1
|
Huang Z, Zhang Z, Zhang R, Ding B, Yang L, Wu K, Xu Y, Zhong G, Ren C, Liu J, Hao Y, Wu M, Ma T, Liu B. An inorganic liquid crystalline dispersion with 2D ferroelectric moieties. Natl Sci Rev 2024; 11:nwae108. [PMID: 38680206 PMCID: PMC11055536 DOI: 10.1093/nsr/nwae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024] Open
Abstract
Electro-optical effect-based liquid crystal devices have been extensively used in optical modulation techniques, in which the Kerr coefficient reflects the sensitivity of the liquid crystals and determines the strength of the device's operational electric field. The Peterlin-Stuart theory and the O'Konski model jointly indicate that a giant Kerr coefficient could be obtained in a material with both a large geometrical anisotropy and an intrinsic polarization, but such a material is not yet reported. Here we reveal a ferroelectric effect in a monolayer two-dimensional mineral vermiculite. A large geometrical anisotropy factor and a large inherent electric dipole together raise the record value of Kerr coefficient by an order of magnitude, till 3.0 × 10-4 m V-2. This finding enables an ultra-low operational electric field of 102-104 V m-1 and the fabrication of electro-optical devices with an inch-level electrode separation, which has not previously been practical. Because of its high ultraviolet stability (decay <1% under ultraviolet exposure for 1000 hours), large-scale production, and energy efficiency, prototypical displayable billboards have been fabricated for outdoor interactive scenes. This work provides new insights for both liquid crystal optics and two-dimensional ferroelectrics.
Collapse
Affiliation(s)
- Ziyang Huang
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zehao Zhang
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rongjie Zhang
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Baofu Ding
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Technology for Carbon Neutrality, Faculty of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liu Yang
- School of Physics and Institute for Quantum Science and Engineering, School of Chemistry and Institute of Theoretical Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Keyou Wu
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Youan Xu
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Gaokuo Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chuanlai Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarong Liu
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yugan Hao
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Menghao Wu
- School of Physics and Institute for Quantum Science and Engineering, School of Chemistry and Institute of Theoretical Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Teng Ma
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China
| | - Bilu Liu
- Shenzhen Graphene Centre, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua−Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
2
|
Azmy A, Konovalova DM, Lepore L, Fyffe A, Kim D, Wojtas L, Tu Q, Trinh MT, Zibouche N, Spanopoulos I. Synthesis and Optical Properties of One Year Air-Stable Chiral Sb(III) Halide Semiconductors. Inorg Chem 2023. [PMID: 38009949 DOI: 10.1021/acs.inorgchem.3c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chiral hybrid metal-halide semiconductors (MHS) pose as ideal candidates for spintronic applications owing to their strong spin-orbit coupling (SOC), and long spin relaxation times. Shedding light on the underlying structure-property relationships is of paramount importance for the targeted synthesis of materials with an optimum performance. Herein, we report the synthesis and optical properties of 1D chiral (R-/S-THBTD)SbBr5 (THBTD = 4,5,6,7-tetrahydro-benzothiazole-2,6-diamine) semiconductors using a multifunctional ligand as a countercation and a structure directing agent. (R-/S-THBTD)SbBr5 feature direct and indirect band gap characteristics, exhibiting photoluminescence (PL) light emission at RT that is accompanied by a lifetime of a few ns. Circular dichroism (CD), second harmonic generation (SHG), and piezoresponse force microscopy (PFM) studies validate the chiral nature of the synthesized materials. Density functional theory (DFT) calculations revealed a Rashba/Dresselhaus (R/D) spin splitting, supported by an energy splitting (ER) of 23 and 25 meV, and a Rashba parameter (αR) of 0.23 and 0.32 eV·Å for the R and S analogs, respectively. These values are comparable to those of the 3D and 2D perovskite materials. Notably, (S-THBTD)SbBr5 has been air-stable for a year, a record performance among chiral lead-free MHS. This work demonstrates that low-dimensional, lead-free, chiral semiconductors with exceptional air stability can be acquired, without compromising spin splitting and manipulation performance.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Daria M Konovalova
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Leah Lepore
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alexander Fyffe
