1
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Wang J, Yang K, Yang X, Jin T, Tian Y, Dai C, Xu F. HHLA2 promotes hepatoma cell proliferation, migration, and invasion via SPP1/PI3K/AKT signaling pathway. Mol Carcinog 2024; 63:1275-1287. [PMID: 38578157 DOI: 10.1002/mc.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most malignant tumors characterized by poor prognosis and high mortality rates. Emerging evidence underscores the crucial role of the B7 protein family in various cancers, including HCC. However, the involvement of the human endogenous retrovirus H long-terminal repeat-associated protein 2 (HHLA2, or B7-H5) in HCC remains unclear. Immunohistochemistry was employed to assess the differential expression of HHLA2 between HCC and normal liver tissues. A battery of assays, including CCK8, EdU, tablet clone-forming, Transwell, and wound healing assays, were conducted to elucidate the function and potential mechanisms of HHLA2 in the malignant biological behaviors of HCC. Additionally, a xenograft mouse model was established to evaluate the tumorigenicity of hepatoma cell lines exhibiting different HHLA2 expression levels in vivo. Western blot analysis was used to analyze HHLA2, secretory phosphoprotein 1 (SPP1), and PI3K/AKT/mTOR levels. HHLA2 exhibited elevated expression in HCC tissues, correlating with poor tumor differentiation and shortened overall survival in HCC patients. In vitro experiments demonstrated that HHLA2 overexpression (OE) promoted the proliferation, migration, and invasion of hepatoma cells, while in vivo experiments revealed that HHLA2 OE enhanced HCC tumor growth. Conversely, inhibition of HHLA2 expression yielded the opposite effect. Downregulation of SPP1 inhibited the proliferation, migration, and invasion induced by HHLA2 OE, and this effect was linked to the PI3K/AKT/mTOR signaling pathway. Our findings indicate that HHLA2 promotes the proliferation, migration, and invasion of hepatoma cells via the SPP1/PI3K/AKT signaling pathway, establishing it as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Yang
- Department of Tradition Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Wen J, Wan L, Chen W, Dong X. The prognostic value of ubiquitin/ubiquitin-like-related genes along with immune cell infiltration and clinicopathological features in osteosarcoma. J Orthop Surg Res 2024; 19:356. [PMID: 38879525 PMCID: PMC11179372 DOI: 10.1186/s13018-024-04781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Ubiquitin/ubiquitin-like (Ub/UBL)-related genes have been reported to be associated with the survival of osteosarcoma patients but have not yet been systematically explored. METHODS The prognostic value of Ub/UBL-related genes, immune cell infiltration and clinicopathological features of patients were explored by Cox and LASSO regression analyses. A prognostic model was established and then validated in the GSE21257 dataset. The differential expression of hub genes in osteosarcoma was confirmed by qRT-PCR, western blotting and immunohistochemistry. RESULTS Tripartite Motif Containing 8 (TRIM8) and Ubiquitin Like With PHD And Ring Finger Domains 2 (UHRF2) were screened as genes with prognostic value in osteosarcoma. Kaplan-Meier analysis and scatter plots indicated that patients in the high gene significance score group tended to have a worse prognosis. The concordance index, calibration analysis and receiver operating characteristic analysis suggested that the model had good prediction accuracy and high sensitivity and specificity. Decision curve analysis revealed that patients could obtain greater net benefit from this model. Functional analyses of the differentially expressed genes indicated that they were involved in important functions and pathways. TRIM8 and UHRF2 were confirmed to be highly expressed in osteosarcoma cell lines and tissues. CONCLUSIONS TRIM8 and UHRF2 are potential prognostic genes in osteosarcoma, and these results provide insights into the roles of these genes and their implications for patient outcomes.
Collapse
Affiliation(s)
- Jian Wen
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi, China
- JXHC Key Laboratory of Digital Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
- Department of Orthopedics, Pingxiang People's Hospital, The Sixth Clinical College of Gannan Medical University, Pingxiang, 337000, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, 410008, Hunan, China
| | - Wenming Chen
- Department of Orthopedics, Pingxiang People's Hospital, The Sixth Clinical College of Gannan Medical University, Pingxiang, 337000, China.
| | - Xieping Dong
- JXHC Key Laboratory of Digital Orthopaedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Zhou S, Wang Z, Zhao D, Fu Y, Zhang S, Wang Z, Zou X. HHLA2 deficiency inhibits pancreatic cancer progression and THP-1 macrophage M2 polarization via EGFR/MAPK/ERK and mTOR/AKT pathway. World J Surg Oncol 2024; 22:133. [PMID: 38762741 PMCID: PMC11102221 DOI: 10.1186/s12957-024-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Human endogenous retrovirus subfamily H long terminal repeat associating protein 2, (HHLA2), a member of B7 family, exhibits heightened expression in various malignant tumors. However, the exact functions of HHLA2 in pancreatic cancer (PC) remain incompletely elucidated. METHODS We initially conducted an analysis of the B7 family members' expression pattern in pancreatic tumor samples and adjacent normal tissues using The Cancer Genome Atlas (TCGA) database. Subsequently, immunohistochemistry, RT-qPCR and western blot methods were used to assess HHLA2 expression levels in PC tissues and cell lines. Furthermore, after silencing HHLA2 in PC cell lines, cell migration and proliferation of PC cells were detected by wound healing and CCK-8 assays, and cell invasion of PC cells was detected by transwell assays. We also investigated the regulation of epithelial-mesenchymal transition (EMT) markers and levels of EGFR, MEK, ERK1/2, mTOR and AKT via western blot analysis. Finally, the correlation between HHLA2 expression and immune infiltration was further explored. RESULTS Silencing of HHLA2 resulted in the inhibition of PC cell proliferation, migration and invasion, potentially through the suppression of the EGFR/MAPK/ERK and mTOR/AKT signaling pathway. Additionally, silencing HHLA2 led to the inhibition of M2-type polarization of tumor associated macrophages (TAMs). CONCLUSION The knockdown of HHLA2 was observed to inhibit the migration and invasion of PC cells through the regulation of the EMT process and EGFR/MAPK/ERK and mTOR/AKT pathway. Furthermore, silencing HHLA2 was found to modulate M2 polarization of TAMs. These finding suggest that HHLA2 could be a promising therapeutic target for Pancreatic cancer.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, No.321, Zhongshan Road, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dian Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, No.321, Zhongshan Road, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No.99, Huaihai West Road, Xuzhou, 221000, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, No.321, Zhongshan Road, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
5
|
Kula A, Dawidowicz M, Mielcarska S, Świętochowska E, Waniczek D. Prognostic Value of HHLA2 in Patients with Solid Tumors: A Meta-Analysis. Int J Mol Sci 2024; 25:4760. [PMID: 38731979 PMCID: PMC11083681 DOI: 10.3390/ijms25094760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
HHLA2 is a checkpoint from the B7 family that can play a co-stimulatory or co-inhibitory role in cancer, depending on the binding receptor. The aim of this meta-analysis was to assess the relationship between HHLA2 levels and its impact on the prognosis of patients with solid cancers. The study used data from PubMed, Embase, Web of Science (WOS), Cochrane and SCOPUS databases. The R studio software was used for the data analysis. The study assessed overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS) by pooling appropriate hazard ratios (HR). Eighteen studies (2880 patients' data) were included. High expression of HHLA2 was associated with worse OS (HR = 1.58, 95% CI: 1.23-2.03), shorter RFS (HR = 1.95, 95% CI: 1.38-2.77) and worse DFS (HR = 1.45, 95% CI: 1.01-2.09) in patients with solid cancers. The current study suggests that high expression of HHLA2 is associated with poorer prognosis in patients with solid cancers.
Collapse
Affiliation(s)
- Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| |
Collapse
|
6
|
Feng D, Tuo Z, Wang J, Ye L, Li D, Wu R, Wei W, Yang Y, Zhang C. Establishment of novel ferroptosis-related prognostic subtypes correlating with immune dysfunction in prostate cancer patients. Heliyon 2024; 10:e23495. [PMID: 38187257 PMCID: PMC10770465 DOI: 10.1016/j.heliyon.2023.e23495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background We aimed to identify two new prognostic subtypes and create a predictive index for prostate cancer (PCa) patients based on ferroptosis database. Methods The nonnegative matrix factorization approach was used to identify molecular subtypes. We investigate the differences between cluster 1 and cluster 2 in terms of clinical features, functional pathways, tumour stemness, tumour heterogeneity, gene mutation and tumour immune microenvironment score after identifying the two molecular subtypes. Colony formation assay and flow cytometry assay were performed. Results The stratification of two clusters was closely connected to BCR-free survival using the nonnegative matrix factorization method, which was validated in the other three datasets. Furthermore, multivariate Cox regression analysis revealed that this classification was an independent risk factor for patients with PCa. Ribosome, aminoacyl tRNA production, oxidative phosphorylation, and Parkinson's disease-related pathways were shown to be highly enriched in cluster 1. In comparison to cluster 2, patients in cluster 1 exhibited significantly reduced CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells and tumor immune microenvironment scores. Only HHLA2 was more abundant in cluster 1. Moreover, we found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of C4-2B and DU145 cell lines. Conclusions We discovered two new prognostic subtypes associated with immunological dysfunction in PCa patients based on ferroptosis-related genes and found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of PCa cell lines.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
7
|
Yu B, Geng C, Wu Z, Zhang Z, Zhang A, Yang Z, Huang J, Xiong Y, Yang H, Chen Z. A CIC-related-epigenetic factors-based model associated with prediction, the tumor microenvironment and drug sensitivity in osteosarcoma. Sci Rep 2024; 14:1308. [PMID: 38225273 PMCID: PMC10789798 DOI: 10.1038/s41598-023-49770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Osteosarcoma is generally considered a cold tumor and is characterized by epigenetic alterations. Although tumor cells are surrounded by many immune cells such as macrophages, T cells may be suppressed, be inactivated, or not be presented due to various mechanisms, which usually results in poor prognosis and insensitivity to immunotherapy. Immunotherapy is considered a promising anti-cancer therapy in osteosarcoma but requires more research, but osteosarcoma does not currently respond well to this therapy. The cancer immunity cycle (CIC) is essential for anti-tumor immunity, and is epigenetically regulated. Therefore, it is possible to modulate the immune microenvironment of osteosarcoma by targeting epigenetic factors. In this study, we explored the correlation between epigenetic modulation and CIC in osteosarcoma through bioinformatic methods. Based on the RNA data from TARGET and GSE21257 cohorts, we identified epigenetic related subtypes by NMF clustering and constructed a clinical prognostic model by the LASSO algorithm. ESTIMATE, Cibersort, and xCell algorithms were applied to analyze the tumor microenvironment. Based on eight epigenetic biomarkers (SFMBT2, SP140, CBX5, HMGN2, SMARCA4, PSIP1, ACTR6, and CHD2), two subtypes were identified, and they are mainly distinguished by immune response and cell cycle regulation. After excluding ACTR6 by LASSO regression, the prognostic model was established and it exhibited good predictive efficacy. The risk score showed a strong correlation with the tumor microenvironment, drug sensitivity and many immune checkpoints. In summary, our study sheds a new light on the CIC-related epigenetic modulation mechanism of osteosarcoma and helps search for potential drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chengkui Geng
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongxiong Wu
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongzi Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Aili Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ze Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiazheng Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ying Xiong
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Huiqin Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Zhuoyuan Chen
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
8
|
Patwekar M, Sehar N, Patwekar F, Medikeri A, Ali S, Aldossri RM, Rehman MU. Novel immune checkpoint targets: A promising therapy for cancer treatments. Int Immunopharmacol 2024; 126:111186. [PMID: 37979454 DOI: 10.1016/j.intimp.2023.111186] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
The immune system frequently comprises immunological checkpoints. They serve as a barrier to keep the immune system from overreacting and damaging cells that are robust. Immune checkpoint inhibitors (ICIs) are utilized in immunotherapy to prevent the synergy of partner proteins of checkpoint proteins with auxiliary proteins. Moreover, the T cells may target malignant cells since the "off" signal cannot be conveyed. ICIs, which are mostly composed of monoclonal antibodies (mAbs) against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and anti- programmed death-1/programmed ligand 1 (anti-PD-1/PD-L1), might transform the context of cancer therapy. Further, more patients continued to exhibit adaptive resistance, even though several ICIs demonstrated convincing therapeutic benefits in selective tumor types. Immune checkpoint therapy's overall effectiveness is still lacking at this time. A popular area of study involves investigating additional immune checkpoint molecules. Recent research has found a number of fresh immune checkpoint targets, including NKG2A ligands, TIGIT, B7-H6 ligands, Galectin 3, TIM3, and so on. These targets have been focus of the study, and recent investigational approaches have shown encouraging outcomes. In this review article, we covered the development and present level understanding of these recently identified immune checkpoint molecules, its effectiveness and limitations.
