1
|
Sharma A, Chandrashekar CR, Krishna S, Sowdhamini R. Computational Analysis of the Accumulation of Mutations in Therapeutically Important RNA Viral Proteins During Pandemics with Special Emphasis on SARS-CoV-2. J Mol Biol 2024; 436:168716. [PMID: 39047897 DOI: 10.1016/j.jmb.2024.168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Single stranded RNA viruses are primary causative agents for pandemics, causing extensive morbidity and mortality worldwide. A pivotal question in pandemic preparedness and therapeutic intervention is what are the specific mutations which are more likely to emerge during such global health crises? This study aims to identify markers for mutations with the highest probability of emergence in these pandemics, focusing on the SARS-CoV-2 spike protein, an essential and therapeutically significant viral protein, starting from sequence information from the onset of the pandemic until July 2022. Quite consistently, we observed that emerged mutations tended to demonstrate a high genetic score, which reflects high similarity of the type of codon required for translation between an amino acid and to the mutated one. Further, this pattern is also observed in therapeutically significant proteins of other ssRNA pandemic viruses, including influenza (HA, NA), spike proteins of Ebola, envelope of Dengue and Chikungunya. We propose that the genetic score serves as an initial indicator, preceding the actual impact of the mutation on viral fitness. Finally, we developed a comprehensive computational pipeline to further explore and predict the subsequent effects of mutations on viral fitness. We believe that our pipeline can narrow down and predict future mutations in therapeutically important viral proteins during a pandemic.
Collapse
Affiliation(s)
- Abhishek Sharma
- National Centre for Biological Science, GKVK Campus, Bengaluru 560065, India
| | - C R Chandrashekar
- National Centre for Biological Science, GKVK Campus, Bengaluru 560065, India
| | - Sudhir Krishna
- National Centre for Biological Science, GKVK Campus, Bengaluru 560065, India
| | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Banagalore 560012, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, 560100, India.
| |
Collapse
|
2
|
Paterson J, Ryan KA, Morley D, Jones NJ, Yeates P, Hall Y, Whittaker CJ, Salguero FJ, Marriott AC. Infection with Seasonal H1N1 Influenza Results in Comparable Disease Kinetics and Host Immune Responses in Ferrets and Golden Syrian Hamsters. Pathogens 2023; 12:pathogens12050668. [PMID: 37242338 DOI: 10.3390/pathogens12050668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Animal models of influenza are important in preclinical research for the study of influenza infection and the assessment of vaccines, drugs and therapeutics. Here, we show that Golden Syrian hamsters (Mesocricetus auratus) inoculated via the intranasal route with high dose of influenza H1N1 display comparable disease kinetics and immune responses to the 'gold standard' ferret (Mustela furo) model. We demonstrate that both the hamster and ferret models have measurable disease endpoints of weight loss, temperature change, viral shedding from the upper respiratory tract and increased lung pathology. We also characterised both the humoral and cellular immune responses to infection in both models. The comparability of these data supports the Golden Syrian hamster model being useful in preclinical evaluation studies to explore the efficacy of countermeasures against influenza.