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Doyun Kim
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Qing Tu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Minh Tuan Trinh
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nourdine Zibouche
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YW, U.K
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
3
|
Liu Y, Kelley KP, Vasudevan RK, Zhu W, Hayden J, Maria JP, Funakubo H, Ziatdinov MA, Trolier-McKinstry S, Kalinin SV. Automated Experiments of Local Non-Linear Behavior in Ferroelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204130. [PMID: 36253123 DOI: 10.1002/smll.202204130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An automated experiment in multimodal imaging to probe structural, chemical, and functional behaviors in complex materials and elucidate the dominant physical mechanisms that control device function is developed and implemented. Here, the emergence of non-linear electromechanical responses in piezoresponse force microscopy (PFM) is explored. Non-linear responses in PFM can originate from multiple mechanisms, including intrinsic material responses often controlled by domain structure, surface topography that affects the mechanical phenomena at the tip-surface junction, and the presence of surface contaminants. Using an automated experiment to probe the origins of non-linear behavior in ferroelectric lead titanate (PTO) and ferroelectric Al0.93 B0.07 N films, it is found that PTO shows asymmetric nonlinear behavior across a/c domain walls and a broadened high nonlinear response region around c/c domain walls. In contrast, for Al0.93 B0.07 N, well-poled regions show high linear piezoelectric responses, when paired with low non-linear responses regions that are multidomain show low linear responses and high nonlinear responses. It is shown that formulating dissimilar exploration strategies in deep kernel learning as alternative hypotheses allows for establishing the preponderant physical mechanisms behind the non-linear behaviors, suggesting that automated experiments can potentially discern between competing physical mechanisms. This technique can also be extended to electron, probe, and chemical imaging.
Collapse
Affiliation(s)
- Yongtao Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanlin Zhu
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John Hayden
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jon-Paul Maria
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Dielectrics and Piezoelectrics, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hiroshi Funakubo
- Department of Material Science and Engineering, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Maxim A Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Susan Trolier-McKinstry
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Dielectrics and Piezoelectrics, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37916, USA
| |
Collapse
|
4
|
Mohapatra S, Beaurepaire E, Weber W, Bowen M, Boukari S, Da Costa V. Accessing nanoscopic polarization reversal processes in an organic ferroelectric thin film. NANOSCALE 2021; 13:19466-19473. [PMID: 34792081 DOI: 10.1039/d1nr05957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Towards eliminating toxic substances from electronic devices, Croconic Acid (CA) has great potential as a sublimable organic ferroelectric material. While studies on CA thin films are just beginning to emerge, its capability to be integrated in nanodevices remains unexplored. We demonstrate at the laterally nanoscopic scale robust ferroelectric switching of a stable enduring polarization at room temperature in CA thin films, without leakage. The challenging ferroelectric characterization at the nanoscale is performed using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and concurrent strain response. This helps rationalize the otherwise asymmetric polarization-voltage hysteresis due to background noise limited undetectable switching currents, which are statistically averaged in macrojunctions but become prevalent at the nanoscale. Apart from successfully estimating the nanoscopic polarization in CA thin films, we show that CA is a promising lead-free organic ferroelectric towards nanoscale device integration. Our results, being valid irrespective of the ferroelectrics' nature; organic or inorganic, pave the way for fundamental understandings and technological applications of nanoscopic polarization reversal mechanisms.
Collapse
Affiliation(s)
- Sambit Mohapatra
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
| | - Eric Beaurepaire
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
| | - Wolfgang Weber
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
| | - Martin Bowen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
| | - Samy Boukari
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
| | - Victor Da Costa
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.
