1
|
Deng Y, Herrmann J, Wang Y, Nguyen M, Hall JK, Kim JH, Smith ML, Lutchen KR, Bartolák-Suki E, Suki B. Physiological mechanical forces accelerate the degradation of bovine lung collagen fibers by bacterial collagenase. Sci Rep 2024; 14:29008. [PMID: 39578499 PMCID: PMC11584708 DOI: 10.1038/s41598-024-77704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Collagen fibers, one of the key load-bearing components of the extracellular matrix, contribute significantly to tissue integrity through their mechanical properties of strain-dependent stiffening. This study investigated the effects of bacterial collagenase on the mechanical behavior of individual bovine lung collagen fibers in the presence or absence of mechanical forces, with a focus on potential implications for emphysema, a condition associated with collagen degradation and alveolar wall rupture. Tensile tests were conducted on individual collagen fibers isolated from bovine lung tissue. The rate of degradation was characterized by the change in fiber Young's modulus during 60 min of digestion under various mechanical conditions mimicking the mechanical stresses on the fibers during breathing. Compared to digestion without mechanical forces, a significantly larger drop of fiber modulus was observed in the presence of static or intermittent mechanical forces. Fiber yield stress was also reduced after digestion indicating compromised fiber failure. By incorporating fibril waviness obtained by scanning electron microscopic images, an analytic model allowed estimation of fibril modulus. A computational model that incorporated waviness and the results of tensile tests was also developed to simulate and interpret the data. The simulation results provided insights into the mechanical consequences of bacterial collagenase and mechanical forces on collagen fibers, revealing both fibril softening and rupture during digestion. These findings shed light on the microscale changes in collagen fiber structure and mechanics under enzymatic digestion and breathing-like mechanical stresses with implications for diseases that are impacted by collagen degradation such as emphysema.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa, IA, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Yu Wang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Minh Nguyen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Joseph K Hall
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jae Hun Kim
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Elizabeth Bartolák-Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Walker AR, Sloneker JR, Garno JC. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Biointerphases 2024; 19:050801. [PMID: 39269167 DOI: 10.1116/6.0003789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples. Investigations of the morphology and properties of biomolecules at the nanoscale can be useful for understanding the interactions between ECM proteins and biological molecules such as cells, DNA, and other proteins. Methods for preparing protein samples for AFM studies require only basic steps, such as the immersion of a substrate in a dilute solution or protein, or the deposition of liquid droplets of protein suspensions on a flat, clean surface. Protocols of nanolithography have been used to define the arrangement of proteins for AFM studies. Using AFM, mechanical and force measurements with tips that are coated with ECM proteins can be captured in ambient or aqueous environments. In this review, representative examples of AFM studies are described for molecular-level investigations of the structure, surface assembly, protein-cell interactions, and mechanical properties of ECM proteins (collagen, elastin, fibronectin, and laminin). Methods used for sample preparation as well as characterization with modes of AFM will be discussed.
Collapse
Affiliation(s)
- Ashley R Walker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jonathan R Sloneker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jayne C Garno
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| |
Collapse
|
3
|
Roth J, Hoop C, Williams JK, Nanda V, Baum J. Real-time single-molecule observation of incipient collagen fibrillogenesis and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2401133121. [PMID: 39102538 PMCID: PMC11331128 DOI: 10.1073/pnas.2401133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Cody Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jonathan K. Williams
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
4
|
Garcia-Sacristan C, Gisbert VG, Klein K, Šarić A, Garcia R. In Operando Imaging Electrostatic-Driven Disassembly and Reassembly of Collagen Nanostructures. ACS NANO 2024; 18:18485-18492. [PMID: 38958189 PMCID: PMC11256892 DOI: 10.1021/acsnano.4c03839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Collagen is the most abundant protein in tissue scaffolds in live organisms. Collagen can self-assemble in vitro, which has led to a number of biotechnological and biomedical applications. To understand the dominant factors that participate in the formation of collagen nanostructures, here we study in real time and with nanoscale resolution the disassembly and reassembly of collagens. We implement a high-speed force microscope, which provides in situ high spatiotemporal resolution images of collagen nanostructures under changing pH conditions. The disassembly and reassembly are dominated by the electrostatic interactions among amino-acid residues of different molecules. Acidic conditions favor disassembly by neutralizing negatively charged residues. The process sets a net repulsive force between collagen molecules. A neutral pH favors the presence of negative and positively charged residues along the collagen molecules, which promotes their electrostatic attraction. Molecular dynamics simulations reproduce the experimental behavior and validate the electrostatic-based model of the disassembly and reassembly processes.