Collapse
Affiliation(s)
- Jemma Paterson
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kathryn A Ryan
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Daniel Morley
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Nicola J Jones
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Paul Yeates
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Yper Hall
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | | | | | |
Collapse
|
3
|
Hazra D, Chandy GM, Thanjavurkar A, Gunasekaran K, Nekkanti AC, Pal R, Moorthy M, Abhilash KPP. A clinico-epidemiological profile, coinfections and outcome of patients with Influenza Like Illnesses (ILI) presenting to the emergency department during the COVID-19 pandemic. J Family Med Prim Care 2023; 12:672-678. [PMID: 37312766 PMCID: PMC10259566 DOI: 10.4103/jfmpc.jfmpc_1705_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/15/2023] Open
Abstract
Background During the COVID-19 pandemic, many patients presented to the emergency department (ED) with features of Influenza-like illnesses (ILI) and with other atypical presentations. This study was done to determine the etiology, co-infections, and clinical profile of patients with ILI. Methods This prospective observational study included all patients presenting to the ED with fever and/or cough, breathing difficulty, sore throat, myalgia, gastrointestinal complaints (abdominal pain/vomiting/diarrhea), loss of taste and altered sensorium or asymptomatic patients who resided in or travelled from containment zones, or those who had contact with COVID-19 positive patients during the first wave of the pandemic between April and August 2020. Respiratory virus screening was done on a subset of COVID-19 patients to determine co-infection. Results During the study period, we recruited 1462 patients with ILI and 857 patients with the non-ILI presentation of confirmed COVID-19 infection. The mean age group of our patient population was 51.4 (SD: 14.9) years with a male predominance (n-1593; 68.7%). The average duration of symptoms was 4.1 (SD: 2.9) days. A sub-analysis to determine an alternate viral etiology was done in 293 (16.4%) ILI patients, where 54 (19.4%) patients had COVID 19 and co-infection with other viruses, of which Adenovirus (n-39; 14.0%) was the most common. The most common symptoms in the ILI-COVID-19 positive group (other than fever and/or cough and/or breathing difficulty) were loss of taste (n-385; 26.3%) and diarrhea (n- 123; 8.4%). Respiratory rate (27.5 (SD: 8.1)/minute: p-value < 0.001) and oxygen saturation (92.1% (SD: 11.2) on room air; p-value < 0.001) in the ILI group were statistically significant. Age more than 60 years (adjusted odds ratio (OR): 4.826 (3.348-6.956); p-value: <0.001), sequential organ function assessment score more than or equal to four (adjusted OR: 5.619 (3.526-8.957); p-value: <0.001), and WHO critical severity score (Adjusted OR: 13.812 (9.656-19.756); p-value: <0.001) were independent predictors of mortality. Conclusion COVID-19 patients were more likely to present with ILI than atypical features. Co-infection with Adenovirus was most common. Age more than 60 years, SOFA score more than or equal to four and WHO critical severity score were independent predictors of mortality.
Collapse
Affiliation(s)
- Darpanarayan Hazra
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Gina Maryann Chandy
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Abirahmi Thanjavurkar
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Karthik Gunasekaran
- Department of General Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ankita Chowdary Nekkanti
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Rathijit Pal
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | | |
Collapse
|
4
|
Su A, Yan M, Pavasutthipaisit S, Wicke KD, Grassl GA, Beineke A, Felmy F, Schmidt S, Esser KH, Becher P, Herrler G. Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses. Microbiol Spectr 2023; 11:e0309822. [PMID: 36916937 PMCID: PMC10100918 DOI: 10.1128/spectrum.03098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).
Collapse
Affiliation(s)
- Ang Su
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Miaomiao Yan
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Suvarin Pavasutthipaisit
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Kathrin D. Wicke
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sabine Schmidt
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Esser
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Herrler
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
5
|
Chavda V, Bezbaruah R, Kalita T, Sarma A, Devi JR, Bania R, Apostolopoulos V. Variant influenza: connecting the missing dots. Expert Rev Anti Infect Ther 2022; 20:1567-1585. [PMID: 36346383 DOI: 10.1080/14787210.2022.2144231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND In June 2009, the World Health Organization declared a new pandemic, the 2009 swine influenza pandemic (swine flu). The symptoms of the swine flu pandemic causing strain were comparable to most of the symptoms noted by seasonal influenza. AREA COVERED Zoonotic viruses that caused the swine flu pandemic and its preventive measures. EXPERT OPINION As per Centers for Disease Control and Prevention (CDC), the clinical manifestations in humans produced by the 2009 H1N1 'swine flu' virus were equivalent to the manifestations caused by related flu strains. The H1N1 vaccination was the most successful prophylactic measure since it prevented the virus from spreading and reduced the intensity and consequences of the pandemic. Despite the availability of therapeutics, the ongoing evolution and appearance of new strains have made it difficult to develop effective vaccines and therapies. Currently, the CDC recommends yearly flu immunization for those aged 6 months and above. The lessons learned from the A/2009/H1N1 pandemic in 2009 indicated that readiness of mankind toward new illnesses caused by mutant viral subtypes that leap from animals to people must be maintained.
