1
|
Sahu TK, Verma SK, Gayacharan, Singh NP, Joshi DC, Wankhede DP, Singh M, Bhardwaj R, Singh B, Parida SK, Chattopadhyay D, Singh GP, Singh AK. Transcriptome-wide association mapping provides insights into the genetic basis and candidate genes governing flowering, maturity and seed weight in rice bean (Vigna umbellata). BMC PLANT BIOLOGY 2024; 24:379. [PMID: 38720284 PMCID: PMC11077894 DOI: 10.1186/s12870-024-04976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.
Collapse
Affiliation(s)
- Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Sachin Kumar Verma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | | | - Dinesh Chandra Joshi
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - D P Wankhede
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Badal Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Swarup Kumar Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
2
|
Wang W, Malka R, Lindemeier M, Cyprys P, Tiedemann S, Sun K, Zhang X, Xiong H, Sprunck S, Sun MX. EGG CELL 1 contributes to egg-cell-dependent preferential fertilization in Arabidopsis. NATURE PLANTS 2024; 10:268-282. [PMID: 38287093 DOI: 10.1038/s41477-023-01616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
During double fertilization in angiosperms, the pollen tube delivers two sperm cells into an embryo sac; one sperm cell fuses with an egg cell, and the other sperm cell fuses with the central cell. It has long been proposed that the preference for fusion with one or another female gamete cell depends on the sperm cells and occurs during gamete recognition. However, up to now, sperm-dependent preferential fertilization has not been demonstrated, and results on preferred fusion with either female gamete have remained conflicting. To investigate this topic, we generated Arabidopsis thaliana mutants that produce single sperm-like cells or whose egg cells are eliminated; we found that although the three different types of sperm-like cell are functionally equivalent in their ability to fertilize the egg and the central cell, each type of sperm-like cell fuses predominantly with the egg cell. This indicates that it is the egg cell that controls its preferential fertilization. We also found that sperm-activating small secreted EGG CELL 1 proteins are involved in the regulation of egg-cell-dependent preferential fertilization, revealing another important role for this protein family during double fertilization.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Raphael Malka
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Maria Lindemeier
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Philipp Cyprys
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sophie Tiedemann
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Zheng L, Zhou P, Pan Y, Li B, Shen R, Lan P. Proteomic profile of the germinating seeds reveals enhanced seedling growth in Arabidopsis rpp1a mutant. PLANT MOLECULAR BIOLOGY 2023; 113:105-120. [PMID: 37804450 DOI: 10.1007/s11103-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Luo P, Shi C, Zhou Y, Zhou J, Zhang X, Wang Y, Yang Y, Peng X, Xie T, Tang X. The nuclear-localized RNA helicase 13 is essential for chloroplast development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5057-5071. [PMID: 37310806 DOI: 10.1093/jxb/erad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
The chloroplast is a semi-autonomous organelle with a double membrane structure, and its structural stability is a prerequisite for its correct function. Chloroplast development is regulated by known nuclear-encoded chloroplast proteins or proteins encoded within the chloroplast itself. However, the mechanism of chloroplast development regulated by other organelles remains largely unknown. Here, we report that the nuclear-localized DEAD-box RNA helicase 13 (RH13) is essential for chloroplast development in Arabidopsis thaliana. RH13 is widely expressed in tissues and localized to the nucleolus. A homozygous rh13 mutant shows abnormal chloroplast structure and leaf morphogenesis. Proteomic analysis showed that the expression levels of photosynthesis-related proteins in chloroplasts were reduced due to loss of RH13. Furthermore, RNA-sequencing and proteomics data revealed decreases in the expression levels of these chloroplast-related genes, which undergo alternative splicing events in the rh13 mutant. Taken together, we propose that nucleolus-localized RH13 is critical for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Jiao Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yukun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingting Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
5
|
Heß D, Holzhausen A, Hess WR. Insight into the nodal cells transcriptome of the streptophyte green alga Chara braunii S276. PHYSIOLOGIA PLANTARUM 2023; 175:e14025. [PMID: 37882314 DOI: 10.1111/ppl.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023]
Abstract
Charophyceae are the most complex streptophyte algae, possessing tissue-like structures, rhizoids and a cellulose-pectin-based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common ancestor with land plants. The availability of genomic data, its short life cycle, and the ease of non-sterile cultivation in the laboratory have made the species Chara braunii an emerging model system for streptophyte terrestrialization and early land plant evolution. In this study, tissue containing nodal cells was prepared under the stereomicroscope, and an RNA-seq dataset was generated and compared to transcriptome data from whole plantlets. In both samples, transcript coverage was high for genes encoding ribosomal proteins and a homolog of the putative PAX3- and PAX7-binding protein 1. Gene ontology was used to classify the putative functions of the differently expressed genes. In the nodal cell sample, main upregulated molecular functions were related to protein, nucleic acid, ATP- and DNA binding. Looking at specific genes, several signaling-related genes and genes encoding sugar-metabolizing enzymes were found to be expressed at a higher level in the nodal cell sample, while photosynthesis-and chloroplast-related genes were expressed at a comparatively lower level. We detected the transcription of 21 different genes encoding DUF4360-containing cysteine-rich proteins. The data contribute to the growing understanding of Charophyceae developmental biology by providing a first insight into the transcriptome composition of Chara nodal cells.
