPCR. All together our results suggest that genes involved in pyruvate, glucose and lipid metabolism, fibrosis and inflammation are central in the transcriptional reprogramming of adipocytes occurring in obese and CRC-affected individuals, as well as in their response to PUFA exposure. Moreover, our results indicate that the transcriptional program of adipocytes is strongly influenced by the BMI status in CRC subjects. The dysregulation of these interrelated processes relevant for adipocyte functions may contribute to create more favorable conditions to tumor establishment or favor tumor progression, thus linking obesity and colorectal cancer.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Martini
- Department of Biology, University of Padua, Padua, Italy
| | | | - Rosaria Varì
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Massimo D'Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
17
|
Smolders VF, Zodda E, Quax PHA, Carini M, Barberà JA, Thomson TM, Tura-Ceide O, Cascante M. Metabolic Alterations in Cardiopulmonary Vascular Dysfunction. Front Mol Biosci 2019; 5:120. [PMID: 30723719 PMCID: PMC6349769 DOI: 10.3389/fmolb.2018.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. CVD comprise a range of diseases affecting the functionality of the heart and blood vessels, including acute myocardial infarction (AMI) and pulmonary hypertension (PH). Despite their different causative mechanisms, both AMI and PH involve narrowed or blocked blood vessels, hypoxia, and tissue infarction. The endothelium plays a pivotal role in the development of CVD. Disruption of the normal homeostasis of endothelia, alterations in the blood vessel structure, and abnormal functionality are essential factors in the onset and progression of both AMI and PH. An emerging theory proposes that pathological blood vessel responses and endothelial dysfunction develop as a result of an abnormal endothelial metabolism. It has been suggested that, in CVD, endothelial cell metabolism switches to higher glycolysis, rather than oxidative phosphorylation, as the main source of ATP, a process designated as the Warburg effect. The evidence of these alterations suggests that understanding endothelial metabolism and mitochondrial function may be central to unveiling fundamental mechanisms underlying cardiovascular pathogenesis and to identifying novel critical metabolic biomarkers and therapeutic targets. Here, we review the role of the endothelium in the regulation of vascular homeostasis and we detail key aspects of endothelial cell metabolism. We also describe recent findings concerning metabolic endothelial cell alterations in acute myocardial infarction and pulmonary hypertension, their relationship with disease pathogenesis and we discuss the future potential of pharmacological modulation of cellular metabolism in the treatment of cardiopulmonary vascular dysfunction. Although targeting endothelial cell metabolism is still in its infancy, it is a promising strategy to restore normal endothelial functions and thus forestall or revert the development of CVD in personalized multi-hit interventions at the metabolic level.
Collapse
Affiliation(s)
- Valérie Françoise Smolders
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Erika Zodda
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Timothy M. Thomson
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
18
|
Perivascular adipose tissue dysfunction aggravates adventitial remodeling in obese mini pigs via NLRP3 inflammasome/IL-1 signaling pathway. Acta Pharmacol Sin 2019; 40:46-54. [PMID: 30002491 DOI: 10.1038/s41401-018-0068-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
Perivascular adipose tissue (PVAT), a special type of adipose tissue, closely surrounds vascular adventitia and produces numerous bioactive substances to maintain vascular homeostasis. PVAT dysfunction has a crucial role in regulating vascular remodeling, but the exact mechanisms remain unclear. In this study, we investigated whether and how obesity-induced PVAT dysfunction affected adventitia remodeling in early vascular injury stages. Mini pigs were fed a high sugar and fat diet for 6 months to induce metabolic syndrome and obesity. In the mini pigs, left carotid vascular injury was then generated using balloon dilation. Compared with normal mini pigs, obese mini pigs displayed significantly enhanced vascular injury-induced adventitial responses, evidenced by adventitia fibroblast (AF) proliferation and differentiation, and adventitia fibrosis, as well as exacerbated PVAT dysfunction characterized by increased accumulation of resident macrophages, particularly the M1 pro-inflammatory phenotype, increased expression of leptin and decreased expression of adiponectin, and production of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Primary AFs cultured in PVAT-conditioned medium from obese mini pigs also showed significantly increased proliferation and differentiation. We further revealed that activated nod-like receptor protein 3 (NLRP3) inflammasome and its downstream products, i.e., IL-1 family members such as IL-1β and IL-18 were upregulated in the PVAT of obese mini pigs; PVAT dysfunction was also demonstrated in preadipocytes treated with palmitic acid. Finally, we showed that pretreatment with IL-1 receptor (IL-1R) antagonist or IL-1R knockdown blocked AF proliferation and differentiation in AFs cultured in PVAT-conditioned medium. These results demonstrate that obesity-induced PVAT dysfunction aggravates adventitial remodeling after early vascular injury with elevated AF proliferation and differentiation via activating the NLRP3/IL-1 signaling pathway.