Collapse
Affiliation(s)
- Clara Garcia-Sacristan
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Victor G. Gisbert
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Kevin Klein
- Institute
of Science and Technology Austria, Klosterneuburg 3400, Austria
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Anđela Šarić
- Institute
of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
5
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
6
|
Barbosa CDB, Monici Silva I, Dame-Teixeira N. The action of microbial collagenases in dentinal matrix degradation in root caries and potential strategies for its management: a comprehensive state-of-the-art review. J Appl Oral Sci 2024; 32:e20240013. [PMID: 38775556 PMCID: PMC11182643 DOI: 10.1590/1678-7757-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Conventional views associate microbial biofilm with demineralization in root caries (RC) onset, while research on their collagenases role in the breakdown of collagen matrix has been sporadically developed, primarily in vitro. Recent discoveries, however, reveal proteolytic bacteria enrichment, specially Porphyromonas and other periodontitis-associated bacteria in subgingivally extended lesions, suggesting a potential role in RC by the catabolism of dentin organic matrix. Moreover, genes encoding proteases and bacterial collagenases, including the U32 family collagenases, were found to be overexpressed in both coronal and root dentinal caries. Despite these advancements, to prove microbial collagenolytic proteases' definitive role in RC remains a significant challenge. A more thorough investigation is warranted to explore the potential of anti-collagenolytic agents in modulating biofilm metabolic processes or inhibiting/reducing the size of RC lesions. Prospective treatments targeting collagenases and promoting biomodification through collagen fibril cross-linking show promise for RC prevention and management. However, these studies are currently in the in vitro phase, necessitating additional research to translate findings into clinical applications. This is a comprehensive state-of-the-art review aimed to explore contributing factors to the formation of RC lesions, particularly focusing on collagen degradation in root tissues by microbial collagenases.
Collapse
Affiliation(s)
- Cecília de Brito Barbosa
- Universidade de Brasília, Faculdade de Ciências da Saúde, Departamento de Odontologia, Brasília, Brasil
| | - Isabela Monici Silva
- Universidade de Brasília, Faculdade de Ciências da Saúde, Departamento de Odontologia, Brasília, Brasil
| | - Naile Dame-Teixeira
- Universidade de Brasília, Faculdade de Ciências da Saúde, Departamento de Odontologia, Brasília, Brasil
| |
Collapse
|
7
|
Shi R, Wang L, Liang C, Cheng Y, Xiang Liu T, Luo X. Changes in the Biomechanical Properties of Corneal Stromal Lens after Collagen Crosslinking Induced by EDC-NHS. J Ophthalmol 2024; 2024:9943458. [PMID: 38800368 PMCID: PMC11126343 DOI: 10.1155/2024/9943458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction To evaluate the changes of lens antidilatation, antiedema, and antienzymolysis ability after different concentrations of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC-NHS)-induced collagen cross-linking. Methods Corneal stromal lenticules (n = 100) obtained from small incision lenticule extraction (SMILE) procedures were divided into 5 groups: no treatment (control); EDC/NHS (5%/2.5%); EDC/NHS(5%/5%); EDC/NHS (10%/5%); riboflavin and ultraviolet-A light (UVA). Collagen crosslinking was induced using EDC-NHS and UVA. Biomechanical assessments including inflation test, enzymatic degradation resistance, and light transmittance were evaluated posttreatment. Results (1) Lenticule apex displacement ranked: control Group > UVA Group > Group (5%/5%) > Group (5%/2.5%) > Group (10%/5%) (Friedman test, p < 0.0001). (2) Light transmittance was significantly higher in the crosslinked groups versus control, with EDC/NHS superior to UVA riboflavin. After 15 minutes in PBS, light transmittance decreased due to swelling; however, crosslinked groups maintained significantly higher transmittance versus control. (3) Following crosslinking, enzymatic resistance improved significantly, with the EDC-NHS crosslinking group was significantly better than the UVA cross-linking group. Conclusions EDC/NHS crosslinking enhanced lenticule stiffness, antiedema, and enzymatic resistance and without compromising the transparency of the lens. Moreover, EDC/NHS crosslinking efficacy exceeded UVA riboflavin crosslinking in improving lenticule biomechanical properties.