Collapse
Affiliation(s)
- Daniel Heß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anja Holzhausen
- Plant Cell Biology, Department of Biology, Philipps University Marburg, Marburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Wang X, Liu X, Yi X, Wang M, Shi W, Li R, Tang W, Zhang L, Sun M, Peng X. The female germ unit is essential for pollen tube funicular guidance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:155-168. [PMID: 36527238 DOI: 10.1111/nph.18686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.
Collapse
Affiliation(s)
- Xiu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiangfeng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinlei Yi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruiping Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenyue Tang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
7
|
Cao F, Wei R, Xie J, Hou L, Kang C, Zhao T, Sun C, Yang M, Zhao Y, Li C, Wang N, Wu X, Liu C, Jiang H, Chen Q. Fine mapping and candidate gene analysis of proportion of four-seed pods by soybean CSSLs. FRONTIERS IN PLANT SCIENCE 2023; 13:1104022. [PMID: 36743549 PMCID: PMC9890659 DOI: 10.3389/fpls.2022.1104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Soybean yield, as one of the most important and consistent breeding goals, can be greatly affected by the proportion of four-seed pods (PoFSP). In this study, QTL mapping was performed by PoFSP data and BLUE (Best Linear Unbiased Estimator) value of the chromosome segment substitution line population (CSSLs) constructed previously by the laboratory from 2016 to 2018, and phenotype-based bulked segregant analysis (BSA) was performed using the plant lines with PoFSP extreme phenotype. Totally, 5 ICIM QTLs were repeatedly detected, and 6 BSA QTLs were identified in CSSLs. For QTL (qPoFSP13-1) repeated in ICIM and BSA results, the secondary segregation populations were constructed for fine mapping and the interval was reduced to 100Kb. The mapping results showed that the QTL had an additive effect of gain from wild parents. A total of 14 genes were annotated in the delimited interval by fine mapping. Sequence analysis showed that all 14 genes had genetic variation in promoter region or CDS region. The qRT-PCR results showed that a total of 5 candidate genes were differentially expressed between the plant lines having antagonistic extreme phenotype (High PoFSP > 35.92%, low PoFSP< 17.56%). The results of haplotype analysis showed that all five genes had two or more major haplotypes in the resource population. Significant analysis of phenotypic differences between major haplotypes showed all five candidate genes had haplotype differences. And the genotypes of the major haplotypes with relatively high PoFSP of each gene were similar to those of wild soybean. The results of this study were of great significance to the study of candidate genes affecting soybean PoFSP, and provided a basis for the study of molecular marker-assisted selection (MAS) breeding and four-seed pods domestication.
Collapse
Affiliation(s)
- Fubin Cao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ruru Wei
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jianguo Xie
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, Jilin, China
| | - Lilong Hou
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chaorui Kang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Tianyu Zhao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chengcheng Sun
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingliang Yang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ying Zhao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Candong Li
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Nannan Wang
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Xiaoxia Wu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, Jilin, China
| | - Qingshan Chen
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Valencia-Lozano E, Herrera-Isidrón L, Flores-López JA, Recoder-Meléndez OS, Barraza A, Cabrera-Ponce JL. Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232213835. [PMID: 36430314 PMCID: PMC9696990 DOI: 10.3390/ijms232213835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein-protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs-MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9-may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging.