Collapse
Affiliation(s)
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, 110062, India
| | - Faheem Patwekar
- Luqman College of Pharmacy, Gulbarga, 585102, Karnataka, India
| | | | - Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Rana M Aldossri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Luo M, Su Z, Gao H, Tan J, Liao R, Yang J, Lin L. Cirsiliol induces autophagy and mitochondrial apoptosis through the AKT/FOXO1 axis and influences methotrexate resistance in osteosarcoma. J Transl Med 2023; 21:907. [PMID: 38087310 PMCID: PMC10714637 DOI: 10.1186/s12967-023-04682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, with poor outcomes for patients with metastatic disease or chemotherapy resistance. Cirsiliol is a recently found flavonoid with anti-tumor effects in various tumors. However, the effects of cirsiliol in the regulation of aggressive behaviors of OS remain unknown. METHODS The effect of cirsiliol on the proliferation of OS cells was detected using a cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining, while cell apoptosis was detected using flow cytometry. Immunofluorescence was applied to visualize the expression level of the mitochondria, lysosomes and microtubule-associated protein light chain 3 (LC3). A computational molecular docking technique was used to predict the interaction between cirsiliol and the AKT protein. The impact of cirsiliol on resistance was investigated by comparing it between a methotrexate (MTX)-sensitive OS cell line, U2OS, and a MTX-resistant OS cell line, U2OS/MTX. Finally, in situ xenogeneic tumor models were used to validate the anti-tumor effect of cirsiliol in OS. RESULTS Cirsiliol inhibited cell proliferation and induced apoptosis in both U2OS and U2OS/MTX300 OS cells. In addition, treatment with cirsiliol resulted in G2 phase arrest in U2OS/MTX300 and U2OS cells. Cell fluorescence probe staining results showed impaired mitochondria and increased autophagy in OS cells after treatment with cirsiliol. Mechanistically, it was found that cirsiliol targeted AKT by reducing the phosphorylation of AKT, which further activated the transcriptional activity of forkhead Box O transcription factor 1 (FOXO1), ultimately affecting the function of OS cells. Moreover, in situ tumorigenesis experiments showed that cirsiliol inhibited the tumorigenesis and progression of OS in vivo. CONCLUSIONS Cirsiliol inhibits OS cell growth and induces cell apoptosis by reducing AKT phosphorylation and further promotes FOXO1 expression. These phenomena indicate that cirsiliol is a promising treatment option for OS.
Collapse
Affiliation(s)
- Mengliang Luo
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zexin Su
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haotian Gao
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianye Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rongdong Liao
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jiancheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
10
|
Gawesh ZM, Ibrahim EM, ElKalla HMHR, Awad AAH, Mohamed MA. Evaluation of HHLA2 and CD8 Immunohistochemical Expression in Colorectal Carcinoma and Their Prognostic Significance. Asian Pac J Cancer Prev 2023; 24:4309-4319. [PMID: 38156868 PMCID: PMC10909113 DOI: 10.31557/apjcp.2023.24.12.4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Colorectal carcinoma (CRC) is the third most common malignancy worldwide. Human endogenous retrovirus H long terminal repeat-associating protein 2 (HHLA2) is a novel immune checkpoint molecule. The association between HHLA2 expression and clinicopathological features and its prognostic significance in CRC patients are still controversial. The aim of this study is to evaluate the prognostic value of immunohistochemical (IHC) expression of HHLA2 and CD8 in CRC. MATERIAL AND METHODS This retrospective study included 134 cases diagnosed with primary CRC at the Gastrointestinal Surgery Center (GISC) department, Mansoura Faculty of Medicine, during the period from December 2014 to December 2018. Clinicopathological and survival data were collected. IHC for HHLA2 and CD8 was performed, and they were correlated with clinicopathological parameters and patient prognosis. RESULTS Among 134 CRC cases, high HHLA2 expression was detected in 73 (54.5%). High HHLA2 expression was significantly related to the depth of invasion (P = 0.005*), lymph node metastasis (P = 0.01*), tumor stage )P = 0.002*), and distant recurrence )P = 0.012*). Multivariate analysis spotted HHLA2 high expression as an independent prognostic predictor for OS in CRC (P = 0.03*) and DFS (P = 0.008*). CD8 shows a significant correlation with tumor infiltrating lymphocytes (TILs) (P ≤ 0.001*), absence of metastasis ((P = 0.029*), absence of tumor deposits (P=0.014*). However, CD8 shows no significant association with survival or HHLA2. CONCLUSION HHLA2 is an independent prognostic factor for the overall survival and disease free survival of CRC patients and can predict poor prognosis in CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Mie Ali Mohamed
- Department of Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt.
| |
Collapse
|
11
|
Gong L, Sun X, Jia M. New gene signature from the dominant infiltration immune cell type in osteosarcoma predicts overall survival. Sci Rep 2023; 13:18271. [PMID: 37880378 PMCID: PMC10600156 DOI: 10.1038/s41598-023-45566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
The immune microenvironment of osteosarcoma (OS) has been reported to play an important role in disease progression and prognosis. However, owing to tumor heterogeneity, it is not ideal to predict OS prognosis by examining only infiltrating immune cells. This work aimed to build a prognostic gene signature based on similarities in the immune microenvironments of OS patients. Public datasets were used to examine the correlated genes, and the most consistent dominant infiltrating immune cell type was identified. The LASSO Cox regression model was used to establish a multiple-gene risk prediction signature. A nine-gene prognostic signature was generated from the correlated genes for M0 macrophages and then proven to be effective and reliable in validation cohorts. Signature comparison indicated the priority of the signature. Multivariate Cox regression models indicated that the signature risk score is an independent prognostic factor for OS patients regardless of the Huvos grade in all datasets. In addition, the results of the association between the signature risk score and chemotherapy sensitivity also showed that there was no significant difference in the sensitivity of any drugs between the low- and high-risk groups. A GSEA of GO and KEGG pathways found that antigen processing- and presentation-related biological functions and olfactory transduction receptor signaling pathways have important roles in signature functioning. Our findings showed that M0 macrophages were the dominant infiltrating immune cell type in OS and that the new gene signature is a promising prognostic model for OS patients.
Collapse
Affiliation(s)
- Liping Gong
- Department of Academic Research, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xifeng Sun
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
12
|
Bolandi N, Khadem Ansari MH, Rasmi Y, Baradaran B. Cooperative Treatment of Gastric Cancer Using B7-H7 siRNA and Docetaxel; How Could They Modify Their Effectiveness? Adv Pharm Bull 2023; 13:573-582. [PMID: 37646055 PMCID: PMC10460818 DOI: 10.34172/apb.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Despite the high prevalence of gastric cancer (GC), drug resistance is a major problem for effective chemotherapy. B7-H7 is a novel member of the B7 superfamily and is expressed in most common cancers. However, the role of B7-H7 on the aggressiveness of GC and chemosensitivity has remained unknown. Therefore, this study was designed to assess the effect of B7-H7 suppression using small interference RNA (siRNA) in combination with docetaxel on GC cells. Methods MTT test was applied to determine the IC50 of docetaxel and the combined effect of B7-H7 siRNA and docetaxel on the viability of the MKN-45 cells. To determine B7-H7, BCL-2, BAX, and caspase-3-8-9 genes expression, qRT-PCR was performed. Furthermore, flow cytometry was applied to evaluate apoptosis and the cell cycle status. Finally, to evaluate the effect of this combination therapy on migratory capacity and colony-forming ability, wound healing assay and colony formation test were employed, respectively. Results B7-H7 suppression increased the chemo-sensitivity of MKN-45 cells to docetaxel. The expression of B7-H7 mRNA was reduced after using B7-H7 siRNA and docetaxel in MKN-45 GC cells. Also, B7-H7 suppression alongside docetaxel reduced cell migration and colony formation rate, arrested the cell cycle at the G2-M phase, and induced apoptosis by modulating the expression of apoptotic target genes. Conclusion B7-H7 plays a significant role in the chemo-sensitivity and pathogenesis of GC. Therefore, B7-H7 suppression, in combination with docetaxel, may be a promising therapeutic approach in treating GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol 2023; 20:694-713. [PMID: 37069229 PMCID: PMC10310771 DOI: 10.1038/s41423-023-01019-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The B7/CD28 families of immune checkpoints play vital roles in negatively or positively regulating immune cells in homeostasis and various diseases. Recent basic and clinical studies have revealed novel biology of the B7/CD28 families and new therapeutics for cancer therapy. In this review, we discuss the newly discovered KIR3DL3/TMIGD2/HHLA2 pathways, PD-1/PD-L1 and B7-H3 as metabolic regulators, the glycobiology of PD-1/PD-L1, B7x (B7-H4) and B7-H3, and the recently characterized PD-L1/B7-1 cis-interaction. We also cover the tumor-intrinsic and -extrinsic resistance mechanisms to current anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapies in clinical settings. Finally, we review new immunotherapies targeting B7-H3, B7x, PD-1/PD-L1, and CTLA-4 in current clinical trials.