Collapse
|
19
|
Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso GM, Chaffin M, Small AM, Huang J, Tang H, Lynch JA, Ho YL, Liu DJ, Emdin CA, Li AH, Huffman JE, Lee JS, Natarajan P, Chowdhury R, Saleheen D, Vujkovic M, Baras A, Pyarajan S, Di Angelantonio E, Neale BM, Naheed A, Khera AV, Danesh J, Chang KM, Abecasis G, Willer C, Dewey FE, Carey DJ, Concato J, Gaziano JM, O'Donnell CJ, Tsao PS, Kathiresan S, Rader DJ, Wilson PWF, Assimes TL. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 2018; 50:1514-1523. [PMID: 30275531 PMCID: PMC6521726 DOI: 10.1038/s41588-018-0222-9] [Citation(s) in RCA: 433] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
The Million Veteran Program (MVP) was established in 2011 as a national research initiative to determine how genetic variation influences the health of US military veterans. Here we genotyped 312,571 MVP participants using a custom biobank array and linked the genetic data to laboratory and clinical phenotypes extracted from electronic health records covering a median of 10.0 years of follow-up. Among 297,626 veterans with at least one blood lipid measurement, including 57,332 black and 24,743 Hispanic participants, we tested up to around 32 million variants for association with lipid levels and identified 118 novel genome-wide significant loci after meta-analysis with data from the Global Lipids Genetics Consortium (total n > 600,000). Through a focus on mutations predicted to result in a loss of gene function and a phenome-wide association study, we propose novel indications for pharmaceutical inhibitors targeting PCSK9 (abdominal aortic aneurysm), ANGPTL4 (type 2 diabetes) and PDE3B (triglycerides and coronary disease).
Collapse
Affiliation(s)
- Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Scott M Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - David R Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jin Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aeron M Small
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jie Huang
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts College of Nursing and Health Sciences, Boston, MA, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Connor A Emdin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer S Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Danish Saleheen
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aliya Naheed
- Initiative for Noncommunicable Diseases, Health Systems and Population Studies Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyong-Mi Chang
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gonçalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - John Concato
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher J O'Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Emdin CA, Khera AV, Chaffin M, Klarin D, Natarajan P, Aragam K, Haas M, Bick A, Zekavat SM, Nomura A, Ardissino D, Wilson JG, Schunkert H, McPherson R, Watkins H, Elosua R, Bown MJ, Samani NJ, Baber U, Erdmann J, Gupta N, Danesh J, Chasman D, Ridker P, Denny J, Bastarache L, Lichtman JH, D’Onofrio G, Mattera J, Spertus JA, Sheu WHH, Taylor KD, Psaty BM, Rich SS, Post W, Rotter JI, Chen YDI, Krumholz H, Saleheen D, Gabriel S, Kathiresan S. Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nat Commun 2018; 9:1613. [PMID: 29691411 PMCID: PMC5915445 DOI: 10.1038/s41467-018-03911-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/21/2018] [Indexed: 02/02/2023] Open
Abstract
Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.