Collapse
Affiliation(s)
- Eliana Valencia-Lozano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
| | - Lisset Herrera-Isidrón
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Jorge Abraham Flores-López
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Osiel Salvador Recoder-Meléndez
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato (UPIIG), Instituto Politécnico Nacional, Av. Mineral de Valenciana 200, Puerto Interior, Silao de la Victoria 36275, Guanajuato, Mexico
| | - Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noreste, SC. IPN 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico
- Correspondence: ; Tel.: +52-462-6239600 (ext. 9421)
| |
Collapse
|
9
|
Shrestha V, Yobi A, Slaten ML, Chan YO, Holden S, Gyawali A, Flint-Garcia S, Lipka AE, Angelovici R. Multiomics approach reveals a role of translational machinery in shaping maize kernel amino acid composition. PLANT PHYSIOLOGY 2022; 188:111-133. [PMID: 34618082 PMCID: PMC8774818 DOI: 10.1093/plphys/kiab390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays) seeds are a good source of protein, despite being deficient in several essential amino acids. However, eliminating the highly abundant but poorly balanced seed storage proteins has revealed that the regulation of seed amino acids is complex and does not rely on only a handful of proteins. In this study, we used two complementary omics-based approaches to shed light on the genes and biological processes that underlie the regulation of seed amino acid composition. We first conducted a genome-wide association study to identify candidate genes involved in the natural variation of seed protein-bound amino acids. We then used weighted gene correlation network analysis to associate protein expression with seed amino acid composition dynamics during kernel development and maturation. We found that almost half of the proteome was significantly reduced during kernel development and maturation, including several translational machinery components such as ribosomal proteins, which strongly suggests translational reprogramming. The reduction was significantly associated with a decrease in several amino acids, including lysine and methionine, pointing to their role in shaping the seed amino acid composition. When we compared the candidate gene lists generated from both approaches, we found a nonrandom overlap of 80 genes. A functional analysis of these genes showed a tight interconnected cluster dominated by translational machinery genes, especially ribosomal proteins, further supporting the role of translation dynamics in shaping seed amino acid composition. These findings strongly suggest that seed biofortification strategies that target the translation machinery dynamics should be considered and explored further.
Collapse
Affiliation(s)
- Vivek Shrestha
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Abou Yobi
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Marianne L Slaten
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Yen On Chan
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Samuel Holden
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Abiskar Gyawali
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - Sherry Flint-Garcia
- U.S. Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
10
|
Zhou X, Zheng Y, Wang L, Li H, Guo Y, Li M, Sun MX, Zhao P. SYP72 interacts with the mechanosensitive channel MSL8 to protect pollen from hypoosmotic shock during hydration. Nat Commun 2022; 13:73. [PMID: 35013278 PMCID: PMC8748641 DOI: 10.1038/s41467-021-27757-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
In flowering plants, hydration of desiccated pollen grains on stigma is a prerequisite for pollen germination, during which pollen increase markedly in volume through water uptake, requiring them to survive hypoosmotic shock to maintain cellular integrity. However, the mechanisms behind the adaptation of pollen to this hypoosmotic challenge are largely unknown. Here, we identify the Qc-SNARE protein SYP72, which is specifically expressed in male gametophytes, as a critical regulator of pollen survival upon hypoosmotic shock during hydration. SYP72 interacts with the MSCS-LIKE 8 (MSL8) and is required for its localization to the plasma membrane. Intraspecies and interspecies genetic complementation experiments reveal that SYP72 paralogs and orthologs from green algae to angiosperms display conserved molecular functions and rescue the defects of Arabidopsis syp72 mutant pollen facing hypoosmotic shock following hydration. Our findings demonstrate a critical role for SYP72 in pollen resistance to hypoosmotic shock through the MSL8 cascade during pollen hydration. Pollen grains undergo desiccation and rehydration prior to germination and must survive osmotic shock. Here the authors show that the Qc-SNARE protein SYP72 is required for the localization of the mechanosensitive channel MSL8 at the plasma membrane and to maintain viability during rehydration.
Collapse
Affiliation(s)
- Xuemei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,College of Life Sciences, South-Central University for Nationalities, 430074, Wuhan, China
| | - Yifan Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Ling Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Haiming Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Yingying Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Hubei Hongshan Laboratory, 430070, Wuhan, China.