Collapse
Affiliation(s)
- Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Anne T Madsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Ankit Tanwar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Devin T Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Urology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
14
|
Su Q, Du J, Xiong X, Xie X, Wang L. B7-H7: A potential target for cancer immunotherapy. Int Immunopharmacol 2023; 121:110403. [PMID: 37290327 DOI: 10.1016/j.intimp.2023.110403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Cancer immunotherapy enhances the body's immunity against tumors by mitigating immune escape. Compared with traditional chemotherapy, immunotherapy has the advantages of fewer drugs, a wider range of action and fewer side effects. B7-H7 (also known as HHLA2, B7y) is a member of the B7 family of costimulatory molecules that was discovered more than 20 years ago. B7-H7 is mostly expressed in organs such as the breast, intestine, gallbladder and placenta and is detected predominantly in monocytes/macrophages in the immune system. Its expression is upregulated after stimulation by inflammatory factors such as lipopolysaccharide and interferon-γ. B7-H7/transmembrane and immunoglobulin domain containing 2 (TMIGD2) and killer cell immunoglobulin-like receptor, three Ig domains and long cytoplasmic tail 3 (KIR3DL3)-B7-H7 are the two currently confirmed signaling pathways for B7-H7. An increasing number of studies have demonstrated that B7-H7 is widely present in a variety of human tumor tissues, especially in programmed cell death-1 (PD-L1)-negative human tumors. B7-H7 promotes tumor progression, disrupts T-cell-mediated antitumor immunity, and inhibits immune surveillance. B7-H7 also triggers tumor immune escape and is associated with clinical stage, depth of tumor infiltration, metastasis, prognosis, and survival related to different tumor types. Multiple studies have shown that B7-H7 is a promising immunotherapeutic target. Herein, review the current literature on the expression, regulation, receptors and function of B7-H7 and its regulation/function in tumors.
Collapse
Affiliation(s)
- Quanping Su
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jingyi Du
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; School of Cinical Medicine, Shandong First Medical Universiy & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Xingfang Xiong
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, China; Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong Province, China; Linyi Key Laboratory of Tumor Biology, Linyi, Shandong Province, China; Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Hematology, Linyi People's Hospital, Linyi, Shandong Province, China.
| |
Collapse
|
15
|
Fu Y, Zheng P, Zheng X, Chen L, Kong C, Liu W, Li S, Jiang J. Downregulation of HHLA2 inhibits ovarian cancer progression via the NF-κB signaling pathway and suppresses the expression of CA9. Cell Immunol 2023; 388-389:104730. [PMID: 37210768 DOI: 10.1016/j.cellimm.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
HHLA2 has been recently demonstrated to play multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human ovarian cancer (OC) remains largely unexplored. In the present study, we aimed to determine whether downregulation of HHLA2 inhibited malignant phenotypes of human OC cells and explore its specific mechanism. Our results revealed that downregulation of HHLA2 by transfection with a lentiviral vector significantly suppressed the viability, invasion, and migration of OC cells. Interaction study showed that downregulation of HHLA2 in OC cells reduced the expression of CA9 and increased the expressions of p-IKKβ and p-RelA. Conversely, the viability, invasion, and migration of HHLA2-depleted OC cells were increased when CA9 was upregulated. In vivo, we found that downregulation of HHLA2 significantly inhibited tumor growth, which was reversed by CA9 overexpression. In addition, downregulation of HHLA2 inhibited the OC progression via activating the NF-κB signaling pathway and decreasing the expression of CA9. Collectively, our data suggested a link between HHLA2 and NF-κB axis in the pathogenesis of OC, and these findings might provide valuable insights into the development of novel potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China; Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Caixia Kong
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Wenzhi Liu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuping Li
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China.
| |
Collapse
|
16
|
Li G, Lei J, Xu D, Yu W, Bai J, Wu G. Integrative analyses of ferroptosis and immune related biomarkers and the osteosarcoma associated mechanisms. Sci Rep 2023; 13:5770. [PMID: 37031292 PMCID: PMC10082853 DOI: 10.1038/s41598-023-33009-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor with high metastatic potential and relapse risk. To study the regulatory mechanism of the OS microenvironment, a complex regulatory network involving the ferroptosis- and immune response-related genes remains to be established. In the present study, we determined the effect of a comprehensive evaluation system established on the basis of ferroptosis- and immune-related genes on the immune status, related biomarkers, prognosis, and the potential regulatory networks underlying OS based on the TARGET and Gene Expression Omnibus databases that contain information on OS patients by bioinformatics analyses. We first characterized individual ferroptosis scores and immune scores through gene set variation analysis (GSVA) against TARGET-OS datasets. We then identified differentially expressed genes by score groups. Weighted gene co-expression network analysis was performed to identify the most relevant ferroptosis-related and immune-related gene modules, which facilitated the identification of 327 ferroptosis gene and 306 immune gene candidates. A 4-gene (WAS, CORT, WNT16, and GLB1L2) signature was constructed and valuation using the least absolute shrinkage and selection operator-Cox regression models to effectively predict OS prognosis. The prediction efficiency was further validated by GSE39055. We stratified patients based on the prognostic scoring systems. Eight hub genes (namely CD3D, CD8A, CD3E, IL2, CD2, MYH6, MYH7, and MYL2) were identified, and TF-miRNA target regulatory networks were constructed. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and GSVA were used to determine the signature's potential pathways and biological functions, which showed that the hub genes were enriched in ferroptosis-associated biological functions and immune-associated molecular mechanisms. Thereafter, we investigated the proportion and infiltration extent of 22 infiltrating immune cells by using CIBERSORT, which revealed significant subgroup differences in CD8 + T cells, M0 macrophages, and M2 macrophages. In conclusion, we determined a new ferroptosis-related and immune-related gene signature for predicting OS patients' prognosis and further explored the ferroptosis and immunity interactions during OS development, which provides insights into the exploration of molecular mechanisms and targeted therapies in patients with OS.
Collapse
Affiliation(s)
- Guibin Li
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Jie Lei
- Department of Hospital affairs, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Dexin Xu
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Wenchang Yu
- Department of Drug management, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Jinping Bai
- Chronic disease outpatient service, Jilin Province FAW General Hospital, Changchun, Jilin, China
| | - Ge Wu
- Department of Clinical Pharmacy, Jilin Province FAW General Hospital, Changchun, Jilin, China.
| |
Collapse
|
17
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
18
|
Ahangar NK, Khalaj-Kondori M, Alizadeh N, Mokhtarzadeh A, Baghbanzadeh A, Shadbad MA, Dolatkhah K, Baradaran B. Silencing tumor-intrinsic HHLA2 potentiates the anti-tumoral effect of paclitaxel on MG63 cells: Another side of immune checkpoint. Gene 2023; 855:147086. [PMID: 36535461 DOI: 10.1016/j.gene.2022.147086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Osteosarcoma is common type of bone cancer; however, the prognosis of patients with metastatic osteosarcoma is poor. As a new inhibitory immune checkpoint molecule, HHLA2 is upregulated in osteosarcoma. Herein, we studied the significance of tumor-intrinsic HHLA2 in MG-63 growth. Also, we examined the influence of combined therapy of HHLA2 knockdown with paclitaxel on the apoptosis, cell cycle, migration, and stemness of MG-63 cells. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed to study the half-maximal inhibitory concentration (IC50) of paclitaxel and the cytotoxicity of HHLA2-small interfering RNA (siRNA) on MG-63 cells. The apoptosis and cell cycle were analyzed using flow cytometry. The wound-healing and colony formation assays were conducted to investigate the effect of paclitaxel and HHLA2 knockdown on the migration and stemness of MG-63 cells, respectively. QRT-PCR was used to determine the Bax, caspase-3, and Bcl-2 mRNA expression levels. RESULTS HHLA2 silencing has enhanced the chemosensitivity of MG-63 cells to paclitaxel. Besides, HHLA2 knockdown has increased the paclitaxel-induced cytotoxic effect on MG-63 cells. In terms of stimulating apoptosis, decreasing clonogenicity, halting the cell cycle at the sub G1 phase, and inhibiting migration, tumor-intrinsic HHLA2 silencing has increased these anti-tumor effects of paclitaxel on MG-63 cells. Besides, HHLA2 knockdown has potentiated paclitaxel-mediated Bcl-2 downregulation and paclitaxel-mediated caspase-3 and Bax upregulation in MG-63 cells. CONCLUSION Tumor-intrinsic HHLA2 knockdown increases the anti-tumoral effect of paclitaxel on MG-63 cells and enhances the chemosensitivity of MG-63 cells to paclitaxel.
Collapse
Affiliation(s)
- Noora Karim Ahangar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran.
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
19
|
Ren X, Li Y, Nishimura C, Zang X. Crosstalk between the B7/CD28 and EGFR pathways: Mechanisms and therapeutic opportunities. Genes Dis 2022; 9:1181-1193. [PMID: 35873032 PMCID: PMC9293717 DOI: 10.1016/j.gendis.2021.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Somatic activating mutations in the epidermal growth factor receptor (EGFR) are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer (NSCLC), metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Molecular-targeted agents against EGFR signaling pathways have shown robust clinical efficacy, but patients inevitably experience acquired resistance. Although immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have exhibited durable anti-tumor responses in a subset of patients across multiple cancer types, their efficacy is limited in cancers harboring activating gene alterations of EGFR. Increasing studies have demonstrated that upregulation of new B7/CD28 family members such as B7-H3, B7x and HHLA2, is associated with EGFR signaling and may contribute to resistance to EGFR-targeted therapies by creating an immunosuppressive tumor microenvironment (TME). In this review, we discuss the regulatory effect of EGFR signaling on the PD-1/PD-L1 pathway and new B7/CD28 family member pathways. Understanding these interactions may inform combination therapeutic strategies and potentially overcome the current challenge of resistance to EGFR-targeted therapies. We also summarize clinical data of anti-PD-1/PD-L1 therapies in EGFR-mutated cancers, as well as ongoing clinical trials of combination of EGFR-targeted therapies and anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yixian Li
- Division of Pediatric Hematology/Oncology/Transplant and Cellular Therapy, Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Christopher Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA.,Department of Urology, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
20
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Huang FX, Wu JW, Cheng XQ, Wang JH, Wen XZ, Li JJ, Zhang Q, Jiang H, Ding QY, Zhu XF, Zhang XS, Ding Y, Li DD. HHLA2 predicts improved prognosis of anti-PD-1/PD-L1 immunotherapy in patients with melanoma. Front Immunol 2022; 13:902167. [PMID: 36003385 PMCID: PMC9395140 DOI: 10.3389/fimmu.2022.902167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background As a recognized highly immunogenic tumor, immune checkpoint blockades (ICB) have been widely used as a systemic treatment option for melanoma. However, only about half of treated patients could benefit from it in Caucasians, and only about 15% in Chinese melanoma patients. Robust predictive biomarkers are needed. HHLA2, a new-found member of B7 family, is generally expressed in kinds of tumors, such as melanoma. This study focuses on illustrating the prognostic value of HHLA2 in melanoma immunotherapy and its association with tumor-infiltrating lymphocytes. Methods HHLA2 expression in pan-cancer and the association with prognosis and immune microenvironment were identified by analyzing gene expression profiles from TCGA database with selected bioinformatics tools and methods. Tumor tissues from 81 cases with advanced and unresectable melanoma were collected for detecting HHLA2 and CD8 levels by immunohistochemistry. Results HHLA2 was found to be ubiquitously expressed in pan-cancer with high level and correlate with the prognosis of patients. Further comprehensive analysis from TCGA database demonstrated that the highly expressed HHLA2 was remarkably correlated with better prognosis, high infiltration status of various immune-active cells and immune activated pathways in skin cutaneous melanoma (SKCM). Moreover, immunohistochemistry (IHC) analyses of FFPE tissue from melanoma patients revealed that HHLA2 high expression was strongly related to improved response to ICB and indicated a longer progression-free survival (PFS) and overall survival (OS). Besides, HHLA2 expression was found to have a positive association with the density of CD8+ TILs. Conclusion Our findings revealed that high expression of HHLA2 has important values in predicting the response to ICB and indicating improved PFS and OS in patients with advanced and unresectable melanoma, suggesting that HHLA2 may serve as a costimulatory ligand in melanoma, which renders it as an ideal biomarker for immunotherapy.