| |
Collapse
|
5
|
Zeng Q, Wang H, Xiong Z, Huang Q, Lu W, Sun K, Fan Z, Zeng K. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003993. [PMID: 33898182 PMCID: PMC8061351 DOI: 10.1002/advs.202003993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/10/2021] [Indexed: 05/29/2023]
Abstract
Piezoresponse force microscopy (PFM), as a powerful nanoscale characterization technique, has been extensively utilized to elucidate diverse underlying physics of ferroelectricity. However, intensive studies of conventional PFM have revealed a growing number of concerns and limitations which are largely challenging its validity and applications. In this study, an advanced PFM technique is reported, namely heterodyne megasonic piezoresponse force microscopy (HM-PFM), which uses 106 to 108 Hz high-frequency excitation and heterodyne method to measure the piezoelectric strain at nanoscale. It is found that HM-PFM can unambiguously provide standard ferroelectric domain and hysteresis loop measurements, and an effective domain characterization with excitation frequency up to ≈110 MHz is demonstrated. Most importantly, owing to the high-frequency and heterodyne scheme, the contributions from both electrostatic force and electrochemical strain can be significantly minimized in HM-PFM. Furthermore, a special measurement of difference-frequency piezoresponse frequency spectrum (DFPFS) is developed on HM-PFM and a distinct DFPFS characteristic is observed on the materials with piezoelectricity. By performing DFPFS measurement, a truly existed but very weak electromechanical coupling in CH3NH3PbI3 perovskite is revealed. It is believed that HM-PFM can be an excellent candidate for the ferroelectric or piezoelectric studies where conventional PFM results are highly controversial.
Collapse
Affiliation(s)
- Qibin Zeng
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Hongli Wang
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
- The Key Lab of Guangdong for Modern Surface Engineering TechnologyNational Engineering Laboratory for Modern Materials Surface Engineering TechnologyInstitute of New Materials, Guangdong Academy of ScienceGuangzhou510650China
| | - Zhuang Xiong
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems, School of Energy & Power EngineeringChongqing UniversityChongqing400044China
| | - Qicheng Huang
- Institute for Advanced Materials, South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Wanheng Lu
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kuan Sun
- MOE Key Laboratory of Low‐Grade Energy Utilization Technologies and Systems, School of Energy & Power EngineeringChongqing UniversityChongqing400044China
| | - Zhen Fan
- Institute for Advanced Materials, South China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Kaiyang Zeng
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
- NUS (Suzhou) Research Institute (NUSRI)Suzhou215123China
| |
Collapse
|
6
|
Kwon O, Seol D, Qiao H, Kim Y. Recent Progress in the Nanoscale Evaluation of Piezoelectric and Ferroelectric Properties via Scanning Probe Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901391. [PMID: 32995111 PMCID: PMC7507502 DOI: 10.1002/advs.201901391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/05/2020] [Indexed: 05/21/2023]
Abstract
Piezoelectric and ferroelectric materials have garnered significant interest owing to their excellent physical properties and multiple potential applications. Accordingly, the need for evaluating piezoelectric and ferroelectric properties has also increased. The piezoelectric and ferroelectric properties are evaluated macroscopically using laser interferometers and polarization-electric field loop measurements. However, as the research focus is shifted from bulk to nanosized materials, scanning probe microscopy (SPM) techniques have been suggested as an alternative approach for evaluating piezoelectric and ferroelectric properties. In this Progress Report, the recent progress on the nanoscale evaluation of piezoelectric and ferroelectric properties of diverse materials using SPM-based methods is summarized. Among the SPM techniques, the focus is on recent studies that are related to piezoresponse force microscopy and conductive atomic force microscopy; further, the utilization of these two modes to understand piezoelectric and ferroelectric properties at the nanoscale level is discussed. This work can provide guidelines for evaluating the piezoelectric and ferroelectric properties of materials based on SPM techniques.
Collapse
Affiliation(s)
- Owoong Kwon
- School of Advanced Materials and Engineering & Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Daehee Seol
- School of Advanced Materials and Engineering & Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Huimin Qiao
- School of Advanced Materials and Engineering & Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yunseok Kim
- School of Advanced Materials and Engineering & Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
7
|
Mao K, Zhang J, Guo Z, Liu L, Ma H, Chin Y, Lin H, Bao S, Xie H, Yang R, Jing Z, Shen J, Yuan G, Chen J, Wu P, Wu X. Constructing Asymmetrical Ni-Centered {NiN 2O 4} Octahedra in Layered Metal-Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. J Am Chem Soc 2020; 142:12841-12849. [PMID: 32602708 DOI: 10.1021/jacs.0c05845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Layered metal-organic structures (LMOSs) as magnetoelectric (ME) multiferroics have been of great importance for realizing new functional devices in nanoelectronics. Until now, however, achieving such room-temperature and single-phase ME multiferroics in LMOSs have proven challenging due to low transition temperature, poor spontaneous polarization, and weak ME coupling effect. Here, we demonstrate the construction of a LMOS in which four Ni-centered {NiN2O4} octahedra form in layer with asymmetric distortions using the coordination bonds between diphenylalanine molecules and transition metal Ni(II). Near room-temperature (283 K) ferroelectricity and ferromagnetism are observed to be both spontaneous and hysteretic. Particularly, the multiferroic LMOS exhibits strong magnetic-field-dependent ME polarization with low-magnetic-field control. The change in ME polarization with increasing applied magnetic field μ0H from 0 to 2 T decreases linearly from 0.041 to 0.011 μC/cm2 at the strongest ME coupling temperature of 251 K. The magnetic domains can be manipulated directly by applied electric field at 283 K. The asymmetrical distortion of Ni-centered octahedron in layer spurs electric polarization and ME effect and reduces spin frustration in the octahedral geometry due to spin-charge-orbital coupling. Our results represent an important step toward the production of room-temperature single-phase organic ME multiferroics.