Collapse
Affiliation(s)
- Rong Shi
- The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lijing Wang
- The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengpeng Liang
- The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu Cheng
- The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tai Xiang Liu
- The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Luo
- The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Maksudov F, Kliuchnikov E, Marx KA, Purohit PK, Barsegov V. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles. Acta Biomater 2023; 166:326-345. [PMID: 37142109 DOI: 10.1016/j.actbio.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation. Changing structures and force-deformation curves enabled us to describe their damage-dependent biomechanics (strength, deformability, stiffness), thermodynamics (released and dissipated energies, enthalpy, and entropy) and material properties (toughness). Thick CCMV and MT particles experience material fatigue due to slow recovery and damage accumulation over 3-5 loading cycles; thin encapsulin shells show little fatigue due to rapid remodeling and limited damage. The results obtained challenge the existing paradigm: damage in biological particles is partially reversible owing to particle's partial recovery; fatigue crack may or may not grow with each loading cycle and may heal; and particles adapt to deformation amplitude and frequency to minimize the energy dissipated. Using crack size to quantitate damage is problematic as several cracks might form simultaneously in a particle. Dynamic evolution of strength, deformability, and stiffness, can be predicted by analyzing the cycle number (N) dependent damage, [Formula: see text] , where α is a power law and Nf is fatigue life. Fatigue testing in silico can now be used to explore damage-induced changes in the material properties of other biological particles. STATEMENT OF SIGNIFICANCE: Biological particles possess mechanical characteristics necessary to perform their functions. We developed "fatigue testing in silico" approach, which employes Langevin Dynamics simulations of constant-amplitude cyclic loading of nanoscale biological particles, to explore dynamic evolution of the mechanical, energetic, and material properties of the thin and thick spherical particles of encapsulin and Cowpea Chlorotic Mottle Virus, and the microtubule filament fragment. Our study of damage growth and fatigue development challenge the existing paradigm. Damage in biological particles is partially reversible as fatigue crack might heal with each loading cycle. Particles adapt to deformation amplitude and frequency to minimize energy dissipation. The evolution of strength, deformability, and stiffness, can be accurately predicted by analyzing the damage growth in particle structure.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Evgenii Kliuchnikov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, United States
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.
| |
Collapse
|
9
|
Anohova V, Asyakina L, Babich O, Dikaya O, Goikhman A, Maksimova K, Grechkina M, Korobenkov M, Burkova D, Barannikov A, Narikovich A, Chupakhin E, Snigirev A, Antipov S. The Dosidicus gigas Collagen for Scaffold Preparation and Cell Cultivation: Mechanical and Physicochemical Properties, Morphology, Composition and Cell Viability. Polymers (Basel) 2023; 15:1220. [PMID: 36904464 PMCID: PMC10006952 DOI: 10.3390/polym15051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Directed formation of the structure of the culture of living cells is the most important task of tissue engineering. New materials for 3D scaffolds of living tissue are critical for the mass adoption of regenerative medicine protocols. In this manuscript, we demonstrate the results of the molecular structure study of collagen from Dosidicus gigas and reveal the possibility of obtaining a thin membrane material. The collagen membrane is characterized by high flexibility and plasticity as well as mechanical strength. The technology of obtaining collagen scaffolds, as well as the results of studies of its mechanical properties, surface morphology, protein composition, and the process of cell proliferation on its surface, are shown in the given manuscript. The investigation of living tissue culture grown on the surface of a collagen scaffold by X-ray tomography on a synchrotron source made it possible to remodel the structure of the extracellular matrix. It was found that the scaffolds obtained from squid collagen are characterized by a high degree of fibril ordering and high surface roughness and provide efficient directed growth of the cell culture. The resulting material provides the formation of the extracellular matrix and is characterized by a short time to living tissue sorption.
Collapse
Affiliation(s)
- Veronika Anohova
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Lyudmila Asyakina
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Olga Babich
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Olga Dikaya
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Aleksandr Goikhman
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Ksenia Maksimova
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | | | - Maxim Korobenkov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Diana Burkova
- Voronezh State University, 1, University Square, Voronezh 394063, Russia
| | - Aleksandr Barannikov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Anton Narikovich
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Evgeny Chupakhin
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anatoly Snigirev
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Sergey Antipov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
- Voronezh State University, 1, University Square, Voronezh 394063, Russia
| |
Collapse
|
10
|
Vaez M, Asgari M, Hirvonen L, Bakir G, Khattignavong E, Ezzo M, Aguayo S, Schuh CM, Gough K, Bozec L. Modulation of the biophysical and biochemical properties of collagen by glycation for tissue engineering applications. Acta Biomater 2023; 155:182-198. [PMID: 36435437 DOI: 10.1016/j.actbio.2022.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
The structural and functional properties of collagen are modulated by the presence of intramolecular and intermolecular crosslinks. Advanced Glycation End-products (AGEs) can produce intermolecular crosslinks by bonding the free amino groups of neighbouring proteins. In this research, the following hypothesis is explored: The accumulation of AGEs in collagen decreases its proteolytic degradation rates while increasing its stiffness. Fluorescence Lifetime Imaging (FLIM) and Fourier-transform infrared spectroscopy (FTIR) detect biochemical changes in collagen scaffolds during the glycation process. The accumulation of AGEs increases exponentially in the collagen scaffolds as a function of Methylglyoxal (MGO) concentration by performing autofluorescence measurement and competitive ELISA. Glycated scaffolds absorb water at a much higher rate confirming the direct affinity between AGEs and interstitial water within collagen fibrils. In addition, the topology of collagen fibrils as observed by Atomic Force Microscopy (AFM) is a lot more defined following glycation. The elastic modulus of collagen fibrils decreases as a function of glycation, whereas the elastic modulus of collagen scaffolds increases. Finally, the enzymatic degradation of collagen by bacterial collagenase shows a sigmoidal pattern with a much slower degradation rate in the glycated scaffolds. This study identifies unique variations in the properties of collagen following the accumulation of AGEs. STATEMENT OF SIGNIFICANCE: In humans, Advanced Glycation End-products (AGEs) are naturally produced as a result of aging process. There is an evident lack of knowledge in the basic science literature explaining the biomechanical impact of AGE-mediated crosslinks on the functional and structural properties of collagen at both the nanoscale (single fibrils) and mesoscale (bundles of fibrils). This research, demonstrates how it is possible to harness this natural phenomenon in vitro to enhance the properties of engineered collagen fibrils and scaffolds. This study identifies unique variations in the properties of collagen at nanoscale and mesoscale following accumulation of AGEs. In their approach, they investigate the unique properties conferred to collagen, namely enhanced water sorption, differential elastic modulus, and finally sigmoidal proteolytic degradation behavior.