Collapse
Affiliation(s)
- Fu-xue Huang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Jun-wan Wu
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia-qin Cheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiu-hong Wang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiotherapy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xi-zhi Wen
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-jing Li
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiong Zhang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hang Jiang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-yue Ding
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-shi Zhang
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiao-shi Zhang, ; Ya Ding, ; Dan-dan Li,
| | - Ya Ding
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiao-shi Zhang, ; Ya Ding, ; Dan-dan Li,
| | - Dan-dan Li
- Biotherapy Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xiao-shi Zhang, ; Ya Ding, ; Dan-dan Li,
| |
Collapse
|
22
|
Li Y, Lv C, Yu Y, Wu B, Zhang Y, Lang Q, Liang Z, Zhong C, Shi Y, Han S, Xu F, Tian Y. KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J Adv Res 2022; 47:137-150. [PMID: 35933091 PMCID: PMC10173190 DOI: 10.1016/j.jare.2022.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND T cells and natural killer (NK) cells are essential components of the immune system and are regulated by coinhibitory and costimulatory molecules in which the B7 family and CD28 family play significant roles. Previous immune checkpoint studies on B7/CD28 family members, such as PD-1, have led to remarkable success in cancer immunotherapy. However, there is still a need to find new immune checkpoint molecules. Recent studies have demonstrated that HHLA2 exerts inhibitory and stimulatory functions on the immune system by binding to different receptors on different sites. However, the pathways between HHLA2 and its two receptors on T cells and NK cells remain controversial. AIM OF REVIEW Here, we reviewed recent studies about HHLA2 ligand interactions with KIR3DL3 and TMIGD2. We focused on elucidating the pathways between KIR3DL3/TMIGD2 and HHLA2 as well as their function in tumour progression. We also addressed the relationship between HHLA2 expression and the clinical prognosis of cancer patients. KEY SCIENTIFIC CONCEPTS OF REVIEW KIR3DL3/TMIGD2-HHLA2 may represent novel pathways within the tumour microenvironment and serve as crucial immune checkpoints for developing novel therapeutic drugs against human cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yang Yu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Shi
- The First Clinical College of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
23
|
Human endogenous retrovirus-H long terminal repeat-associating 2: The next immune checkpoint for antitumour therapy. EBioMedicine 2022; 79:103987. [PMID: 35439678 PMCID: PMC9035628 DOI: 10.1016/j.ebiom.2022.103987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2) is a newly emerging immune checkpoint that belongs to B7 family. HHLA2 has a co-stimulatory receptor transmembrane and immunoglobulin domain containing 2 (TMIGD2) and a newly discovered co-inhibitory receptor killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3), which endows it with both immunostimulant and immunosuppression functions in cancer development. In this review, we summarize the HHLA2 expression profile in human cancers, its association with cancer prognosis and clinical features, and its dual roles in regulating cancer immune response through up-to-date literatures. Furthermore, we highlight that precision cancer immunotherapy through manipulating HHLA2-KIR3DL3/TMIGD2 interaction is a promising antitumour strategy.
Collapse
|
24
|
Ding L, Yu Q, Yang S, Yang WJ, Liu T, Xian JR, Tian TT, Li T, Chen W, Wang BL, Pan BS, Zhou J, Fan J, Yang XR, Guo W. Comprehensive Analysis of HHLA2 as a Prognostic Biomarker and Its Association With Immune Infiltrates in Hepatocellular Carcinoma. Front Immunol 2022; 13:831101. [PMID: 35371079 PMCID: PMC8968642 DOI: 10.3389/fimmu.2022.831101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inhibitory immune checkpoint proteins promote tumor immune escape and are associated with inferior patient outcome. However, the biological functions and regulatory roles of one of its members, HHLA2, in the tumor immune microenvironment have not been explored. Methods RandomForest analyses (371 cases), qRT-PCR (15 cases), and immunohistochemical staining (189 cases) were used to validate the prognostic value of HHLA2 in hepatocellular carcinoma (HCC) patients. Bioinformatic analyses were further performed to explore the biological functions and potential signaling pathways affected by HHLA2. Moreover, ESTIMATE, single sample gene set enrichment analysis, CIBERSORT, TIMER, and other deconvolution methods were used to analyze the composition and infiltration level of immune cells. Multiplex immunofluorescence assays were employed to validate the fractions of suppressive immune cells, and HHLA2-related molecular alterations were investigated. Finally, the clinical response to chemotherapy and immune checkpoint blockade was predicted by TIDE, Submap, and several other in silico analyses. Results RandomForest analysis revealed that HHLA2 was the most important inhibitory immune checkpoint associated with HCC patient prognosis (relative importance = 1). Our HCC cohorts further revealed that high HHLA2 expression was an independent prognostic biomarker of shorter overall survival (P<0.01) and time to recurrence (P<0.001) for HCC patients. Bioinformatics experiments revealed that HHLA2 may accelerate the cell cycle of cancer cells. Additionally, we found that high expression of HHLA2 was associated with immune infiltrates, including some immunosuppressive cells, cytokines, chemokines, and corresponding receptors, resulting in an immunosuppressive environment. Notably, HHLA2 expression was positively correlated with the infiltration of exhausted CD8+ T cells, which was validated by immunofluorescence. Genomic alteration analyses revealed that promoter hypermethylation of HHLA2 may be associated with its low expression. More importantly, patients with high HHLA2 expression may be more sensitive to chemotherapy and have better responses to immunotherapy. Conclusions High expression of HHLA2 is an independent prognostic biomarker for HCC patients. It can activate the cell cycle and foster an immunosuppressive tumor microenvironment by enriching exhausted CD8+ T cells. Promoter hypermethylation might lead to low expression of HHLA2 in HCC. Thus, targeting HHLA2 may be a practical therapeutic strategy for HCC patients in the future.
Collapse
Affiliation(s)
- Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuo Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Rong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong-Tong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Niu Y, Wang W, Jiang X, Huang Y, Yan S, Jiang Y. High expression of HHLA2 predicts poor prognosis in medullary thyroid carcinoma. Jpn J Clin Oncol 2022; 52:759-765. [PMID: 35348687 DOI: 10.1093/jjco/hyac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Human endogenous retrovirus-H long terminal repeat-associating protein 2 is a newly identified immune checkpoint molecule that was aberrantly expressed in many malignant tumors. However, its expression in medullary thyroid carcinoma is still unclear. This study aimed to investigate the human endogenous retrovirus-H long terminal repeat-associating protein 2 expression in medullary thyroid carcinoma tissues and to evaluate the relationships between its expression and clinicopathologic together with prognostic relevance.
Methods
Using 51 surgical specimens obtained from medullary thyroid carcinoma patients, the expression levels of the human endogenous retrovirus-H long terminal repeat-associating protein 2 protein in medullary thyroid carcinoma tumor tissues and adjacent noncancerous tissues were measured by immunohistochemistry, and its correlations with clinicopathologic and prognostic features were analyzed. Status of CD8+ tumor infiltrating lymphocytes was also investigated.
Results
The results showed that human endogenous retrovirus-H long terminal repeat-associating protein 2 was only detected in tumor tissues, and 31.4% of the medullary thyroid carcinoma patients had high expression of human endogenous retrovirus-H long terminal repeat-associating protein 2. High human endogenous retrovirus-H long terminal repeat-associating protein 2 expression was significantly associated with lymph node metastasis and advanced American Joint Committee on Cancer stages (P = 0.005). There existed an inverse trend between human endogenous retrovirus-H long terminal repeat-associating protein 2 expression and CD8+ tumor infiltrating lymphocytes infiltration in medullary thyroid carcinoma tumor samples (P = 0.042). The log-rank test showed a shorter disease-free survival in patients with high human endogenous retrovirus-H long terminal repeat-associating protein 2 expression (P = 0.002). The disease-free survival rates were also significantly low in cases of medullary thyroid carcinoma with lymph node metastasis, American Joint Committee on Cancer stages III–IV and multifocality. Multivariate Cox analysis confirmed that human endogenous retrovirus-H long terminal repeat-associating protein 2 acted as an independent predictive factor in the disease-free survival of medullary thyroid carcinoma patients (hazard ratio = 4.138, 95% confidence interval: 1.027–16.667, P = 0.046).
Conclusions
Taken together, human endogenous retrovirus-H long terminal repeat-associating protein 2 is highly expressed in medullary thyroid carcinoma patients and is a poor prognostic biomarker of disease-free survival of medullary thyroid carcinoma patients.
Collapse
Affiliation(s)
- Yongzhi Niu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wei Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaodan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shu Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
26
|
Long L, Zhang L, Yang Y, Zhou Y, Chen H. Different clinical significance of novel B7 family checkpoints VISTA and HHLA2 in human lung adenocarcinoma. Immunotherapy 2022; 14:419-431. [PMID: 35187955 DOI: 10.2217/imt-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: VISTA and HHLA2 are two recently identified members of the B7 homologue family of immune-regulatory molecules. But the expression patterns and clinical significance of VISTA and HHLA2 in lung adenocarcinoma (LUAD) remain largely unknown. Methods: Immunohistochemistry was performed to examine the expression of VISTA, HHLA2, PD-L1 and CD8+ tumor-infiltrating lymphocytes in 74 cases of LUAD. The expression of VISTA, HHLA2, PD-L1, CD68 and CD8 proteins was detected by multiplex immunofluorescence staining in the LUAD tissues. Results: High expression of VISTA and HHLA2 was observed in LUAD compared with noncancerous tissues. High VISTA expression in immune cells predicted a high mortality rate and worse survival. Conclusion: VISTA and HHLA2 are potential immunotherapeutic targets that possess different prognostic significance in LUAD.