Collapse
Affiliation(s)
- Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Regional College of Pharmaceutical Sciences, RIPT Group of Institution, Sonapur, Guwahati, India
| | - Anupam Sarma
- Department of Pharmaceutics, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India
| | - Juti Rani Devi
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, India
| | - Ratnali Bania
- Pratiksha Institute of Pharmaceutical Sciences, India
| | | |
Collapse
|
6
|
Hundakova A, Leva L, Toman M, Knotek Z. A ferret model of immunosuppression induced with dexamethasone. Vet Immunol Immunopathol 2021; 243:110362. [PMID: 34826685 DOI: 10.1016/j.vetimm.2021.110362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022]
Abstract
Ferrets are nowadays frequently used as animal models for biomedical purposes; in many cases, immunosuppression of experimental animals is necessary. The aim of this study was to evaluate the effect of intramuscular dexamethasone administration (2 mg/kg as the initiation dose continued with 1 mg/kg q 12 h applied 5 times) on ferret's immune system. In comparison with ferrets which received the saline (n = 5), significantly lower total counts of leukocytes (P < 0.01), lymphocytes (P < 0.01) and monocyte (P < 0.05), as well as absolute numbers of CD4+CD8- (P < 0.01) and CD4-CD8+ (P < 0.01) subsets were noted in dexamethasone treated ferrets (n = 5) the first day after the treatment (D1). Absolute number of CD79+ lymphocytes remained unchanged throughout the experiment. The proliferation activity of lymphocytes in dexamethasone treated ferrets was lower only in D1 using concanavalin A (conA), phytohemagglutinin (PHA) and pokeweed mitogen (PWM); statistical significance was noted using PHA 40 (P < 0.05) and PWM 10 (P < 0.01). Lower neutrophil activity (P < 0.01) was detected in D1 after the dexamethasone treatment in both production of reactive oxygen species (chemiluminescence test) and ingestion of particles (phagocytosis assay). The dexamethasone treatment proved to be useful for short-term immunosuppression in ferrets. The results closely resembled data previously reported in human studies and indicate classification of ferrets as steroid-resistant species.
Collapse
Affiliation(s)
- Anna Hundakova
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic.
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic
| | - Zdenek Knotek
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
7
|
Zolotarova O, Fesenko A, Holubka O, Radchenko L, Bortz E, Budzanivska I, Mironenko A. Genotypic Variants of Pandemic H1N1 Influenza A Viruses Isolated from Severe Acute Respiratory Infections in Ukraine during the 2015/16 Influenza Season. Viruses 2021; 13:2125. [PMID: 34834932 PMCID: PMC8619959 DOI: 10.3390/v13112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Human type A influenza viruses A(H1N1)pdm09 have caused seasonal epidemics of influenza since the 2009-2010 pandemic. A(H1N1)pdm09 viruses had a leading role in the severe epidemic season of 2015/16 in the Northern Hemisphere and caused a high incidence of acute respiratory infection (ARI) in Ukraine. Serious complications of influenza-associated severe ARI (SARI) were observed in the very young and individuals at increased risk, and 391 fatal cases occurred in the 2015/16 epidemic season. We analyzed the genetic changes in the genomes of A(H1N1)pdm09 influenza viruses isolated from SARI cases in Ukraine during the 2015/16 season. The viral hemagglutinin (HA) fell in H1 group 6B.1 for all but four isolates, with known mutations affecting glycosylation, the Sa antigenic site (S162N in all 6B.1 isolates), or virulence (D222G/N in two isolates). Other mutations occurred in antigenic site Ca (A141P and S236P), and a subgroup of four strains were in group 6B.2, with potential alterations to antigenicity in A(H1N1)pdm09 viruses circulating in 2015/16 in Ukraine. A cluster of Ukrainian isolates exhibited novel D2E and N48S mutations in the RNA binding domain, and E125D in the effector domain, of immune evasion nonstructural protein 1 (NS1). The diverse spectrum of amino-acid substitutions in HA, NS1, and other viral proteins including nucleoprotein (NP) and the polymerase complex suggested the concurrent circulation of multiple lineages of A(H1N1)pdm09 influenza viruses in the human population in Ukraine, a country with low vaccination coverage, complicating public health measures against influenza.