Collapse
Affiliation(s)
- Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto, Canada.
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Liisa Hirvonen
- Centre for Microscopy, Characterisation & Analysis, University of Western Australia, Perth, Australia
| | - Gorkem Bakir
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Tai A, Landao-Bassonga E, Chen Z, Tran M, Allan B, Ruan R, Calder D, Goonewardene M, Ngo H, Zheng MH. Systematic evaluation of three porcine-derived collagen membranes for guided bone regeneration. BIOMATERIALS TRANSLATIONAL 2023; 4:41-50. [PMID: 37206304 PMCID: PMC10189808 DOI: 10.12336/biomatertransl.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023]
Abstract
Guided bone regeneration is one of the most common surgical treatment modalities performed when an additional alveolar bone is required to stabilize dental implants in partially and fully edentulous patients. The addition of a barrier membrane prevents non-osteogenic tissue invasion into the bone cavity, which is key to the success of guided bone regeneration. Barrier membranes can be broadly classified as non-resorbable or resorbable. In contrast to non-resorbable membranes, resorbable barrier membranes do not require a second surgical procedure for membrane removal. Commercially available resorbable barrier membranes are either synthetically manufactured or derived from xenogeneic collagen. Although collagen barrier membranes have become increasingly popular amongst clinicians, largely due to their superior handling qualities compared to other commercially available barrier membranes, there have been no studies to date that have compared commercially available porcine-derived collagen membranes with respect to surface topography, collagen fibril structure, physical barrier property, and immunogenic composition. This study evaluated three commercially available non-crosslinked porcine-derived collagen membranes (Striate+TM, Bio-Gide® and CreosTM Xenoprotect). Scanning electron microscopy revealed similar collagen fibril distribution on both the rough and smooth sides of the membranes as well as the similar diameters of collagen fibrils. However, D-periodicity of the fibrillar collagen is significantly different among the membranes, with Striate+TM membrane having the closest D-periodicity to native collagen I. This suggests that there is less deformation of collagen during manufacturing process. All collagen membranes showed superior barrier property evidenced by blocking 0.2-16.4 μm beads passing through the membranes. To examine the immunogenic agents in these membranes, we examined the membranes for the presence of DNA and alpha-gal by immunohistochemistry. No alpha-gal or DNA was detected in any membranes. However, using a more sensitive detection method (real-time polymerase chain reaction), a relatively strong DNA signal was detected in Bio-Gide® membrane, but not Striate+TM and CreosTM Xenoprotect membranes. Our study concluded that these membranes are similar but not identical, probably due to the different ages and sources of porcine tissues, as well as different manufacturing processes. We recommend further studies to understand the clinical implications of these findings.