Collapse
Affiliation(s)
- Connor A. Emdin
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Amit V. Khera
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Mark Chaffin
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Derek Klarin
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,000000041936754Xgrid.38142.3cDepartment of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Pradeep Natarajan
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Krishna Aragam
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Mary Haas
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Alexander Bick
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Seyedeh M. Zekavat
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,0000000419368710grid.47100.32Department of Computational Biology & Bioinformatics, Yale Medical School, Yale University, New Haven, MA 06510 USA
| | - Akihiro Nomura
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Diego Ardissino
- grid.411482.aDivision of Cardiology, Azienda Ospedaliero–Universitaria di Parma, Parma, 43121 Italy ,Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, 27100 Italy
| | - James G. Wilson
- 0000 0004 1937 0407grid.410721.1Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Heribert Schunkert
- 0000 0004 5937 5237grid.452396.fDeutsches Herzzentrum München, Technische Universität München, Deutsches Zentrum für Herz-Kreislauf-Forschung, München, 80333 Germany
| | - Ruth McPherson
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, ON K1Y4W7 Canada
| | - Hugh Watkins
- 0000 0004 1936 8948grid.4991.5Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 2JD UK ,0000 0004 1936 8948grid.4991.5Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX1 2JD UK
| | - Roberto Elosua
- 0000 0004 1767 8811grid.411142.3Cardiovascular Epidemiology and Genetics, Hospital del Mar Research Institute, Barcelona, 08003 Spain ,CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, 28029 Spain ,Facultat de Medicina, Universitat de Vic-Central de Cataluña, Barcelona, VIC 08500 Spain
| | - Matthew J. Bown
- 0000 0004 1936 8411grid.9918.9Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Leicester, LE1 7RH UK
| | - Nilesh J. Samani
- 0000 0004 1936 8411grid.9918.9Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Leicester, LE1 7RH UK
| | - Usman Baber
- 0000 0001 0670 2351grid.59734.3cThe Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Jeanette Erdmann
- 0000 0001 0057 2672grid.4562.5Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck, 23562 Germany
| | - Namrata Gupta
- grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - John Danesh
- 0000000121885934grid.5335.0Department of Public Health and Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SR UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA UK ,0000000121885934grid.5335.0National Institute of Health Research Blood and Transplant; Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, CB2 1TN UK
| | - Daniel Chasman
- 0000 0004 0378 8294grid.62560.37Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Boston, 02115 USA
| | - Paul Ridker
- 0000 0004 0378 8294grid.62560.37Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Boston, 02115 USA
| | - Joshua Denny
- 0000 0001 2264 7217grid.152326.1Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Lisa Bastarache
- 0000 0001 2264 7217grid.152326.1Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Judith H. Lichtman
- 0000000419368710grid.47100.32Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510 USA
| | - Gail D’Onofrio
- 0000000419368710grid.47100.32Department of Emergency Medicine, Yale University, New Haven, CT 06520 USA
| | - Jennifer Mattera
- grid.417307.6Center for Outcomes Research and Evaluation, Yale–New Haven Hospital, New Haven, CT 06510 USA
| | - John A. Spertus
- 0000 0001 2179 926Xgrid.266756.6Department of Biomedical & Saint Luke’s Mid America Heart Institute and the Health Informatics, Division of Endocrinology and Metabolism, University of Missouri-Kansas City, Kansas City, MO 64110 USA
| | - Wayne H.-H. Sheu
- 0000 0004 0573 0731grid.410764.0Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705 Taiwan
| | - Kent D. Taylor
- 0000 0001 0157 6501grid.239844.0The Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, CA 90095 USA
| | - Bruce M. Psaty
- 0000000122986657grid.34477.33Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, 98195 WA USA ,0000 0004 0615 7519grid.488833.cCardiovascular Health Research Unit, Kaiser Permanente Washington Health Research Institute, 98101 Seattle, WA USA
| | - Stephen S. Rich
- 0000 0000 9136 933Xgrid.27755.32Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Wendy Post
- 0000 0001 2171 9311grid.21107.35Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jerome I. Rotter
- 0000 0001 0157 6501grid.239844.0The Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, CA 90095 USA
| | - Yii-Der Ida Chen
- 0000 0001 0157 6501grid.239844.0The Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics at Harbor-UCLA Medical Center, Torrance, CA 90095 USA
| | - Harlan Krumholz
- grid.417307.6Center for Outcomes Research and Evaluation, Yale–New Haven Hospital, New Haven, CT 06510 USA
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, 74800 Pakistan ,0000 0004 1936 8972grid.25879.31Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stacey Gabriel
- grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Sekar Kathiresan
- 000000041936754Xgrid.38142.3cCenter for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,000000041936754Xgrid.38142.3cDepartment of Medicine, Massachusetts General Hospital, Cardiology Division, Harvard Medical School, Boston, MA 02114 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| |