Collapse
Affiliation(s)
- Oksana Zolotarova
- Educational Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Anna Fesenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Olga Holubka
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Larysa Radchenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska, 3211 Providence Dr., Anchorage, AK 99508, USA;
| | - Iryna Budzanivska
- Educational Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Alla Mironenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| |
Collapse
|
8
|
Stoddard M, Sarkar S, Yuan L, Nolan RP, White DE, White LF, Hochberg NS, Chakravarty A. Beyond the new normal: Assessing the feasibility of vaccine-based suppression of SARS-CoV-2. PLoS One 2021; 16:e0254734. [PMID: 34270597 PMCID: PMC8284637 DOI: 10.1371/journal.pone.0254734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
As the COVID-19 pandemic drags into its second year, there is hope on the horizon, in the form of SARS-CoV-2 vaccines which promise disease suppression and a return to pre-pandemic normalcy. In this study we critically examine the basis for that hope, using an epidemiological modeling framework to establish the link between vaccine characteristics and effectiveness in bringing an end to this unprecedented public health crisis. Our findings suggest that a return to pre-pandemic social and economic conditions without fully suppressing SARS-CoV-2 will lead to extensive viral spread, resulting in a high disease burden even in the presence of vaccines that reduce risk of infection and mortality. Our modeling points to the feasibility of complete SARS-CoV-2 suppression with high population-level compliance and vaccines that are highly effective at reducing SARS-CoV-2 infection. Notably, vaccine-mediated reduction of transmission is critical for viral suppression, and in order for partially-effective vaccines to play a positive role in SARS-CoV-2 suppression, complementary biomedical interventions and public health measures must be deployed simultaneously.
Collapse
Affiliation(s)
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH, United States of America
| | - Lin Yuan
- Fractal Therapeutics, Cambridge, MA, United States of America
| | - Ryan P. Nolan
- Halozyme Therapeutics, San Diego, CA, United States of America
| | | | - Laura F. White
- Department of Biostatistics, Boston University, Boston, MA, United States of America
| | - Natasha S. Hochberg
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- Boston Medical Center, Boston, MA, United States of America
| | | |
Collapse
|
9
|
Pedruzzi G, Rouzine IM. An evolution-based high-fidelity method of epistasis measurement: Theory and application to influenza. PLoS Pathog 2021; 17:e1009669. [PMID: 34153082 PMCID: PMC8248644 DOI: 10.1371/journal.ppat.1009669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/01/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Linkage effects in a multi-locus population strongly influence its evolution. The models based on the traveling wave approach enable us to predict the average speed of evolution and the statistics of phylogeny. However, predicting statistically the evolution of specific sites and pairs of sites in the multi-locus context remains a mathematical challenge. In particular, the effects of epistasis, the interaction of gene regions contributing to phenotype, is difficult to predict theoretically and detect experimentally in sequence data. A large number of false-positive interactions arises from stochastic linkage effects and indirect interactions, which mask true epistatic interactions. Here we develop a proof-of-principle method to filter out false-positive interactions. We start by demonstrating that the averaging of haplotype frequencies over multiple independent populations is necessary but not sufficient for epistatic detection, because it still leaves high numbers of false-positive interactions. To compensate for the residual stochastic noise, we develop a three-way haplotype method isolating true interactions. The fidelity of the method is confirmed analytically and on simulated genetic sequences evolved with a known epistatic network. The method is then applied to a large sequence database of neurominidase protein of influenza A H1N1 obtained from various geographic locations to infer the epistatic network responsible for the difference between the pre-pandemic virus and the pandemic strain of 2009. These results present a simple and reliable technique to measure epistatic interactions of any sign from sequence data. Interactions between genomic sites create a fitness landscape. The knowledge of topology and strength of interactions is vital for predicting the escape of viruses from drugs and immune response and their passing through fitness valleys. Many efforts have been invested into measuring these interactions from DNA sequence sets. Unfortunately, reproducibility of the results remains low due partly to a very small fraction of interaction pairs and partly to stochastic linkage noise masking true interactions. Here we propose a method to separate stochastic linkage and indirect interactions from epistatic interactions and apply it to influenza virus sequence data.