Collapse
Affiliation(s)
- Andrew Tai
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Euphemie Landao-Bassonga
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Ziming Chen
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Minh Tran
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Brent Allan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
- Oral and Maxillofacial Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Dax Calder
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Mithran Goonewardene
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Hien Ngo
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Ming Hao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Corresponding authors: Ming Hao Zheng,
| |
Collapse
|
12
|
Gouissem A, Mbarki R, Al Khatib F, Adouni M. Multiscale Characterization of Type I Collagen Fibril Stress–Strain Behavior under Tensile Load: Analytical vs. MD Approaches. Bioengineering (Basel) 2022; 9:bioengineering9050193. [PMID: 35621471 PMCID: PMC9138028 DOI: 10.3390/bioengineering9050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Type I collagen is one of the most important proteins in the human body because of its role in providing structural support to the extracellular matrix of the connective tissues. Understanding its mechanical properties was widely investigated using experimental testing as well as molecular and finite element simulations. In this work, we present a new approach for defining the properties of the type I collagen fibrils by analytically formulating its response when subjected to a tensile load and investigating the effects of enzymatic crosslinks on the behavioral response. We reveal some of the shortcomings of the molecular dynamics (MD) method and how they affect the obtained stress–strain behavior of the fibril, and we prove that not only does MD underestimate the Young’s modulus and the ultimate tensile strength of the collagen fibrils, but also fails to detect the mechanics of some stretching phases of the fibril. We prove that non-crosslinked fibrils have three tension phases: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime related to the stretching of the backbone of the tropocollagen molecules, and (iii) a plastic regime dominated by molecular sliding. We also show that for crosslinked fibrils, the second regime can be subdivided into three sub-regimes, and we define the properties of each regime. We also prove, analytically, the alleged MD quadratic relation between the ultimate tensile strength of the fibril and the concentration of enzymatic crosslinks (β).
Collapse
Affiliation(s)
- Afif Gouissem
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
| | - Raouf Mbarki
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
| | - Fadi Al Khatib
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
| | - Malek Adouni
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
- Physical Medicine and Rehabilitation Department, Northwestern University, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
13
|
Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. MATERIALS 2022; 15:ma15041608. [PMID: 35208148 PMCID: PMC8877100 DOI: 10.3390/ma15041608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The collagen superfamily includes more than fifty collagen and/or collagen-like proteins with fibril-forming collagen type I being the most abundant protein within the extracellular matrix. Collagen type I plays a crucial role in a variety of functions, it has been associated with many pathological conditions and it is widely used due to its unique properties. One unique nano-scale characteristic of natural occurring collagen type I fibers is the so-called D-band periodicity, which has been associated with collagen natural structure and properties, while it seems to play a crucial role in the interactions between cells and collagen and in various pathological conditions. An accurate characterization of the surface and structure of collagen fibers, including D-band periodicity, on collagen-based tissues and/or (nano-)biomaterials can be achieved by Atomic Force Microscopy (AFM). AFM is a scanning probe microscope and is among the few techniques that can assess D-band periodicity. This review covers issues related to collagen and collagen D-band periodicity and the use of AFM for studying them. Through a systematic search in databases (PubMed and Scopus) relevant articles were identified. The study of these articles demonstrated that AFM can offer novel information concerning D-band periodicity. This study highlights the importance of studying collagen D-band periodicity and proves that AFM is a powerful tool for investigating a number of different properties related to collagen D-band periodicity.
Collapse
|
14
|
The Effect of Enzymatic Crosslink Degradation on the Mechanics of the Anterior Cruciate Ligament: A Hybrid Multi-Domain Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The anterior cruciate ligament’s (ACL) mechanics is an important factor governing the ligament’s integrity and, hence, the knee joint’s response. Despite many investigations in this area, the cause and effect of injuries remain unclear or unknown. This may be due to the complexity of the direct link between macro- and micro-scale damage mechanisms. In the first part of this investigation, a three-dimensional coarse-grained model of collagen fibril (type I) was developed using a bottom-up approach to investigate deformation mechanisms under tensile testing. The output of this molecular level was used later to calibrate the parameters of a hierarchical multi-scale fibril-reinforced hyper-elastoplastic model of the ACL. Our model enabled us to determine the mechanical behavior of the ACL as a function of the basic response of the collagen molecules. Modeled elastic response and damage distribution were in good agreement with the reported measurements and computational investigations. Our results suggest that degradation of crosslink content dictates the loss of the stiffness of the fibrils and, hence, damage to the ACL. Therefore, the proposed computational frame is a promising tool that will allow new insights into the biomechanics of the ACL.
Collapse
|
15
|
Watanabe-Nakayama T, Ono K. Acquisition and processing of high-speed atomic force microscopy videos for single amyloid aggregate observation. Methods 2021; 197:4-12. [PMID: 34107352 DOI: 10.1016/j.ymeth.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
The structural dynamics of the amyloid protein aggregation process are associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. High-speed atomic force microscopy (HS-AFM) is able to visualize the structural dynamics of individual aggregate species that otherwise cannot be distinguished. HS-AFM observations also detect impurities in the sample, and thus, experiments require relatively high sample purity. To derive valid information regarding the structural dynamics of the sample from the high-speed AFM images, a correction of the influence caused by the drift of the stage (scanner) from all frames is required. However, correcting the HS-AFM videos that consist of a large number of images requires significant effort. Here, using HS-AFM observation of α-synuclein fibril elongation as an example, we propose an HS-AFM image processing procedure to correct stage drift in the x-, y-, and z-directions with the free software ImageJ. ImageJ with default settings and our plugins attached to this article can process and analyze image stacks, which allow users to easily detect and show the temporal change in sample structures. This processing method can be automatically applied to numerous HS-AFM videos by batch processing with a series of ImageJ macrofunctions.