Collapse
Affiliation(s)
- Long Long
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P.R. China.,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P.R. China
| | - Li Zhang
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Yuhan Yang
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| | - Yunfeng Zhou
- Department of Radiation & Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P.R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P.R. China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, P.R. China
| |
Collapse
|
27
|
CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy 2022; 24:567-576. [DOI: 10.1016/j.jcyt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
|
28
|
Liao X, Zhang D. HHLA2 Immune Checkpoint Is a Novel Prognostic Predictor in Hepatocellular Carcinoma. Am J Clin Pathol 2022; 158:62-69. [PMID: 35084443 DOI: 10.1093/ajcp/aqab221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Immunotherapy targeting PD-1/PD-L1 had low response rates and limited overall survival benefits in patients with hepatocellular carcinoma (HCC). We characterized the expression pattern and clinical significance of B7 family immune checkpoint proteins HHLA2, PD-L1, and B7-H4 in HCC. METHODS Immunohistochemistry for HHLA2, PD-L1, B7-H4, CD3, and CD8 was performed on tissue microarray slides from 103 surgically resected HCC specimens. RESULTS Positive HHLA2 was detected in 63 (61.2%) cases, with 50 cases showing low expression and 13 cases showing high expression. Positive PD-L1 (combined positive score [CPS] ≥1) was detected in 27 (26.2%) cases, with the majority showing low expression (CPS <10) (n = 25) and only 2 cases showing high expression (CPS ≥10). The coexpression of PD-L1 and HHLA2 was observed in 17 (16.5%) cases. B7-H4 expression was detected in only one (1.0%) case. HHLA2-positive cases had significantly better survival than HHLA2-negative cases (P = .042). Positive HHLA2 correlated with higher density of CD8+ intratumoral lymphocytes (P = .015). The subgroup with both HHLA2 expression and high CD8+ cell density exhibited the most favorable prognosis (P = .036). CONCLUSIONS HHLA2 is frequently expressed in HCC. Positive HHLA2 correlates with higher CD8+ cell density and favorable prognosis. HHLA2 may be considered a potential therapeutic immune target in HCC.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
29
|
Ramaswamy M, Kim T, Jones DC, Ghadially H, Mahmoud TI, Garcia A, Browne G, Zenonos Z, Puplampu-Dove Y, Riggs JM, Bhat GK, Herbst R, Schofield DJ, Carlesso G. Immunomodulation of T and NK-cell Responses by a Bispecific Antibody Targeting CD28 Homolog and PD-L1. Cancer Immunol Res 2021; 10:200-214. [PMID: 34937728 DOI: 10.1158/2326-6066.cir-21-0218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/03/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Checkpoint blockade therapies targeting PD-1/PD-L1 and CTLA-4 are clinically successful but also evoke adverse events due to systemic T-cell activation. We engineered a bispecific, monoclonal antibody targeting CD28 homolog (CD28H), a newly identified B7 family receptor that is constitutively expressed on T and natural killer (NK) cells, with a PD-L1 antibody to potentiate tumor-specific immune responses. The bispecific antibody led to T-cell costimulation, induced NK cell cytotoxicity of PD-L1-expressing tumor cells, and activated tissue-resident memory CD8+ T cells. Mechanistically, the CD28H agonistic arm of the bispecific antibody reduced PD-L1/PD-1-induced SHP2 phosphorylation, while simultaneously augmenting T-cell receptor (TCR) signaling by activating the MAPK and AKT pathways. This bispecific approach could be used to target multiple immune cells, including CD8+ T cells, tissue-resident memory T cells, and NK cells, in a tumor-specific manner that may lead to induction of durable, therapeutic antitumor responses.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, AstraZeneca (United States)
| | - Taeil Kim
- Oncology R, AstraZeneca (United States)
| | - Des C Jones
- Early Oncology R&D, AstraZeneca (United Kingdom)
| | | | | | - Andrew Garcia
- Antibody Discovery & Protein Engineering, AstraZeneca (United States)
| | - Gareth Browne
- Antibody Discovery and Protein Engineering R, AstraZeneca (United Kingdom)
| | - Zenon Zenonos
- Antibody Development and Protein Engineering R, AstraZeneca (United Kingdom)
| | | | | | | | | | - Darren J Schofield
- Antibody Discovery and Protein Engineering R, AstraZeneca (United Kingdom)
| | | |
Collapse
|
30
|
Wang R, Guo H, Tang X, Zhang T, Liu Y, Zhang C, Yu H, Li Y. Interferon Gamma-Induced Interferon Regulatory Factor 1 Activates Transcription of HHLA2 and Induces Immune Escape of Hepatocellular Carcinoma Cells. Inflammation 2021; 45:308-330. [PMID: 34536158 DOI: 10.1007/s10753-021-01547-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immunosuppression developed by cancer cells remains a leading cause of treating failure of immunotherapies. This study aimed to explore the function of human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2), an immune checkpoint molecule from the B7 family, in the immune escape in hepatocellular carcinoma (HCC). Mouse models with primary HCC or with xenograft tumors were established. The portion of tumor-associated macrophages (TAMs) and the level of PD-L1 in the tumor tissues were examined. THP-1 cells were treated with PMA to obtain a macrophage-like phenotype. The PMA-treated THP-1 cells were co-cultured with the HCC cells in Transwell chambers to examine the function of HHLA2 in chemotactic migration and polarization of macrophages. HHLA2 expression was correlated with infiltration of immune cells, especially macrophages, and was linked to poor prognosis of patients with HCC. HHLA2 knockdown reduced incidence rate of primary HCC in mice. It also reduced tumor metastasis, the portion of M2 macrophages, and the expression of PD-L1 in primary and xenograft tumors. In vitro, HHLA2 upregulation increased expression of PD-L1 in HCC cells indirectly by inducing M2 polarization and chemotactic migration of macrophages. Interferon gamma (IFNG) enhanced expression of interferon regulatory factor 1 (IFR1) in HCC cells, and IFR1 bound to the promoter region of HHLA2 to activate HHLA2 expression. This study suggested that the IFNG/IFR1/HHLA2 axis in HCC induces M2 polarization and chemotactic migration of macrophages, which leads to immune escape and development of HCC.
Collapse
Affiliation(s)
- Rui Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Xiaotong Tang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Tiantian Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Yang Liu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Cheng Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.,Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical University, Bengbu, 233004, Anhui, People's Republic of China
| | - Hanbing Yu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
| | - Yumei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.
| |
Collapse
|
31
|
Luo M, Lin Y, Liang R, Li Y, Ge L. Clinical Significance of the HHLA2 Protein in Hepatocellular Carcinoma and the Tumor Microenvironment. J Inflamm Res 2021; 14:4217-4228. [PMID: 34483677 PMCID: PMC8409601 DOI: 10.2147/jir.s324336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The protein “human endogenous retrovirus H long terminal repeat-associating 2” (HHLA2), a member of the B7 family, has been linked to cancer progression and immune responses. However, its functional role in hepatocellular carcinoma (HCC) remains unknown. Methods Bioinformatics was used to examine the potential roles of HHLA2 in HCC and the molecular pathways involved. Expression of HHLA2 and PD-L1 as well as the density of tumor-infiltrating lymphocytes (TILs) in tumoral areas were evaluated by immunohistochemistry and hematoxylin-eosin staining of 202 resected human HCC samples. Potential correlations of HHLA2 expression with pathological characteristics or prognosis of HCC patients were explored. Different types of immune microenvironment in HCC were defined based on HHLA2 expression and TIL density. Results High HHLA2 levels in HCC correlated with more advanced clinical cancer stage (P = 0.040), multiple tumors (P = 0.044), poor tumor differentiation (P = 0.048), microvascular invasion (P = 0.011) and hepatic capsule invasion (P = 0.047). HHLA2 levels correlated significantly with density of TILs, but not with PD-L1 levels. High HHLA2 levels were associated with worse prognosis. Intermediate and high TIL densities were independent predictors of better prognosis. Tumor microenvironments with type I (HHLA2 - high TILs +) or type IV (HHLA2 - low TILs +) were associated with better prognosis. Conclusion HHLA2 level can independently predict worse prognosis and affect the tumor microenvironment in HCC, which may help guide immunotherapy against the cancer.
Collapse
Affiliation(s)
- Min Luo
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yan Lin
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Rong Liang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yongqiang Li
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Lianying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
32
|
Zhou QH, Li KW, Chen X, He HX, Peng SM, Peng SR, Wang Q, Li ZA, Tao YR, Cai WL, Liu RY, Huang H. HHLA2 and PD-L1 co-expression predicts poor prognosis in patients with clear cell renal cell carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000157. [PMID: 31959726 PMCID: PMC7057441 DOI: 10.1136/jitc-2019-000157] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although clear cell renal cell carcinoma (ccRCC) is well known as a highly immunogenic tumor, only a small subset of patients could benefit from current immunotherapy, which might be due to the heterogeneity of immune microenvironment in ccRCC. So, it is meaningful to explore novel immunotherapy or combination therapy for improving therapeutic efficacy. HHLA2, a newly discovered B7 family member, is prevalently expressed in numerous tumors, including ccRCC. This study aimed to investigate the prognostic impact of HHLA2/PD-L1 co-expression and its relationship with tumor-infiltrating lymphocytes (TILs). Methods The expression levels of HHLA2, PD-L1, CD8, and CD4 in cancer tissues from cases (206 in the training cohort and 197 in the validation cohort) with surgically resectable primary ccRCC were evaluated by immunohistochemistry. Results The positive rates of HHLA2 were much higher than those of PD-L1 in ccRCC tissues. HHLA2-positive expression was significantly associated with necrosis, microvascular invasion, advanced Fuhrman nuclear, and TNM stage and indicated a shorter progression-free survival (PFS) and overall survival (OS) in both cohorts. Moreover, patients with HHLA2/PD-L1 co-expression suffered the highest risk of disease progression and death by a significant margin. Besides, HHLA2/PD-L1 co-expression was significantly associated with a high density of CD8+ and CD4+ TILs. Notably, a new immune classification, based on HHLA2/PD-L1 co-expression and TILs, successfully stratified PFS and OS, especially in patients with TILs positivity. Conclusions The expression of HHLA2 is more frequent than PD-L1 in ccRCC. HHLA2/PD-L1 co-expression had an adverse impact on the prognoses of patients with ccRCC; this finding provides a rationale for combination immunotherapy with anti-HHLA2 and PD-L1 blockage for patients with ccRCC in the future.