Collapse
Affiliation(s)
- Gabriele Pedruzzi
- Sorbonne Université, Institute de Biologie Paris-Seine, Laboratoire de Biologie Computationelle et Quantitative LCQB, Paris, France
| | - Igor M. Rouzine
- Sorbonne Université, Institute de Biologie Paris-Seine, Laboratoire de Biologie Computationelle et Quantitative LCQB, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Ben Hamed S, Elargoubi A, Harrabi M, Srihi H, Souiai O, Mastouri M, Almalki MA, Gharbi J, Ben M’hadheb M. Phylogenetic analysis of the neuraminidase segment gene of Influenza A/H1N1 strains isolated from Monastir Region (Tunisia) during the 2017-2018 outbreak. Biologia (Bratisl) 2021; 76:1797-1806. [PMID: 33727729 PMCID: PMC7952816 DOI: 10.1007/s11756-021-00723-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Influenza A/H1N1 is widely considered to be a very evolutionary virus causing major public health problems. Since the pandemic of 2009, there has been a rapid rise in human Influenza virus characterization. However, little data is available in Tunisia regarding its genetic evolution. In light of this fact, our paper aim is to genetically characterize the Neuraminidase, known as the target of antiviral inhibitors, in Tunisian isolates circulating in Monastir region during 2017-2018. In total of 31 positive Influenza A/H1N1 detected by multiplex real-time PCR, RT-PCR of neuraminidase was performed. Among the 31 positive samples, 7 samples representing fatal and most severe cases were conducted for sequencing and genetic analysis. The results thus obtained showed genetic evolution of the A/H1N1 neuraminidase between 2009 and 2010 and 2018-2019 outbreaks. All Tunisian isolates were genetically related to the recommended vaccine strain with a specific evolution. Moreover, the phylogenetic analysis demonstrated that France and especially Italian strains were the major related strains. Interestingly, our results revealed a specific cluster of Tunisian isolates where two intragroup were evolved in correlation with the severity and the fatalities cases. From the outcome of our investigation, this study confirms the genetic evolution of the Influenza A virus circulating in Tunisia and gives a preliminary analysis for a better comprehension of new emerging Tunisian strain's virulence and thus, a more appropriate monitoring of Influenza virus A/H1N1 during each round of outbreaks. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11756-021-00723-y.
Collapse
Affiliation(s)
- Sabrine Ben Hamed
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Aida Elargoubi
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Myriam Harrabi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Haythem Srihi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Oussema Souiai
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Maha Mastouri
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Mohammed Awadh Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| |
Collapse
|
11
|
Bayoumi M, Munir M. Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m 6A) sites among influenza A viruses. Sci Rep 2021; 11:4548. [PMID: 33633224 PMCID: PMC7907337 DOI: 10.1038/s41598-021-84007-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
The addition of a methyl group to the N6-position of adenosine (m6A) is considered one of the most prevalent internal post-transcriptional modifications and is attributed to virus replication and cell biology. Viral epitranscriptome sequencing analysis has revealed that hemagglutinin (HA) mRNA of H1N1 carry eight m6A sites which are primarily enriched in 5'-DRACH-3' sequence motif. Herein, a large-scale comparative m6A analysis was conducted to investigate the conservation patterns of the DRACH motifs that corresponding to the reference m6A sites among influenza A viruses. A total of 70,030 complete HA sequences that comprise all known HA subtypes (H1-18) collected over several years, countries, and affected host species were analysed on both mRNA and vRNA strands. The bioinformatic analysis revealed the highest degree of DRACHs conservation among all H1 sequences that clustered largely in the middle and in the vicinity to 3' end with at least four DRACH motifs were conserved in all mRNA sequences. The major HA-containing subtypes displayed a modest DRACH motif conservation located either in the middle region of HA transcript (H3) or at the 3' end (H5) or were distributed across the length of HA sequence (H9). The lowest conservation was demonstrated in HA subtypes that infect mostly the wild type avian species and bats. Interestingly, the total number and the conserved DRACH motifs in the vRNA were found to be much lower than those observed in the mRNA. Collectively, the identification of putative m6A topology provides a foundation for the future intervention of influenza infection, replication, and pathobiology in susceptible hosts.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- grid.9835.70000 0000 8190 6402Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YG UK
| | - Muhammad Munir
- grid.9835.70000 0000 8190 6402Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YG UK
| |
Collapse
|
12
|
Dreier C, Resa-Infante P, Thiele S, Stanelle-Bertram S, Walendy-Gnirß K, Speiseder T, Preuss A, Müller Z, Klenk HD, Stech J, Gabriel G. Mutations in the H7 HA and PB1 genes of avian influenza a viruses increase viral pathogenicity and contact transmission in guinea pigs. Emerg Microbes Infect 2020; 8:1324-1336. [PMID: 31503518 PMCID: PMC6746284 DOI: 10.1080/22221751.2019.1663131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Avian influenza A viruses (AIV) of the H7 subtype continue to evolve posing a pandemic threat. However, molecular markers of H7N7 AIV pathogenicity and transmission in mammals remain poorly understood. In this study, we performed a systematic in vitro and in vivo analysis by comparing an H7N7 highly pathogenic AIV and its ferret adapted variant. Passaging an H7N7 AIV in ferrets led to six mutations in genes encoding the viral polymerase complex and the viral surface proteins. Here, we show that mutations in the H7 hemagglutinin gene cause increased pathogenicity in mice. Contact transmission between guinea pigs required additional mutations in the gene encoding the polymerase subunit PB1. Thus, particular vigilance is required with respect to HA and PB1 mutations as predictive molecular markers to assess the pandemic risk posed by emerging H7 avian influenza viruses.