Collapse
Affiliation(s)
- Takahiro Watanabe-Nakayama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan.
| |
Collapse
|
16
|
Korkmaz N, Akar KB, İmamoğlu R, Kısa D, Karadağ A. Synthesis of silver nanowires in a two‐phase system for biological applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nesrin Korkmaz
- Department of Basic Sciences and Health, Hemp Research Institute Yozgat Bozok University Yozgat Turkey
| | - Kıymet Berkil Akar
- Department of Bioengineering, Faculty of Engineering and Architecture Tokat Gaziosmanpasa University Tokat Turkey
| | - Rizvan İmamoğlu
- Department of Biotechnology, Faculty of Science Bartın University Bartın Turkey
| | - Dursun Kısa
- Department of Molecular Biology and Genetic, Faculty of Science Bartın University Bartın Turkey
| | - Ahmet Karadağ
- Department of Chemistry, Faculty of Arts and Sciences Yozgat Bozok University Yozgat Turkey
| |
Collapse
|
17
|
Gisbert V, Benaglia S, Uhlig MR, Proksch R, Garcia R. High-Speed Nanomechanical Mapping of the Early Stages of Collagen Growth by Bimodal Force Microscopy. ACS NANO 2021; 15:1850-1857. [PMID: 33412008 PMCID: PMC8477367 DOI: 10.1021/acsnano.0c10159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
High-speed atomic force microscopy (AFM) enabled the imaging of protein interactions with millisecond time resolutions (10 fps). However, the acquisition of nanomechanical maps of proteins is about 100 times slower. Here, we developed a high-speed bimodal AFM that provided high-spatial resolution maps of the elastic modulus, the loss tangent, and the topography at imaging rates of 5 fps. The microscope was applied to identify the initial stages of the self-assembly of the collagen structures. By following the changes in the physical properties, we identified four stages, nucleation and growth of collagen precursors, formation of tropocollagen molecules, assembly of tropocollagens into microfibrils, and alignment of microfibrils to generate microribbons. Some emerging collagen structures never matured, and after an existence of several seconds, they disappeared into the solution. The elastic modulus of a microfibril (∼4 MPa) implied very small stiffness (∼3 × 10-6 N/m). Those values amplified the amplitude of the collagen thermal fluctuations on the mica plane, which facilitated microribbon build-up.
Collapse
Affiliation(s)
- Victor
G. Gisbert
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Simone Benaglia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Manuel R. Uhlig
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Roger Proksch
- Asylum
Research an Oxford Instruments Company, Santa Barbara, California 93117, United States
| | - Ricardo Garcia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
18
|
Watanabe-Nakayama T, Nawa M, Konno H, Kodera N, Ando T, Teplow DB, Ono K. Self- and Cross-Seeding on α-Synuclein Fibril Growth Kinetics and Structure Observed by High-Speed Atomic Force Microscopy. ACS NANO 2020; 14:9979-9989. [PMID: 32678577 DOI: 10.1021/acsnano.0c03074] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibril formation is an obligatory process in amyloid diseases and is characterized by nucleation and elongation phases that result in the formation of long filaments with cross-β sheet structure. The kinetics of this process, as well as that of secondary nucleation, is controlled by a variety of factors, including nucleus (seed) structure, monomer conformation, and biochemical milieu. Some fibrillar amyloid assemblies act as prions, replicating themselves from protein monomers templated by existing prion seeds. Prion strains, which are characterized by distinct physicochemical and pathologic properties, may also form due to perturbation of the templating process within the susceptible organism. Understanding the types and effects of perturbations occurring during the development and progression of Parkinson's disease is an area requiring more study. Here, we used high-speed atomic force microscopy to determine the kinetics and structural dynamics of α-synuclein fibril elongation initiated by self-seeding or cross-seeding of wild-type (WT) or mutant α-synuclein with WT or mutant α-synuclein seeds. We found that cross-seeding modulated not only elongation rates but also the structures of the growing fibrils. Some fibrils produced in this manner had structures distinct from their "parent" seeds. In other cases, cross-seeding was not observed at all. These findings suggest that α-synuclein sequence variants can produce different types of strains by self- or cross-seeding. Perpetuation of specific strains then would depend on the relative rates of fibril growth and the relative stabilities of the fibrils formed by each strain.