Collapse
|
21
|
Yuan C, Liu C, Wang T, He Y, Zhou Z, Dun Y, Zhao H, Ren D, Wang J, Zhang C, Yuan D. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling. Oncotarget 2018; 8:31023-31040. [PMID: 28415686 PMCID: PMC5458186 DOI: 10.18632/oncotarget.16052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022] Open
Abstract
Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Ting Wang
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Zhiyong Zhou
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Yaoyan Dun
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Haixia Zhao
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Dongming Ren
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Junjie Wang
- Renhe Hospital of China Three Gorges University, Yichang, HuBei 443002, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, HuBei 443002, China
| | - Ding Yuan
- Renhe Hospital of China Three Gorges University, Yichang, HuBei 443002, China
| |
Collapse
|
22
|
Luo B, Huang F, Liu Y, Liang Y, Wei Z, Ke H, Zeng Z, Huang W, He Y. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy. Front Physiol 2017; 8:519. [PMID: 28790925 PMCID: PMC5524816 DOI: 10.3389/fphys.2017.00519] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), a common consequence of longstanding diabetes mellitus, is initiated by death of cardiomyocyte. Hyperglycemia-induced reactive oxygen species (ROS) overproduction is a major contributor of the chronic low-grade inflammation that characterizes as the DCM. ROS may promote the activation of nucleotide-binding oligomerization domain like receptor (NLR) pyrin domain containing 3 (NLRP3) inflammasome, a novel regulator of inflammation and cell death, by nuclear factor-kB (NF-κB) and thioredoxin interacting/inhibiting protein (TXNIP). NLRP3 inflammasome regulates the death of cardiomyocyte and activation of fibroblast in DCM, which is involved in the structural and functional disorder of DCM. However, comprehensive understanding of molecular mechanisms linking NLRP3 inflammasome and disorder of cardiomyocyte and fibroblast in DCM is lacking. Here, we review the molecular mechanism(s) of NLRP3 inflammasome activation in response to hyperglycemia in DCM.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yanli Liu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yiying Liang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Zhe Wei
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Honghong Ke
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Zhiyu Zeng
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Yan He
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| |
Collapse
|
23
|
Chung YW, Ahmad F, Tang Y, Hockman SC, Kee HJ, Berger K, Guirguis E, Choi YH, Schimel DM, Aponte AM, Park S, Degerman E, Manganiello VC. White to beige conversion in PDE3B KO adipose tissue through activation of AMPK signaling and mitochondrial function. Sci Rep 2017; 7:40445. [PMID: 28084425 PMCID: PMC5234021 DOI: 10.1038/srep40445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Understanding mechanisms by which a population of beige adipocytes is increased in white adipose tissue (WAT) reflects a potential strategy in the fight against obesity and diabetes. Cyclic adenosine monophosphate (cAMP) is very important in the development of the beige phenotype and activation of its thermogenic program. To study effects of cyclic nucleotides on energy homeostatic mechanisms, mice were generated by targeted inactivation of cyclic nucleotide phosphodiesterase 3b (Pde3b) gene, which encodes PDE3B, an enzyme that catalyzes hydrolysis of cAMP and cGMP and is highly expressed in tissues that regulate energy homeostasis, including adipose tissue, liver, and pancreas. In epididymal white adipose tissue (eWAT) of PDE3B KO mice on a SvJ129 background, cAMP/protein kinase A (PKA) and AMP-activated protein kinase (AMPK) signaling pathways are activated, resulting in “browning” phenotype, with a smaller increases in body weight under high-fat diet, smaller fat deposits, increased β-oxidation of fatty acids (FAO) and oxygen consumption. Results reported here suggest that PDE3B and/or its downstream signaling partners might be important regulators of energy metabolism in adipose tissue, and potential therapeutic targets for treating obesity, diabetes and their associated metabolic disorders.
Collapse
Affiliation(s)
- Youn Wook Chung
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.,Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Yan Tang
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Steven C Hockman
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Hyun Jung Kee
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Karin Berger
- Lund University Diabetes Center, Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden
| | - Emilia Guirguis
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Young Hun Choi
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Dan M Schimel
- NIH MRI Research Facility, NIH, Bethesda, Maryland, 20892, USA
| | - Angel M Aponte
- Proteomics Core Facility, NHLBI, NIH, Bethesda, Maryland, 20892, USA
| | - Sunhee Park
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Eva Degerman
- Lund University Diabetes Center, Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
24
|
The modern interleukin-1 superfamily: Divergent roles in obesity. Semin Immunol 2016; 28:441-449. [DOI: 10.1016/j.smim.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022]
|