Collapse
Affiliation(s)
- Carola Dreier
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,Current address: University of Ulm , Ulm , Germany
| | - Patricia Resa-Infante
- Institute of Virology, University of Veterinary Medicine , Hannover , Germany.,Current address: IrsiCaixa AIDS Research Institute , Barcelona , Spain
| | - Swantje Thiele
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Stephanie Stanelle-Bertram
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Kerstin Walendy-Gnirß
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Thomas Speiseder
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Annette Preuss
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Zacharias Müller
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Hans-Dieter Klenk
- Institute for Virology, Philipps University of Marburg , Marburg , Germany
| | - Jürgen Stech
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute , Greifswald , Germany
| | - Gülsah Gabriel
- Viral Zoonosis -One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,Institute of Virology, University of Veterinary Medicine , Hannover , Germany
| |
Collapse
|
13
|
Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Res 2019; 171:104593. [PMID: 31470040 DOI: 10.1016/j.antiviral.2019.104593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus.
Collapse
|
14
|
Klingen TR, Loers J, Stanelle-Bertram S, Gabriel G, McHardy AC. Structures and functions linked to genome-wide adaptation of human influenza A viruses. Sci Rep 2019; 9:6267. [PMID: 31000776 PMCID: PMC6472403 DOI: 10.1038/s41598-019-42614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/27/2019] [Indexed: 11/12/2022] Open
Abstract
Human influenza A viruses elicit short-term respiratory infections with considerable mortality and morbidity. While H3N2 viruses circulate for more than 50 years, the recent introduction of pH1N1 viruses presents an excellent opportunity for a comparative analysis of the genome-wide evolutionary forces acting on both subtypes. Here, we inferred patches of sites relevant for adaptation, i.e. being under positive selection, on eleven viral protein structures, from all available data since 1968 and correlated these with known functional properties. Overall, pH1N1 have more patches than H3N2 viruses, especially in the viral polymerase complex, while antigenic evolution is more apparent for H3N2 viruses. In both subtypes, NS1 has the highest patch and patch site frequency, indicating that NS1-mediated viral attenuation of host inflammatory responses is a continuously intensifying process, elevated even in the longtime-circulating subtype H3N2. We confirmed the resistance-causing effects of two pH1N1 changes against oseltamivir in NA activity assays, demonstrating the value of the resource for discovering functionally relevant changes. Our results represent an atlas of protein regions and sites with links to host adaptation, antiviral drug resistance and immune evasion for both subtypes for further study.