Collapse
Affiliation(s)
- Kaihui Mao
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| | - Jinlei Zhang
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China.,School and Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
| | - Zijing Guo
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| | - Lizhe Liu
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| | - He Ma
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yiying Chin
- Department of Physics, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Hongji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Songsong Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hangqing Xie
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| | - Run Yang
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| | - Zhaoyang Jing
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiancang Shen
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Chen
- National Laboratory of Solid State Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, P. R. China
| | - Peiheng Wu
- National Laboratory of Solid State Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, P. R. China
| | - Xinglong Wu
- National Laboratory of Solid State Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
8
|
Correlative Confocal Raman and Scanning Probe Microscopy in the Ionically Active Particles of LiMn 2O 4 Cathodes. MATERIALS 2019; 12:ma12091416. [PMID: 31052308 PMCID: PMC6539315 DOI: 10.3390/ma12091416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 11/23/2022]
Abstract
In this contribution, a correlative confocal Raman and scanning probe microscopy approach was implemented to find a relation between the composition, lithiation state, and functional electrochemical response in individual micro-scale particles of a LiMn2O4 spinel in a commercial Li battery cathode. Electrochemical strain microscopy (ESM) was implemented both at a low-frequency (3.5 kHz) and in a high-frequency range of excitation (above 400 kHz). It was shown that the high-frequency ESM has a significant cross-talk with topography due to a tip-sample electrostatic interaction, while the low-frequency ESM yields a response correlated with distributions of Li ions and electrochemically inactive phases revealed by the confocal Raman microscopy. Parasitic contributions into the electromechanical response from the local Joule heating and flexoelectric effect were considered as well and found to be negligible. It was concluded that the low-frequency ESM response directly corresponds to the confocal Raman microscopy data. The analysis implemented in this work is an important step towards the quantitative measurement of diffusion coefficients and ion concentration via strain-based scanning probe microscopy methods in a wide range of ionically active materials.
Collapse
|
9
|
Li T, Zeng K. Probing of Local Multifield Coupling Phenomena of Advanced Materials by Scanning Probe Microscopy Techniques. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803064. [PMID: 30306656 DOI: 10.1002/adma.201803064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The characterization of the local multifield coupling phenomenon (MCP) in various functional/structural materials by using scanning probe microscopy (SPM)-based techniques is comprehensively reviewed. Understanding MCP has great scientific and engineering significance in materials science and engineering, as in many practical applications, materials and devices are operated under a combination of multiple physical fields, such as electric, magnetic, optical, chemical and force fields, and working environments, such as different atmospheres, large temperature fluctuations, humidity, or acidic space. The materials' responses to the synergetic effects of the multifield (physical and environmental) determine the functionalities, performance, lifetime of the materials, and even the devices' manufacturing. SPM techniques are effective and powerful tools to characterize the local effects of MCP. Here, an introduction of the local MCP, the descriptions of several important SPM techniques, especially the electrical, mechanical, chemical, and optical related techniques, and the applications of SPM techniques to investigate the local phenomena and mechanisms in oxide materials, energy materials, biomaterials, and supramolecular materials are covered. Finally, an outlook of the MCP and SPM techniques in materials research is discussed.