Collapse
Affiliation(s)
- Qiang-Hua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kai-Wen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hai-Xia He
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sheng-Meng Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Rong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiong Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ze-An Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yi-Ran Tao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wen-Li Cai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Sun W, Li S, Tang G, Sun S, Luo Y, Bai R, Han L, Jiang X, Gao Y, Huang Z, Zhang J, Gong Y, Xie C. HHLA2 deficiency inhibits non-small cell lung cancer progression and THP-1 macrophage M2 polarization. Cancer Med 2021; 10:5256-5269. [PMID: 34152094 PMCID: PMC8335813 DOI: 10.1002/cam4.4081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a member of B7 family, which is upregulated in multiple tumors. However, its exact functions in non-small cell lung cancer (NSCLC) have not been fully understood. This study aimed to investigate the biological roles of HHLA2 in human NSCLC and the relevant mechanisms. In addition, the effects of tumor cell-derived HHLA2 on tumor-associated macrophage (TAM) polarization were explored. METHODS NSCLC cell growth, migration, and invasion were assessed by colony formation and modified Boyden chamber assays. Cell cycle and the CD163+ TAMs were examined by flow cytometry. A co-culture model of THP-1 macrophages and NSCLC cells was conducted to investigate the impacts of tumor cell-derived HHLA2 on THP-1 macrophage polarization. Moreover, a xenograft nude mouse model was established to explore the effects of HHLA2 on tumorigenesis in vivo. RESULTS HHLA2 was upregulated in A549 and H1299 cells compared with the normal lung epithelial BEAS-2B cells. HHLA2 deficiency inhibited NSCLC cell proliferation, migration, invasion, and induced G0/G1 phase arrest partially via inhibiting EGFR/MAPK/ERK signaling pathway. Furthermore, HHLA2 knockdown inhibited M2 polarization of TAMs via downregulating IL-10. In addition, knockdown of HHLA2 inhibited tumor growth in vivo. CONCLUSION HHLA2 downregulation inhibited NSCLC growth and TAM M2 polarization. HHLA2 may serve as a therapeutic target and promising prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Wei Y, Ren X, Galbo PM, Moerdler S, Wang H, Sica RA, Etemad-Gilbertson B, Shi L, Zhu L, Tang X, Lin Q, Peng M, Guan F, Zheng D, Chinai JM, Zang X. KIR3DL3-HHLA2 is a human immunosuppressive pathway and a therapeutic target. Sci Immunol 2021; 6:eabf9792. [PMID: 34244312 PMCID: PMC9744578 DOI: 10.1126/sciimmunol.abf9792] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The B7 family ligand HERV-H LTR-associating protein 2 (HHLA2) is an attractive target for cancer immunotherapy because of its coinhibitory function, overexpression in human cancers, and association with poor prognoses. However, the knowledge of the HHLA2 pathway is incomplete. HHLA2 has an established positive receptor transmembrane and immunoglobulin (Ig) domain containing 2 (TMIGD2) but a poorly characterized negative receptor human killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3). Here, KIR3DL3 and TMIGD2 simultaneously bound to different sites of HHLA2. KIR3DL3 was mainly expressed on CD56dim NK and terminally differentiated effector memory CD8+ T (CD8+ TEMRA) cells. KIR3DL3+ CD8+ TEMRA acquired an NK-like phenotype and function. HHLA2 engagement recruited KIR3DL3 to the immunological synapse and coinhibited CD8+ T and NK cell function and killing, inducing immune-evasive HHLA2+ tumors. KIR3DL3 recruited SHP-1 and SHP-2 to attenuate Vav1, ERK1/2, AKT, and NF-κB signaling. HHLA2+ tumors from human kidney, lung, gallbladder, and stomach were infiltrated by KIR3DL3+ immune cells. KIR3DL3 blockade inhibited tumor growth in multiple humanized mouse models. Thus, our findings elucidated the molecular and cellular basis for the inhibitory function of KIR3DL3, demonstrating that the KIR3DL3-HHLA2 pathway is a potential immunotherapeutic target for cancer.
Collapse
Affiliation(s)
- Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Scott Moerdler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Children's Hospital, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Hao Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - R Alejandro Sica
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | | | - Lei Shi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liqiang Zhu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xudong Tang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Lin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mou Peng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fangxia Guan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jordan M Chinai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Department of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Urology, Montefiore Medical Center, Bronx, NY 10461, USA
| |
Collapse
|
35
|
Abstract
Improving the survival of patients with osteosarcoma has long proved challenging, although the treatment of this disease is on the precipice of advancement. The increasing feasibility of molecular profiling together with the creation of both robust model systems and large, well-annotated tissue banks has led to an increased understanding of osteosarcoma biology. The historical invariability of survival outcomes and the limited number of agents known to be active in the treatment of this disease facilitate clinical trials designed to identify efficacious novel therapies using small cohorts of patients. In addition, trial designs will increasingly consider the genetic background of the tumour through biomarker-based patient selection, thereby enriching for clinical activity. Indeed, osteosarcoma cells are known to express a number of surface proteins that might be of therapeutic relevance, including B7-H3, GD2 and HER2, which can be targeted using antibody-drug conjugates and/or adoptive cell therapies. In addition, immune-checkpoint inhibition might augment the latter approach by helping to overcome the immunosuppressive tumour microenvironment. In this Review, we provide a brief overview of current osteosarcoma therapy before focusing on the biological insights from the molecular profiling and preclinical modelling studies that have opened new therapeutic opportunities in this disease.
Collapse
Affiliation(s)
- Jonathan Gill
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Farrag MS, Ibrahim EM, El-Hadidy TA, Akl MF, Elsergany AR, Abdelwahab HW. Human Endogenous Retrovirus-H Long Terminal Repeat- Associating Protein 2 (HHLA2) is a Novel Immune Checkpoint Protein in Lung Cancer which Predicts Survival. Asian Pac J Cancer Prev 2021; 22:1883-1889. [PMID: 34181347 PMCID: PMC8418860 DOI: 10.31557/apjcp.2021.22.6.1883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
ackground: Lung cancer is one of the most frequently diagnosed malignancies. Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a recently discovered ligand of the B7 family. Blocking this immune checkpoint has become an important treatment option for lung cancer. METHODS The study includes 62 biopsy specimens either bronchoscopic or CT-guided biopsies diagnosed as lung cancer in Hospitals of Faculty of Medicine, Mansoura University, Egypt during the period from 2016 to 2020. Immunohistochemical Staining for HHLA2 and EGFR was performed. HHLA2 expression was assessed in different pathological types of lung Cancer, and it was correlated with other clinicopathologic parameters and patient prognosis. RESULTS We found a significant association between HHLA2 expression and metastasis. About 83% of patients presented with metastasis showed positive expression of HHLA2 compared to 44.4% in patients with no metastasis (p=0.02). Also, results show significant mild positive correlation between expression of HHLA2 and EGFR markers (p=0.045). The mean OS time in cases with positive HHLA2 expression was nearly half that of patients with negative expression of the markers. However, this difference was not statistically significant. But, PFS of patients was significantly lower among the group with positive expression of HHLA2 compared to the group with negative expression of HHLA2 (p= 0.01). CONCLUSIONS This study reports that recently discovered, HHLA2 is over expressed in lung cancer associating with higher stage. It is also correlated with EGFR overexpression. HHLA2 could serve as a predictor of progression and distant metastasis. Also, it has potential to be effective immune target in lung cancer immunotherapy such as checkpoint blockade and antibody-drug conjugate treatment. .
Collapse
Affiliation(s)
- Mayada Saad Farrag
- Department of Pathology, Faculty of Medicine, Port Said University, Port Said, Egypt.
| | - Eman Mohamad Ibrahim
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Tamer A El-Hadidy
- Department Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Farouk Akl
- Department of Clinical Oncology & Nuclear Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Alyaa R Elsergany
- Department Internal Medicine, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Heba Wagih Abdelwahab
- Department Chest Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
37
|
Luu K, Schwarz H, Lundqvist A. B7-H7 Is Inducible on T Cells to Regulate Their Immune Response and Serves as a Marker for Exhaustion. Front Immunol 2021; 12:682627. [PMID: 34140952 PMCID: PMC8205074 DOI: 10.3389/fimmu.2021.682627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
The discovery of immune checkpoints highlights the complexity of T cell signalling during an immune response. Upon activation, T cells express several molecules to regulate their function and to prevent overactivation. B7 homolog 7 (B7-H7) is expressed in tumours and associated with a worse prognosis. However, conflicting data regarding its function suggest that it can be both stimulatory and inhibitory. In this study we report that B7-H7 is also expressed on T cells upon cross-linking of CD3 and CD28 and that additional stimulation via CD137 further enhances the expression of B7-H7. B7-H7 is preferentially expressed on exhausted Th1 and Tc1 cells with an impaired secretion of TNF-α and IFN-γ. Blockade of B7-H7 with its natural receptor, recombinant CD28H, enhances T cell proliferation and activation. Thus, B7-H7 represents another target for immunotherapy and a biomarker to select for active effector T cells with relevance for adoptive cell transfer therapy.
Collapse
Affiliation(s)
- Khang Luu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Luo M, Xiong Y, Lin Y, Liang R, Li Y, Ge L. H Long Terminal Repeat-Associating 2 (HHLA2) is a Biomarker of Advanced Stage Hepatocellular Carcinoma and Promotes Tumor Cell Development In Vitro. Med Sci Monit 2021; 27:e930215. [PMID: 33990536 PMCID: PMC8132585 DOI: 10.12659/msm.930215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Several risk factors contribute to the inflammation promoting hepatocellular carcinoma (HCC) development, but the underlying mechanisms are unknown. Human endogenous retrovirus H long terminal repeat-associating 2 (HHLA2), a B7 family member, is highly expressed in various malignant tumor tissues and is related to tumor progression and metastasis. Material/Methods Bioinformatics analysis was used to analyze the gene expression chip GSE33006 of HCC tissue in the GEO database, draw a heat map of differentially expressed genes, and analyze the GO pathway of gene function annotation. Then, we compared HCC tissues with para-carcinoma liver tissues from 55 patients for expression patterns and associations with HHLA2. Effects of HHLA2 knockdown were examined in the human HCC cell line HepG2 to explore effects of HHLA2 on HepG2 cells. Results A significantly higher expression of HHLA2 at the mRNA and protein levels was detected in HCC tissues than in para-carcinoma liver tissues, which was similar to HHLA2 expression in the GSE33006 data. A higher expression of HHLA2 protein was associated with advanced cancer stage, tumor differentiation, and invasion of adjacent structures. In vitro knockdown of HHLA2 expression significantly increased HepG2 cell adhesion, promoted cell apoptosis, induced cell cycle arrest in the G1/S phase, and inhibited cell proliferation, migration, and invasion. Conclusions Our data indicated there was a higher expression of HHLA2 in HCC tissues than in para-carcinoma liver tissues, and HHLA2 plays a major role in the development and progression of HCC. Owing to its higher expression, HHLA2 is a potential prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Min Luo
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Yao Xiong
- Department of Gastroenterology, Jingmen No.1 People' s Hospital, Jingmen, Hubei, China (mainland)
| | - Yan Lin
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Rong Liang
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Yongqiang Li
- Department of Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Lianying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
39
|
Xu G, Shi Y, Ling X, Wang D, Liu Y, Lu H, Peng Y, Zhang B. HHLA2 predicts better survival and exhibits inhibited proliferation in epithelial ovarian cancer. Cancer Cell Int 2021; 21:252. [PMID: 33962626 PMCID: PMC8106145 DOI: 10.1186/s12935-021-01930-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Purpose The role of HHLA2, a new immune checkpoint ligand, is gradually being elucidated in various solid tumours. However, its role in ovarian cancer remains unclear; thus, its expression profile and clinical significance in ovarian cancer must be examined. Methods We performed immunohistochemistry to examine HHLA2 expression in 64 ovarian cancer tissues and 16 normal ovarian tissues. The relationships between HHLA2 expression and clinicopathological features, prognosis, and CD8+ tumour-infiltrating lymphocytes (TILs) in patients were analysed. Additionally, the Cancer Cell Line Encyclopedia database was used to analyse the correlation between HHLA2 expression and PD-L1 or B7x expression. Furthermore, the biological function of HHLA2 in ovarian cancer cells was initially explored. Results Only 17.2% of ovarian cancer patients showed HHLA2 expression, which was significantly associated with the differentiation of ovarian cancer cells (p = 0.027), and well-differentiated tumours expressed higher levels of HHLA2. The density of CD8+ TIL was associated with increased HHLA2 expression (p = 0.017), and the CD8+ TIL count was higher in the HHLA2-positive group than that in the HHLA2-negative group (p = 0.023). Moreover, multivariate analysis identified HHLA2 expression as an independent prognostic factor that predicted improved survival (p = 0.049; HR = 0.156; 95% CI = 0.025–0.992). Additionally, we also found that overexpressing HHLA2 inhibited the proliferation of ovarian cancer cells. Conclusion HHLA2 is associated with tumour differentiation and high CD8+ TIL levels; and predicts improved survival in ovarian cancer. Along with previously reported findings that HHLA2 behaves as a co-stimulatory ligand, our study suggests that the loss of HHLA2 may contribute to the immunosuppressive microenvironment and progression of ovarian cancer.