Collapse
MESH Headings
- Drug Resistance, Viral/genetics
- Evolution, Molecular
- Genome, Viral/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/genetics
- Influenza, Human/pathology
- Influenza, Human/virology
- Oseltamivir/therapeutic use
- Respiratory Tract Infections/genetics
- Respiratory Tract Infections/virology
- Viral Nonstructural Proteins/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Thorsten R Klingen
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Jens Loers
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | | | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- University of Veterinary Medicine, Hannover, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
15
|
Comparative In Vitro and In Vivo Analysis of H1N1 and H1N2 Variant Influenza Viruses Isolated from Humans between 2011 and 2016. J Virol 2018; 92:JVI.01444-18. [PMID: 30158292 DOI: 10.1128/jvi.01444-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus pandemics are rare events caused by novel viruses which have the ability to spread in susceptible human populations. With respect to H1 subtype viruses, swine H1N1 and H1N2 viruses occasionally cross the species barrier to cause human infection. Recently isolated from humans (termed variants), swine viruses were shown to display great genetic and antigenic diversity, hence posing considerable public health risk. Here, we utilized in vitro and in vivo approaches to provide characterization of H1 subtype variant viruses isolated since the 2009 pandemic and discuss the findings in context with previously studied H1 subtype human isolates. The variant viruses were well adapted to replicate in the human respiratory cell line Calu-3 and the respiratory tracts of mice and ferrets. However, with respect to hemagglutinin (HA) activation pH, the variant viruses had fusion pH thresholds closer to that of most classical swine and triple-reassortant H1 isolates rather than viruses that had adapted to humans. Consistent with previous observations for swine isolates, the tested variant viruses were capable of efficient transmission between cohoused ferrets but could transmit via respiratory droplets to differing degrees. Overall, this investigation demonstrates that swine H1 viruses that infected humans possess adaptations required for robust replication and, in some cases, efficient respiratory droplet transmission in a mammalian model and therefore need to be closely monitored for additional molecular changes that could facilitate transmission among humans. This work highlights the need for risk assessments of emerging H1 viruses as they continue to evolve and cause human infections.IMPORTANCE Influenza A virus is a continuously evolving respiratory pathogen. Endemic in swine, H1 and H3 subtype viruses sporadically cause human infections. As each zoonotic infection represents an opportunity for human adaptation, the emergence of a transmissible influenza virus to which there is little or no preexisting immunity is an ongoing threat to public health. Recently isolated variant H1 subtype viruses were shown to display extensive genetic diversity and in many instances were antigenically distinct from seasonal vaccine strains. In this study, we provide characterization of representative H1N1v and H1N2v viruses isolated since the 2009 pandemic. Our results show that although recent variant H1 viruses possess some adaptation markers of concern, these viruses have not fully adapted to humans and require further adaptation to present a pandemic threat. This investigation highlights the need for close monitoring of emerging variant influenza viruses for molecular changes that could facilitate efficient transmission among humans.
Collapse
|
16
|
Imai-Matsushima A, Martin-Sancho L, Karlas A, Imai S, Zoranovic T, Hocke AC, Mollenkopf HJ, Berger H, Meyer TF. Long-Term Culture of Distal Airway Epithelial Cells Allows Differentiation Towards Alveolar Epithelial Cells Suited for Influenza Virus Studies. EBioMedicine 2018; 33:230-241. [PMID: 29937069 PMCID: PMC6085545 DOI: 10.1016/j.ebiom.2018.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022] Open
Abstract
As the target organ for numerous pathogens, the lung epithelium exerts critical functions in health and disease. However, research in this area has been hampered by the quiescence of the alveolar epithelium under standard culture conditions. Here, we used human distal airway epithelial cells (DAECs) to generate alveolar epithelial cells. Long-term, robust growth of human DAECs was achieved using co-culture with feeder cells and supplementation with epidermal growth factor (EGF), Rho-associated protein kinase inhibitor Y27632, and the Notch pathway inhibitor dibenzazepine (DBZ). Removal of feeders and priming with DBZ and a cocktail of lung maturation factors prevented the spontaneous differentiation into airway club cells and instead induced differentiation to alveolar epithelial cells. We successfully transferred this approach to chicken distal airway cells, thus generating a zoonotic infection model that enables studies on influenza A virus replication. These cells are also amenable for gene knockdown using RNAi technology, indicating the suitability of the model for mechanistic studies into lung function and disease.
Collapse
Affiliation(s)
- Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Laura Martin-Sancho
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Seiichiro Imai
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tamara Zoranovic
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Max Planck Institute for Infection Biology, Core Facility Microarray/Genomics, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
17
|
Klingen TR, Reimering S, Loers J, Mooren K, Klawonn F, Krey T, Gabriel G, McHardy AC. Sweep Dynamics (SD) plots: Computational identification of selective sweeps to monitor the adaptation of influenza A viruses. Sci Rep 2018; 8:373. [PMID: 29321538 PMCID: PMC5762865 DOI: 10.1038/s41598-017-18791-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Monitoring changes in influenza A virus genomes is crucial to understand its rapid evolution and adaptation to changing conditions e.g. establishment within novel host species. Selective sweeps represent a rapid mode of adaptation and are typically observed in human influenza A viruses. We describe Sweep Dynamics (SD) plots, a computational method combining phylogenetic algorithms with statistical techniques to characterize the molecular adaptation of rapidly evolving viruses from longitudinal sequence data. SD plots facilitate the identification of selective sweeps, the time periods in which these occurred and associated changes providing a selective advantage to the virus. We studied the past genome-wide adaptation of the 2009 pandemic H1N1 influenza A (pH1N1) and seasonal H3N2 influenza A (sH3N2) viruses. The pH1N1 influenza virus showed simultaneous amino acid changes in various proteins, particularly in seasons of high pH1N1 activity. Partially, these changes resulted in functional alterations facilitating sustained human-to-human transmission. In the evolution of sH3N2 influenza viruses, we detected changes characterizing vaccine strains, which were occasionally revealed in selective sweeps one season prior to the WHO recommendation. Taken together, SD plots allow monitoring and characterizing the adaptive evolution of influenza A viruses by identifying selective sweeps and their associated signatures.