Collapse
Affiliation(s)
- Takahiro Watanabe-Nakayama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Maika Nawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, 635 Charles E. Young Drive South, Los Angeles, California 90095-7334, United States
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| |
Collapse
|
19
|
Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020; 21:E4287. [PMID: 32560229 PMCID: PMC7352471 DOI: 10.3390/ijms21124287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
Individual Alzheimer's disease (AD) patients have been shown to have structurally distinct amyloid-β (Aβ) aggregates, including fibrils, in their brain. These findings suggest the possibility of a relationship between AD progression and Aβ fibril structures. Thus, the characterization of the structural dynamics of Aβ could aid the development of novel therapeutic strategies and diagnosis. Protein structure and dynamics have typically been studied separately. Most of the commonly used biophysical approaches are limited in providing substantial details regarding the combination of both structure and dynamics. On the other hand, high-speed atomic force microscopy (HS-AFM), which simultaneously visualizes an individual protein structure and its dynamics in liquid in real time, can uniquely link the structure and the kinetic details, and it can also unveil novel insights. Although amyloidogenic proteins generate heterogeneously aggregated species, including transient unstable states during the aggregation process, HS-AFM elucidated the structural dynamics of individual aggregates in real time in liquid without purification and isolation. Here, we review and discuss the HS-AFM imaging of amyloid aggregation and strategies to optimize the experiments showing findings from Aβ and amylin, which is associated with type II diabetes, shares some common biological features with Aβ, and is reported to be involved in AD.
Collapse
Affiliation(s)
| | - Bikash R. Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, and Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA;
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Hatanodai, Shinagawa district, Tokyo 142-8666, Japan;
| |
Collapse
|
20
|
Maity B, Li Z, Niwase K, Ganser C, Furuta T, Uchihashi T, Lu D, Ueno T. Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution. Phys Chem Chem Phys 2020; 22:18562-18572. [DOI: 10.1039/d0cp02069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 24-mer iron-storage protein, ferritin cage assembly plays important role in nanomaterials synthesis and drug delivery. Herein we explored the disassembly process of the cage by high-speed AFM in combination with all-atom MD simulations.
Collapse
Affiliation(s)
- Basudev Maity
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Zhipeng Li
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
- Ministry of Education Key Laboratory of Industrial Biocatalysis
| | - Kento Niwase
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS)
- National Institutes of Natural Sciences
- Okazaki
- Japan
| | - Tadaomi Furuta
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS)
- National Institutes of Natural Sciences
- Okazaki
- Japan
- Department of Physics
| | - Diannan Lu
- Ministry of Education Key Laboratory of Industrial Biocatalysis
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Takafumi Ueno
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama 226-8501
- Japan
| |
Collapse
|
21
|
Ando T. High-speed atomic force microscopy. Curr Opin Chem Biol 2019; 51:105-112. [DOI: 10.1016/j.cbpa.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
|
22
|
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'. Matrix Biol 2019; 85-86:34-46. [PMID: 31201857 DOI: 10.1016/j.matbio.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
Abstract
Tissue homeostasis depends on a balance of synthesis and degradation of constituent proteins, with turnover of a given protein potentially regulated by its use. Extracellular matrix (ECM) is predominantly composed of fibrillar collagens that exhibit tension-sensitive degradation, which we review here at different levels of hierarchy. Past experiments and recent proteomics measurements together suggest that mechanical strain stabilizes collagen against enzymatic degradation at the scale of tissues and fibrils whereas isolated collagen molecules exhibit a biphasic behavior that depends on load magnitude. Within a Michaelis-Menten framework, collagenases at constant concentration effectively exhibit a low activity on substrate fibrils when the fibrils are strained by tension. Mechanisms of such mechanosensitive regulation are surveyed together with relevant interactions of collagen fibrils with cells.
Collapse
|
23
|
Effect of collagenase-gelatinase ratio on the mechanical properties of a collagen fibril: a combined Monte Carlo-molecular dynamics study. Biomech Model Mechanobiol 2019; 18:1809-1819. [PMID: 31161353 PMCID: PMC6825035 DOI: 10.1007/s10237-019-01178-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
Abstract
Loading in cartilage is supported primarily by fibrillar collagen, and damage will impair the function of the tissue, leading to pathologies such as osteoarthritis. Damage is initiated by two types of matrix metalloproteinases, collagenase and gelatinase, that cleave and denature the collagen fibrils in the tissue. Experimental and modeling studies have revealed insights into the individual contributions of these two types of MMPs, as well as the mechanical response of intact fibrils and fibrils that have experienced random surface degradation. However, no research has comprehensively examined the combined influences of collagenases and gelatinases on collagen degradation nor studied the mechanical consequences of biological degradation of collagen fibrils. Such preclinical examinations are required to gain insights into understanding, treating, and preventing degradation-related cartilage pathology. To develop these insights, we use sequential Monte Carlo and molecular dynamics simulations to probe the effect of enzymatic degradation on the structure and mechanics of a single collagen fibril. We find that the mechanical response depends on the ratio of collagenase to gelatinase—not just the amount of lost fibril mass—and we provide a possible mechanism underlying this phenomenon. Overall, by characterizing the combined influences of collagenases and gelatinases on fibril degradation and mechanics at the preclinical research stage, we gain insights that may facilitate the development of targeted interventions to prevent the damage and loss of mechanical integrity that can lead to cartilage pathology.