Collapse
Affiliation(s)
- Guocai Xu
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China
| | - Yuanyuan Shi
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China
| | - Xiaoting Ling
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China
| | - Dongyan Wang
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China
| | - Yunyun Liu
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China
| | - Huaiwu Lu
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China
| | - Yongpai Peng
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China.
| | - Bingzhong Zhang
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yingfeng Road No.33, Haizhu District, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Cocco C, Morandi F, Airoldi I. Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes. Cells 2021; 10:927. [PMID: 33920505 PMCID: PMC8074115 DOI: 10.3390/cells10040927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) represents a complex network between tumor cells and a variety of components including immune, stromal and vascular endothelial cells as well as the extracellular matrix. A wide panel of signals and interactions here take place, resulting in a bi-directional modulation of cellular functions. Many stimuli, on one hand, induce tumor growth and the spread of metastatic cells and, on the other hand, contribute to the establishment of an immunosuppressive environment. The latter feature is achieved by soothing immune effector cells, mainly cytotoxic T lymphocytes and B and NK cells, and/or through expansion of regulatory cell populations, including regulatory T and B cells, tumor-associated macrophages and myeloid-derived suppressor cells. In this context, immune checkpoints (IC) are key players in the control of T cell activation and anti-cancer activities, leading to the inhibition of tumor cell lysis and of pro-inflammatory cytokine production. Thus, these pathways represent promising targets for the development of effective and innovative therapies both in adults and children. Here, we address the role of different cell populations homing the TME and of well-known and recently characterized IC in the context of pediatric solid tumors. We also discuss preclinical and clinical data available using IC inhibitors alone, in combination with each other or administered with standard therapies.
Collapse
Affiliation(s)
| | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy; (C.C.); (F.M.)
| |
Collapse
|
41
|
Byun JM, Cho HJ, Park HY, Lee DS, Choi IH, Kim YN, Jeong CH, Kim DH, Hwa Im D, Min BJ, Lee KB, Sung MS, Jeong DH. The clinical significance of HERV-H LTR -associating 2 expression in cervical adenocarcinoma. Medicine (Baltimore) 2021; 100:e23691. [PMID: 33429737 PMCID: PMC7793359 DOI: 10.1097/md.0000000000023691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/15/2020] [Indexed: 01/05/2023] Open
Abstract
HERV-H LTR -associating 2 (HHLA2) is a recently discovered member of the B7-family of immune checkpoint molecules that is overexpressed in several types of cancer. The aim of the present study was to investigate the expression of HHLA2 in cervical adenocarcinoma (AC) and the relationship between its expression and clinicopathological factors to assess its use as a potential marker for AC prognosis.This study included 76 patients diagnosed with cervical AC. Their resected specimens were obtained and a tissue microarray was constructed. Expression of HHLA2 was detected by the immunohistochemistry. Based on the follow-up data, correlation of HHLA2 expression and clinicopathological features, including overall survival (OS) and disease-free survival, was evaluated. Furthermore, we investigated the correlation between the expression of HHLA2 and programmed death ligand 1 (PD-L1).A total of 76 cases of invasive cervical AC were evaluated. High HHLA2 expression was detected in 62 cases (81.6%) and low HHLA2 expression was presented in 14 cases (18.4%). HHLA2 expression showed a significant negative correlation with lymph node metastasis (P = .011). Disease free survival was 75.0% and 49.0% in high-expression and the low expression group, respectively (P = .057). Although there was no statistical significance, an improved OS was observed in the high expression group (83.1% vs 64.9%, P = .479). Further, the expression of HHLA2 and PD-L1 correlated positively (P = .005). Thus, an improved OS was observed in the PD-L1 expression group (90.7% vs 66.2%, P = .037).High expression of HHLA2 is related to tumor progression and prognosis in patients with cervical AC. Therefore, HHLA2 may be a potential biomarker for predicting prognosis of cervical AC.
Collapse
Affiliation(s)
- Jung Mi Byun
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| | - Hwa Jin Cho
- Department of Pathology, Inje University, College of Medicine, Busan Paik Hospital
| | - Ha Young Park
- Department of Pathology, Inje University, College of Medicine, Busan Paik Hospital
| | - Dae Sim Lee
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| | - In Hak Choi
- Department of Microbiology and Immunology
- Innovative Therapeutics Research Institute (ITRI)
| | - Young Nam Kim
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| | - Chul Hoi Jeong
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Haeundae Paik Hospital, South Korea
| | - Da Hyun Kim
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Do Hwa Im
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Byoung Jin Min
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Kyung Bok Lee
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Moon Su Sung
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
| | - Dae Hoon Jeong
- Department of Obstetrics and Gynecology, Inje University, College of Medicine, Busan Paik Hospital
- Paik Institute for Clinical Research, Inje University, College of Medicine
| |
Collapse
|
42
|
Jiang X, Liu G, Li Y, Pan Y. Immune checkpoint: The novel target for antitumor therapy. Genes Dis 2021; 8:25-37. [PMID: 33569511 PMCID: PMC7859424 DOI: 10.1016/j.gendis.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Inhibitory checkpoint molecules include programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T lymphocyte antigen-4 (CTLA-4), human endogenous retrovirus-H Long terminal repeat-associating 2 (HHLA2), B7 homolog 4 protein (B7-H4), T cell membrane protein-3 (TIM-3) and Lymphocyte-activation gene 3 (LAG-3), which are up-regulated during tumorigenesis. These pathways are essential to down-regulate the immune system by blocking the activation of T cells. In recent years, immune checkpoint blockers (ICBs) against PD-1, PD-L1, CTLA-4 or TIM-3 has made remarkable progress in the clinical application, revolutionizing the treatment of malignant tumors and improving patients' overall survival. However, the efficacy of ICBs in some patients does not seem to be good enough, and more immune-related adverse events (irAEs) will inevitably occur. Therefore, biomarkers research provides practical guidance for clinicians to identify patients who are most likely to benefit from or exhibit resistance to particular types of immune checkpoint therapy. There are two points in general. On the one hand, given the spatial and temporal differential expression of immune checkpoint molecules during immunosuppression process, it is essential to understand their mechanisms to design the most effective individualized therapy. On the other hand, due to the lack of potent immune checkpoints, it is necessary to combine them with novel biomarkers (such as exosomes and ctDNA) and other anticancer modalities (such as chemotherapy and radiotherapy).
Collapse
Affiliation(s)
- Xianghu Jiang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, PR China
| |
Collapse
|
43
|
Huang J, Xu Y, Lin F. The inhibition of microRNA-326 by SP1/HDAC1 contributes to proliferation and metastasis of osteosarcoma through promoting SMO expression. J Cell Mol Med 2020; 24:10876-10888. [PMID: 32743904 PMCID: PMC7521251 DOI: 10.1111/jcmm.15716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is a malignant bone cancer lacking of effective treatment target when the metastasis occurred. This study investigated the implication of MicroRNA-326 in OS proliferation and metastasis to provide the clue for the treatment of metastatic OS. This study knocked down SP1 in MG63 and 143B cells and then performed Microarray assay to find the expression of miRNAs that were influenced by SP1. MTT, EdU, wound-healing and cell invasion assays were performed to evaluated cell proliferation and invasion. OS metastasis to lung was detected in a nude mice model. ChIP assay and DAPA were applied to determine the regulatory effect of SP1 and histone deacetylase 1 (HDAC) complex on miR-326 expression. Human OS tissues showed lowly expressed miR-326 but highly expressed Sp1 and HDAC. Sp1 recruited HDAC1 to miR-326 gene promoter, which caused the histone deacetylation and subsequent transcriptional inhibition of miR-326 gene. miR-326 deficiency induced the stimulation of SMO/Hedgehog pathway and promoted the proliferation and invasion of 143B and MG63 cells as well as the growth and metastasis in nude mice. SP1/HDAC1 caused the transcriptional inhibition of miR-326 gene by promoting histone deacetylation; miR-326 deficiency conversely stimulated SMO/Hedgehog pathway that was responsible for the proliferation and metastasis of OS.
Collapse
Affiliation(s)
- Jiang‐Hu Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopaedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| | - Yang Xu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopaedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| | - Fei‐Yue Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of OrthopaedicsFujian Provincial HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
44
|
Zhang Z, Liu J, Zhang C, Li F, Li L, Wang D, Chand D, Guan F, Zang X, Zhang Y. Over-Expression and Prognostic Significance of HHLA2, a New Immune Checkpoint Molecule, in Human Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol 2020; 8:280. [PMID: 32509772 PMCID: PMC7248229 DOI: 10.3389/fcell.2020.00280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
HHLA2, a newly identified B7 family member, regulates T cell functions. However, the expression and prognostic value of HHLA2 in solid tumors is ill defined. This study aimed to reveal the expression landscape of HHLA2 in various solid tumors, and to evaluate its prognostic value in kidney clear cell carcinoma (KIRC). Using The Cancer Genome Atlas (TCGA) database, we investigated the expression pattern of HHLA2 across 22 types of cancer. HHLA2 and CD8 protein expression was determined via immunohistochemistry (IHC). KIRC-specific findings were further analyzed with R software and the prognostic value was validated on tissue microarrays. HHLA2 was widely expressed in cancers at both the mRNA and protein levels. Among all tested tumors, KIRC showed the highest transcript level of HHLA2, and HHLA2 levels were significantly higher in tumor tissues than in matched normal samples, as evidenced by both TCGA and IHC data. HHLA2 was also positively correlated with survival rates in KIRC based on TCGA and clinical data. Receiver operating characteristic curves data showed the prognostic value of HHLA2 for patients with KIRC in TCGA. Moreover, HHLA2 was positively correlated with immune-related genes, while HHLA2 and CD8 expression exhibited a consistent trend in KIRC tumor samples. In conclusion, HHLA2 is highly expressed in KIRC and predicts a favorable survival outcome, highlighting that it may work as a potential target for KIRC therapy.