Collapse
Affiliation(s)
- Tao Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
- Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Shaanxi, 710049, Xi'an, China
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
10
|
Kang S, Jeon S, Kim S, Seol D, Yang H, Lee J, Kim Y. Tunable Out-of-Plane Piezoelectricity in Thin-Layered MoTe 2 by Surface Corrugation-Mediated Flexoelectricity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27424-27431. [PMID: 30022658 DOI: 10.1021/acsami.8b06325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Piezoelectricity crystallographically exists only in the in-plane direction in two-dimensional transition metal dichalcogenides. Here, we demonstrated flexoelectricity-tunable out-of-plane piezoelectricity in semiconducting 2H-MoTe2 flakes by creating surface corrugation. In particular, the strong out-of-plane piezoelectricity and its spatial variation depending on local flexoelectricity was observed even though crystallographically there exists only in-plane piezoelectricity. Surface corrugation-mediated flexoelectricity tuning can be applied to other two-dimensional or thin-layered materials and, furthermore, the results could provide useful information on the interweaving nature between mechanical stimulus and electric dipole in low-dimensional materials.
Collapse
Affiliation(s)
| | - Sera Jeon
- Department of Physics , Pusan National University , Busan 46241 , Republic of Korea
| | | | | | | | - Jaekwang Lee
- Department of Physics , Pusan National University , Busan 46241 , Republic of Korea
| | | |
Collapse
|
11
|
Carlier T, Ferri A, Saitzek S, Huvé M, Bayart A, Da Costa A, Desfeux R, Tebano A. Microstructure and local electrical behavior in [(Nd 2Ti 2O 7) 4/(SrTiO 3) n ] 10 ( n = 4-8) superlattices. RSC Adv 2018; 8:11262-11271. [PMID: 35542786 PMCID: PMC9078952 DOI: 10.1039/c8ra00824h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 11/21/2022] Open
Abstract
Artificial [(Nd2Ti2O7)4/(SrTiO3) n ]10 superlattices (n = 4 and 8) were successfully epitaxially grown on SrTiO3 substrates by pulsed laser deposition using the in situ high energy electron diffraction reflection diagnostic. The crystallographic relationships between Nd2Ti2O7 (NTO) and SrTiO3 (STO) (layers and substrate) were: [100]NTO//[001]STO, [010]NTO//[1̄10]STO, and (00l)NTO//(110)STO. Nanoscale current variation was detected on both superlattices, with the (NTO4/STO4)10 heterostructure showing a higher density. The (NTO4/STO4)10 sample did not show a piezoelectric response when measured by piezo-force microscopy (PFM), while ambiguous piezoactivity was observed on the (NTO4/STO8)10 superlattice. Scanning transmission electron microscopy energy dispersive spectroscopy analysis showed the diffusion of Nd3+ cations on Sr2+ sites in SrTiO3 structure into the multilayers, which was more pronounced when the value of n was lower. These particular nanoscale electrical behaviors, evidenced by electrical conducting channels and misleading PFM signals, were mainly attributed to the presence of oxygen vacancies in the SrTiO3 layers at higher concentrations near the interface and to the mixed valence state of the titanium (Ti3+/Ti4+). This work showed the strong influence of interface structure on nanoscale electrical phenomena in complex oxide superlattices.
Collapse
Affiliation(s)
- Thomas Carlier
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Anthony Ferri
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Sébastien Saitzek
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Marielle Huvé
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Alexandre Bayart
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Antonio Da Costa
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Rachel Desfeux
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin Rue Jean Souvraz SP18 F-62300 Lens France +33 321791771
| | - Antonello Tebano
- CNR-SPIN, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 00133 Rome Italy
| |
Collapse
|
12
|
Somnath S, Law KJH, Morozovska AN, Maksymovych P, Kim Y, Lu X, Alexe M, Archibald R, Kalinin SV, Jesse S, Vasudevan RK. Ultrafast current imaging by Bayesian inversion. Nat Commun 2018; 9:513. [PMID: 29410417 PMCID: PMC5802759 DOI: 10.1038/s41467-017-02455-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
Spectroscopic measurements of current–voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode I–V method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring I–V curves in ferroelectric nanocapacitors, yielding >100,000 I–V curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I–V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy. Scanning probe microscopy is widely used to characterize material properties with atomic resolution, yet electronic property mapping is normally constrained by slow data acquisition. Somnath et al. show a current–voltage method, which enables fast electronic spectroscopy mapping over micrometer-sized areas.