Collapse
|
24
|
Shi C, He Y, Ding M, Wang Y, Zhong J. Nanoimaging of food proteins by atomic force microscopy. Part I: Components, imaging modes, observation ways, and research types. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Caviness P, Bauer R, Tanaka K, Janowska K, Roeser JR, Harter D, Sanders J, Ruth C, Matsushita O, Sakon J. Ca 2+ -induced orientation of tandem collagen binding domains from clostridial collagenase ColG permits two opposing functions of collagen fibril formation and retardation. FEBS J 2018; 285:3254-3269. [PMID: 30035850 DOI: 10.1111/febs.14611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/24/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022]
Abstract
To penetrate host tissues, histotoxic clostridia secrete virulence factors including enzymes to hydrolyze extracellular matrix. Clostridium histolyticum, recently renamed as Hathewaya histolytica, produces two classes of collagenase (ColG and ColH). The high-speed AFM study showed that ColG collagenase moves unidirectionally to plane collagen fibril and rebundles fibril when stalled . The structural explanation of the roles for the tandem collagen-binding segment (CBDs) is illuminated by its calcium-bound crystal structure at 1.9 Å resolution (Rwork = 15.0%; Rfree = 19.6%). Activation may involve calcium-dependent domain rearrangement supported by both small-angle X-ray scattering and size exclusion chromatography. At pCa ≥ 5 (pCa = -log[Ca2+ ]), the tandem CBD adopts an extended conformation that may facilitate secretion from the bacterium. At pCa ≤ 4, the compact structure seen in the crystal structure is adopted. This arrangement positions the two binding surfaces ~ 55 Å apart, and possibly ushers ColG along tropocollagen molecules that allow for unidirectional movement. A sequential binding mode where tighter binding CBD2 binds first could aid in processivity as well. Switch from processive collagenolysis to fibril rearrangement could be concentration dependent. Collagen fibril formation is retarded at 1 : 1 molar ratio of tandem CBD to collagen. Tandem CBD may help isolate a tropocollagen molecule from a fibril at this ratio. At 0.1 : 1 to 0.5 : 1 molar ratios fibril self-assembly was accelerated. Gain of function as a result of gene duplication of CBD for the M9B enzymes is speculated. The binding and activation modes described here will aid in drug delivery design. ACCESSION CODES The full atomic coordinates of the tandem CBD and its corresponding structure factor amplitudes have been deposited in the Protein Data Bank (PDB accession code 5IKU). Small-angle X-ray scattering data and corresponding ab initio models have been submitted to the Small Angle Scattering Biological Data Bank (SASBDB). Accession codes CL2, collagenase module 2, CN2, CP2 are assigned to envelopes for tandem CBD at -log[Ca2+ ] (pCa) 3, 4, 5, and 6, respectively. Accession code DC64 was assigned to the complex of polycystic kidney disease-CBD1-CBD2 with mini-collagen.
Collapse
Affiliation(s)
- Perry Caviness
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ryan Bauer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Keisuke Tanaka
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Katarzyna Janowska
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Dawn Harter
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jes Sanders
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Christopher Ruth
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Joshua Sakon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
26
|
Uchihashi T, Scheuring S. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochim Biophys Acta Gen Subj 2018; 1862:229-240. [DOI: 10.1016/j.bbagen.2017.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
|
27
|
Watanabe-Nakayama T, Ono K. High-Speed Atomic Force Microscopy of Individual Amyloidogenic Protein Assemblies. Methods Mol Biol 2018; 1814:201-212. [PMID: 29956234 DOI: 10.1007/978-1-4939-8591-3_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) with high spatiotemporal resolution allows for the video imaging of the conformational changes of individual molecules in an observation area in liquid at nanometer-scale spatial resolution. This method verifies the molecular mechanism and reveals the structural dynamics of relevant biomolecules for various biological phenomena. Here, we describe the methods for HS-AFM observation and the analysis of the structural dynamics of individual amyloidogenic protein assemblies using amyloid β 1-42 as an example.
Collapse
Affiliation(s)
| | - Kenjiro Ono
- Department of Neurology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|