Collapse
Affiliation(s)
- Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Damini Chand
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, China
| |
Collapse
|
45
|
Wang C, Feng H, Cheng X, Liu K, Cai D, Zhao R. Potential Therapeutic Targets of B7 Family in Colorectal Cancer. Front Immunol 2020; 11:681. [PMID: 32477326 PMCID: PMC7232583 DOI: 10.3389/fimmu.2020.00681] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway blockade has impressively benefited cancer patients with a wide spectrum of tumors. However, its efficacy in colorectal cancer (CRC) is modest, and only a small subset of patients benefits from approved checkpoint inhibitors. Newer checkpoints that target additional immunomodulatory pathways are becoming necessary to activate durable antitumor immune responses in patients with CRC. In this review, we evaluated the mRNA expression of all 10 reported B7 family members in human CRC by retrieving and analyzing the TCGA database and reviewed the current understanding of the top three B7 family checkpoint molecules (B7-H3, VISTA, and HHLA2) with the highest mRNA expression, introducing them as putative therapeutic targets in CRC.
Collapse
Affiliation(s)
- Changgang Wang
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Liu
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongli Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Zhong C, Lang Q, Yu J, Wu S, Xu F, Tian Y. Phenotypical and potential functional characteristics of different immune cells expressing CD28H/B7-H5 and their relationship with cancer prognosis. Clin Exp Immunol 2020; 200:12-21. [PMID: 31901178 DOI: 10.1111/cei.13413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
CD28H and B7-H5 have been identified as receptor-ligand pairs in the B7/CD28 family, and have co-stimulatory activity in immune cells. Here, we have systematically reviewed the research reports concerning the CD28H/B7-H5 pathway. It was found that CD28H is mainly expressed in T cells and natural killer (NK) cells with naive and poorly differentiated properties, and repeated antigen stimulation leads to permanent loss of CD28H. In tumors, CD28H is mainly expressed in tissue-resident memory (TRM ) lymphocyte T cells, which is associated with improved tumor prognosis. B7-H5 is a ligand for CD28H and is widely expressed in tumor cells. B7-H5 expression is closely related to the prognosis of the tumor. Studies have shown that high expression of B7-H5 in tumor is related to a worse prognosis for lung cancer, osteosarcoma, oral squamous cell carcinoma (OSCC), breast carcinoma, human clear cell renal cell carcinoma (ccRCC), intrahepatic cholangiocarcinoma (ICC), bladder urothelial carcinoma (BUC) and colorectal cancer (CRC), but is associated with a better prognosis for pancreatic ductal adenocarcinoma (PDAC) and glioma. Controversial views exist in studies on gastric cancer prognosis.
Collapse
Affiliation(s)
- C Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Q Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - J Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - S Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - F Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Y Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Rieder SA, Wang J, White N, Qadri A, Menard C, Stephens G, Karnell JL, Rudd CE, Kolbeck R. B7-H7 (HHLA2) inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling. Cell Mol Immunol 2020; 18:1503-1511. [PMID: 32005952 PMCID: PMC8166953 DOI: 10.1038/s41423-020-0361-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Modulation of T-cell responses has played a key role in treating cancers and autoimmune diseases. Therefore, understanding how different receptors on T cells impact functional outcomes is crucial. The influence of B7-H7 (HHLA2) and CD28H (TMIGD2) on T-cell activation remains controversial. Here we examined global transcriptomic changes in human T cells induced by B7-H7. Stimulation through TCR with OKT3 and B7-H7 resulted in modest fold changes in the expression of select genes; however, these fold changes were significantly lower than those induced by OKT3 and B7-1 stimulation. The transcriptional changes induced by OKT3 and B7-H7 were insufficient to provide functional stimulation as measured by evaluating T-cell proliferation and cytokine production. Interestingly, B7-H7 was coinhibitory when simultaneously combined with TCR and CD28 stimulation. This inhibitory activity was comparable to that observed with PD-L1. Finally, in physiological assays using T cells and APCs, blockade of B7-H7 enhanced T-cell activation and proliferation, demonstrating that this ligand acts as a break signal. Our work defines that the transcriptomic changes induced by B7-H7 are insufficient to support full costimulation with TCR signaling and, instead, B7-H7 inhibits T-cell activation and proliferation in the presence of TCR and CD28 signaling.
Collapse
Affiliation(s)
- Sadiye Amcaoglu Rieder
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA. .,Viela Bio, Gaithersburg, MD, USA.
| | - Jingya Wang
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA
| | - Natalie White
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA
| | - Ariful Qadri
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA
| | | | - Geoffrey Stephens
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA.,Geneius Biotechnologies, Natick, MA, USA
| | - Jodi L Karnell
- Biopharmaceuticals, Early RIA, AstraZeneca, Gaithersburg, MD, USA.,Viela Bio, Gaithersburg, MD, USA
| | | | | |
Collapse
|
48
|
Hu C, Xu Z, Chen S, Lv H, Wang Y, Wang X, Mo S, Shi C, Wei S, Hu L, Chen W, Cheng X. Overexpression of B7H5/CD28H is associated with worse survival in human gastric cancer. J Cell Mol Med 2019; 24:1360-1369. [PMID: 31883303 PMCID: PMC6991633 DOI: 10.1111/jcmm.14812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is a common malignancy with low 5‐year overall survival (OS). Recently, immune therapy has been used to treat cancer. B7H5 and CD28H are novel immune checkpoint molecules. However, the prognostic value of B7H5/CD28H expression in patients with GC remains unclear. In this study, seventy‐one patients diagnosed with GC were included in this study. Patients' GC tissues and matched adjacent tissue constructed a tissue microarray. The expression levels of B7H5 and CD28H were examined using immunohistochemistry. Correlations between the expression of B7H5 and CD28H and the clinical data were evaluated. We found that the expression of B7H5 and CD28H (both P = .001) were higher in GC tumour tissues than in adjacent noncancerous tissues. B7H5/CD28H expression acted as an independent predictive factor in the OS of patients with GC. High expression of B7H5 and CD28H predicted poor outcome. Patients in the B7H5+CD28H+ group had a lower 5‐year OS compared with patients in the B7H5−CD28− group (4.5% vs 55.6%, P = .001). A significant difference was found in the 5‐year OS between patients in the B7H5+CD28H− and B7H5+CD28H+ groups (33.5% vs 4.5%, P = .006). However, there was no correlation between B7H5 and CD28H expression (P = .844). Therefore, B7H5 and CD28H expression are up‐regulated in GC and are independent prognostic factors for overall survival in patients with GC. Although there was no correlation between B7H5 and CD28H expression, high expression of B7H5 and CD28H predicts poor prognosis, especially when both are highly expressed.
Collapse
Affiliation(s)
- Can Hu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiyuan Xu
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shangqi Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang, China
| | - Yiping Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang, China
| | - Xiaofeng Wang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengwei Shi
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shenyu Wei
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Wang X, Li W, Bi J, Wang J, Ni L, Shi Q, Meng Q. Association of high PDPN expression with pulmonary metastasis of osteosarcoma and patient prognosis. Oncol Lett 2019; 18:6323-6330. [PMID: 31807157 PMCID: PMC6876324 DOI: 10.3892/ol.2019.11053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/31/2019] [Indexed: 12/26/2022] Open
Abstract
Podoplanin (PDPN) is an important positive regulator of platelet aggregation and functions as a lymphatic endothelial marker. PDPN has been observed to be expressed in human tumor tissues and various cancer cell lines. In the present study, PDPN expression in patients with primary osteosarcoma was assessed at the mRNA and protein levels, and the associations between PDPN expression and pulmonary metastasis (PM) and prognosis were examined. Reverse transcription-quantitative PCR (RT-qPCR) analysis was used to detect the expression levels of PDPN in primary osteosarcoma tissues and paired normal bone tissues (n=20 pairs). In addition, immunohistochemical analysis of PDPN expression was performed in 168 paraffin-embedded osteosarcoma tissue specimens and 23 matched normal tissues. The RT-qPCR results revealed higher mRNA expression levels of PDPN in patients with PM compared with patients without PM. Further survival analyses identified Enneking stage and PM as two independent prognostic indicators. Finally, univariate analysis revealed that high PDPN protein expression was significantly associated with Enneking stage and PM in patients with osteosarcoma.
Collapse
Affiliation(s)
- Xincheng Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China.,Department of Orthopedics, The First Hospital of Harbin City, Harbin, Heilongjiang 150010, P.R. China
| | - Wei Li
- Department of Orthopedics, The First Hospital of Harbin City, Harbin, Heilongjiang 150010, P.R. China
| | - Jiaqi Bi
- Department of Orthopedics, The First Hospital of Harbin City, Harbin, Heilongjiang 150010, P.R. China
| | - Jia Wang
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linying Ni
- Department of Orthopedics, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingtao Shi
- Department of Pathology, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qinggang Meng
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150010, P.R. China.,Department of Orthopedics, The First Hospital of Harbin City, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
50
|
Qi Y, Deng G, Xu P, Zhang H, Yuan F, Geng R, Jiang H, Liu B, Chen Q. HHLA2 is a novel prognostic predictor and potential therapeutic target in malignant glioma. Oncol Rep 2019; 42:2309-2322. [PMID: 31578594 PMCID: PMC6826309 DOI: 10.3892/or.2019.7343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022] Open
Abstract
Glioma is the most common and aggressive tumor type of the central nervous system and is associated with poor prognosis. To date, novel emerging immunotherapies have significantly improved outcomes for patients with various cancer types. Human endogenous retrovirus‑H long terminal repeat‑associating protein 2 (HHLA2), a newly discovered immune checkpoint molecule, has demonstrated its potential as a novel therapeutic target. Therefore, the present study aimed to investigate the clinical prognostic value of HHLA2 in gliomas and its mechanistic role. A systematic review of datasets from The Cancer Genome Atlas was performed. The RNA‑seq data of a total of 669 cases were analyzed and the biological function of HHLA2 was predicted by Gene Ontology (GO) and pathway enrichment analysis. Immunohistochemistry labelling images for HHLA2 was obtained from the Human Protein Atlas. xCell was used to comprehensively analyze the model of tumor‑infiltrating immune cell in glioma. The Cox proportional hazards regression model was used to predict outcomes for glioma patients. The results revealed that the expression levels of HHLA2 were significantly lower in high‑grade glioma, as well as glioma with wild‑type isocitrate dehydrogenase, no deletion of 1p/19q and telomerase reverse transcriptase promoter mutation. Receiver operating characteristic analysis revealed that HHLA2 was a predictor of the neural subtype. The tumor‑infiltrating immune cell model indicated that HHLA2 was negatively associated with tumor‑associated macrophages. GO analysis and pathway enrichment analysis revealed that HHLA2‑associated genes were functionally involved in inhibition of neoplasia‑associated processes. HHLA2 was significantly negatively correlated with certain genes, including interleukin‑10, transforming growth factor‑β, vascular endothelial growth factor and δ‑like canonical Notch ligand 4, and other immune checkpoint molecules, including programmed cell death 1, lymphocyte activating 3 and CD276. Survival analysis indicated that high expression of HHLA2 predicted a favorable prognosis. In conclusion, the present study revealed that upregulation of HHLA2 is significantly associated with a favorable outcome for patients with glioma. Targeting HHLA2 as an immune stimulator may become a valuable approach for the treatment of glioma in clinical practice.
Collapse
Affiliation(s)
- Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Pengfei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Correspondence to: Professor Baohui Liu or Professor Qianxue Chen, Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: , E-mail:
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China,Correspondence to: Professor Baohui Liu or Professor Qianxue Chen, Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail: , E-mail:
| |
Collapse
|