Collapse
Affiliation(s)
- S Somnath
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - K J H Law
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - A N Morozovska
- Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, Kyiv, 03028, Ukraine
| | - P Maksymovych
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Y Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - X Lu
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - M Alexe
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - R Archibald
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - S V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - S Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - R K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. .,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
13
|
Alikin DO, Romanyuk KN, Slautin BN, Rosato D, Shur VY, Kholkin AL. Quantitative characterization of the ionic mobility and concentration in Li-battery cathodes via low frequency electrochemical strain microscopy. NANOSCALE 2018; 10:2503-2511. [PMID: 29344595 DOI: 10.1039/c7nr08001h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrochemical strain microscopy (ESM) can provide useful information on the ionic processes in materials at the local scale. This is especially important for ever growing applications of Li-batteries whose performance is limited by the intrinsic and extrinsic degradation. However, the ESM method used so far has been only qualitative due to multiple contributions to the apparent ESM signal. In this work, we provide a viable approach for the local probing of ionic concentration and diffusion coefficients based on the frequency dependence of the ESM signal. A theoretical basis considering the dynamic behavior of ion migration and relaxation and change of ion concentration profiles under the action of the electric field of the ESM tip is developed. We argue that several parasitic contributions to the ESM signal discussed in the literature can be thus eliminated. The analysis of ESM images using the proposed approach allows a quantitative mapping of the ionic diffusion coefficients and concentration in ionic conductors. The results are validated on Li-battery cathodes (LiMn2O4) extracted from commercial Li-batteries and can provide novel possibilities for their development and further insight into the mechanisms of their degradation.
Collapse
Affiliation(s)
- D O Alikin
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Kurnia F, Cheung J, Cheng X, Sullaphen J, Kalinin SV, Valanoor N, Vasudevan RK. Nanoscale Probing of Elastic-Electronic Response to Vacancy Motion in NiO Nanocrystals. ACS NANO 2017; 11:8387-8394. [PMID: 28742320 DOI: 10.1021/acsnano.7b03826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Measuring the diffusion of ions and vacancies at nanometer length scales is crucial to understanding fundamental mechanisms driving technologies as diverse as batteries, fuel cells, and memristors; yet such measurements remain extremely challenging. Here, we employ a multimodal scanning probe microscopy (SPM) technique to explore the interplay between electronic, elastic, and ionic processes via first-order reversal curve I-V measurements in conjunction with electrochemical strain microscopy (ESM). The technique is employed to investigate the diffusion of oxygen vacancies in model epitaxial nickel oxide (NiO) nanocrystals with resistive switching characteristics. Results indicate that opening of the ESM hysteresis loop is strongly correlated with changes to the resonant frequency, hinting that elastic changes stem from the motion of oxygen (or cation) vacancies in the probed volume of the SPM tip. These changes are further correlated to the current measured on each nanostructure, which shows a hysteresis loop opening at larger (∼2.5 V) voltage windows, suggesting the threshold field for vacancy migration. This study highlights the utility of local multimodal SPM in determining functional and chemical changes in nanoscale volumes in nanostructured NiO, with potential use to explore a wide variety of materials including phase-change memories and memristive devices in combination with site-correlated chemical imaging tools.