Collapse
MESH Headings
- Algorithms
- Computational Biology/methods
- Evolution, Molecular
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Molecular
- Phylogeny
- Protein Conformation
- Sequence Analysis, RNA/methods
Collapse
Affiliation(s)
- Thorsten R Klingen
- Department for Computational Biology of Infection Research1, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Susanne Reimering
- Department for Computational Biology of Infection Research1, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Jens Loers
- Department for Computational Biology of Infection Research1, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Kyra Mooren
- Department for Computational Biology of Infection Research1, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Gülsah Gabriel
- Viral Zoonoses and Adaptation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research1, Helmholtz Center for Infection Research, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
18
|
Tsuda Y, Weisend C, Martellaro C, Feldmann F, Haddock E. Pathogenic analysis of the pandemic 2009 H1N1 influenza A viruses in ferrets. J Vet Med Sci 2017; 79:1453-1460. [PMID: 28674309 PMCID: PMC5573836 DOI: 10.1292/jvms.16-0619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pandemic 2009 H1N1 influenza A virus emerged in humans and caused the first influenza
pandemic of the 21st century. Mexican isolates, A/Mexico/4108/2009 (H1N1) (Mex4108) and
A/Mexico/InDRE4478/2009 (H1N1) (Mex4487) derived from a mild case and from a cluster of
severe cases, showed heterogeneity in virulence in a cynomolgus macaque model. To compare
the more pathogenic differences, we generated recombinant viruses and compared their
virulence in ferrets. Ferrets infected with recombinant Mex4487 displayed a slightly
higher rate of viral replication and severe pneumonia in the early stage of infection. In
contrast, prolonged lower virus shedding of recombinant Mex4108 than that of recombinant
Mex4487 was detected in throat swabs. Thus, Mex4487 induces severe pneumonia in infected
individuals, whereas Mex4108 might have wide-spreading potential with mild disease.
Collapse
Affiliation(s)
- Yoshimi Tsuda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, U.S.A.,Present address: Department of Microbiology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Carla Weisend
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, U.S.A
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, U.S.A
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, U.S.A
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, U.S.A
| |
Collapse
|
19
|
Generation of Monoclonal Antibodies against Immunoglobulin Proteins of the Domestic Ferret ( Mustela putorius furo). J Immunol Res 2017; 2017:5874572. [PMID: 28286781 PMCID: PMC5329684 DOI: 10.1155/2017/5874572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
The domestic ferret (Mustela putorius furo) serves as an animal model for the study of several viruses that cause human disease, most notably influenza. Despite the importance of this animal model, characterization of the immune response by flow cytometry (FCM) is severely hampered due to the limited number of commercially available reagents. To begin to address this unmet need and to facilitate more in-depth study of ferret B cells including the identification of antibody-secreting cells, eight unique murine monoclonal antibodies (mAb) with specificity for ferret immunoglobulin (Ig) were generated using conventional B cell hybridoma technology. These mAb were screened for reactivity against ferret peripheral blood mononuclear cells by FCM and demonstrate specificity for CD79β+ B cells. Several of these mAb are specific for the light chain of surface B cell receptor (BCR) and enable segregation of kappa and lambda B cells. Additionally, a mAb that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig) was generated. Collectively, these MαF-Ig mAb offer advancement compared to the existing portfolio of polyclonal anti-ferret Ig detection reagents and should be applicable to a wide array of immunologic assays including the identification of antibody-secreting cells by FCM.
Collapse
|