Collapse
Affiliation(s)
- Fran Kurnia
- School of Materials Science and Engineering, University of New South Wales , Sydney 2052, Australia
| | - Jeffrey Cheung
- School of Materials Science and Engineering, University of New South Wales , Sydney 2052, Australia
| | - Xuan Cheng
- School of Materials Science and Engineering, University of New South Wales , Sydney 2052, Australia
| | - Jivika Sullaphen
- School of Materials Science and Engineering, University of New South Wales , Sydney 2052, Australia
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Nagarajan Valanoor
- School of Materials Science and Engineering, University of New South Wales , Sydney 2052, Australia
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Du KZ, Tu Q, Zhang X, Han Q, Liu J, Zauscher S, Mitzi DB. Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. Inorg Chem 2017; 56:9291-9302. [PMID: 28749133 DOI: 10.1021/acs.inorgchem.7b01094] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals, based on acene alkylamine cations (i.e., phenylmethylammonium (PMA), 2-phenylethylammonium (PEA), 1-(2-naphthyl)methanammonium (NMA), and 2-(2-naphthyl)ethanammonium (NEA)) and lead(II) halide (i.e., PbX42-, X = Cl, Br, and I) frameworks, and their corresponding thin films were fabricated and examined for structure-property relationship. Several new or redetermined crystal structures are reported, including those for (NEA)2PbI4, (NEA)2PbBr4, (NMA)2PbBr4, (PMA)2PbBr4, and (PEA)2PbI4. Non-centrosymmetric structures from among these 2D HOIPs were confirmed by piezoresponse force microscopy-especially noteworthy is the structure of (PMA)2PbBr4, which was previously reported as centrosymmetric. Examination of the impact of organic cation and inorganic layer choice on the exciton absorption/emission properties, among the set of compounds considered, reveals that perovskite layer distortion (i.e., Pb-I-Pb bond angle between adjacent PbI6 octahedra) has a more global effect on the exciton properties than octahedral distortion (i.e., variation of I-Pb-I bond angles and discrepancy among Pb-I bond lengths within each PbI6 octahedron). In addition to the characteristic sharp exciton emission for each perovskite, (PMA)2PbCl4, (PEA)2PbCl4, (NMA)2PbCl4, and (PMA)2PbBr4 exhibit separate, broad "white" emission in the long wavelength range. Piezoelectric compounds identified from these 2D HOIPs may be considered for future piezoresponse-type energy or electronic applications.
Collapse
Affiliation(s)
| | - Qing Tu
- NSF Research Triangle Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| | | | | | | | - Stefan Zauscher
- NSF Research Triangle Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| | | |
Collapse
|
16
|
Jiang P, Yan F, Nasr Esfahani E, Xie S, Zou D, Liu X, Zheng H, Li J. Electromechanical Coupling of Murine Lung Tissues Probed by Piezoresponse Force Microscopy. ACS Biomater Sci Eng 2017; 3:1827-1835. [DOI: 10.1021/acsbiomaterials.7b00107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Jiang
- Key
Laboratory of Low Dimensional Materials and Application Technology
of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Yuhu District, Xiangtan, Hunan 411105, China
- Shenzhen
Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, University Town of Shenzhen, Shenzhen, Guangdong 518055, China
- Department
of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Fei Yan
- Shenzhen
Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, University Town of Shenzhen, Shenzhen, Guangdong 518055, China
| | - Ehsan Nasr Esfahani
- Department
of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shuhong Xie
- Key
Laboratory of Low Dimensional Materials and Application Technology
of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Yuhu District, Xiangtan, Hunan 411105, China
| | - Daifeng Zou
- Shenzhen
Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, University Town of Shenzhen, Shenzhen, Guangdong 518055, China
| | - Xiaoyan Liu
- College of Metallurgy and Materials Engineering, Chongqing Key Laboratory of Nano/Micro Composites and Devices, Chongqing University of Science & Technology, Shapingba District, Chongqing 401331, China
| | - Hairong Zheng
- Shenzhen
Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, University Town of Shenzhen, Shenzhen, Guangdong 518055, China
| | - Jiangyu Li
- Shenzhen
Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, University Town of Shenzhen, Shenzhen, Guangdong 518055, China
- Department
of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Abstract
Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove the impact of the electrostatic effect on AFM-based measurements. In this study, we examine the impact of the electrostatic effect on the electromechanical (EM) response in piezoresponse force microscopy as a model AFM mode. We quantitatively studied the effects of increasing the external electric field and reducing the spring constant of a cantilever. Further, we explored ways to minimize the electrostatic effect. The results provide broad guidelines for quantitatively analyzing the EM response as well as, eventually, for obtaining the electrostatic-free EM response. The conclusions can be applied to other AFM-based measurements that are subject to a strong electrostatic effect between the AFM tip/cantilever and sample surface, regardless of contact and non-contact modes.
Collapse
|
18
|
Balke N, Jesse S, Carmichael B, Okatan MB, Kravchenko II, Kalinin SV, Tselev A. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. NANOTECHNOLOGY 2017; 28:065704. [PMID: 28050969 DOI: 10.1088/1361-6528/aa5370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.
Collapse
Affiliation(s)
- Nina Balke
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | | | | | | | | |
Collapse
|