| |
Collapse
|
11
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
12
|
Menendez YC, Sanchez DH, Snowdon RJ, Rondanini DP, Botto JF. Unraveling the impact on agronomic traits of the genetic architecture underlying plant-density responses in canola. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5426-5441. [PMID: 33940608 DOI: 10.1093/jxb/erab191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plant density defines vegetative architecture and the competition for light between individuals. Brassica napus (canola, rapeseed) presents a radically different plant architecture compared to traditional crops commonly cultivated at high density, and can act as a model system of indeterminate growth. Using a panel of 152 spring-type accessions and a double-haploid population of 99 lines from a cross between the cultivars Lynx and Monty, we performed genome-wide association studies (GWAS) and quantitative trait locus (QTL) mapping for 12 growth and yield traits at two contrasting plant densities of 15 and 60 plants m-2. The most significant associations were found for time to flowering, biomass at harvest, plant height, silique and seed numbers, and seed yield. These were generally independent of plant density, but some density-dependent associations were found in low-density populations. RNA-seq transcriptomic analysis revealed distinctive latent gene-regulatory responses to simulated shade between Lynx and Monty. Having identified candidate genes within the canola QTLs, we further examined their influence on density responses in Arabidopsis lines mutated in certain homologous genes. The results suggested that TCP1 might promote growth independently of plant density, while HY5 could increase biomass and seed yield specifically at high plant density. For flowering time, the results suggested that PIN genes might accelerate flowering in plant a density-dependent manner whilst FT, HY5, and TCP1 might accelerate it in a density-independent. This work highlights the advantages of using agronomic field experiments together with genetic and transcriptomic approaches to decipher quantitative complex traits that potentially mediate improved crop productivity.
Collapse
Affiliation(s)
- Yesica C Menendez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Av. Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Deborah P Rondanini
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Av. Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Av. Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Simonini S, Bemer M, Bencivenga S, Gagliardini V, Pires ND, Desvoyes B, van der Graaff E, Gutierrez C, Grossniklaus U. The Polycomb group protein MEDEA controls cell proliferation and embryonic patterning in Arabidopsis. Dev Cell 2021; 56:1945-1960.e7. [PMID: 34192526 PMCID: PMC8279741 DOI: 10.1016/j.devcel.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Establishing the embryonic body plan of multicellular organisms relies on precisely orchestrated cell divisions coupled with pattern formation, which, in animals, are regulated by Polycomb group (PcG) proteins. The conserved Polycomb Repressive Complex 2 (PRC2) mediates H3K27 trimethylation and comes in different flavors in Arabidopsis. The PRC2 catalytic subunit MEDEA is required for seed development; however, a role for PRC2 in embryonic patterning has been dismissed. Here, we demonstrate that embryos derived from medea eggs abort because MEDEA is required for patterning and cell lineage determination in the early embryo. Similar to PcG proteins in mammals, MEDEA regulates embryonic patterning and growth by controlling cell-cycle progression through repression of CYCD1;1, which encodes a core cell-cycle component. Thus, Arabidopsis embryogenesis is epigenetically regulated by PcG proteins, revealing that the PRC2-dependent modulation of cell-cycle progression was independently recruited to control embryonic cell proliferation and patterning in animals and plants.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Marian Bemer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Nuno D Pires
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Eric van der Graaff
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
14
|
Norris K, Hopes T, Aspden JL. Ribosome heterogeneity and specialization in development. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1644. [PMID: 33565275 PMCID: PMC8647923 DOI: 10.1002/wrna.1644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Regulation of protein synthesis is a vital step in controlling gene expression, especially during development. Over the last 10 years, it has become clear that rather than being homogeneous machines responsible for mRNA translation, ribosomes are highly heterogeneous and can play an active part in translational regulation. These "specialized ribosomes" comprise of specific protein and/or rRNA components, which are required for the translation of particular mRNAs. However, while there is extensive evidence for ribosome heterogeneity, support for specialized functions is limited. Recent work in a variety of developmental model organisms has shed some light on the biological relevance of ribosome heterogeneity. Tissue-specific expression of ribosomal components along with phenotypic analysis of ribosomal gene mutations indicate that ribosome heterogeneity and potentially specialization are common in key development processes like embryogenesis, spermatogenesis, oogenesis, body patterning, and neurogenesis. Several examples of ribosome specialization have now been proposed but strong links between ribosome heterogeneity, translation of specific mRNAs by defined mechanisms, and role of these translation events remain elusive. Furthermore, several studies have indicated that heterogeneous ribosome populations are a product of tissue-specific expression rather than specialized function and that ribosomal protein phenotypes are the result of extra-ribosomal function or overall reduced ribosome levels. Many important questions still need to be addressed in order to determine the functional importance of ribosome heterogeneity to development and disease, which is likely to vary across systems. It will be essential to dissect these issues to fully understand diseases caused by disruptions to ribosomal composition, such as ribosomopathies. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Structure/Function RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Karl Norris
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| | - Julie Louise Aspden
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| |
Collapse
|
15
|
Jeon HW, Byrne ME. SAW homeodomain transcription factors regulate initiation of leaf margin serrations. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1738-1747. [PMID: 33247922 DOI: 10.1093/jxb/eraa554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Plant leaves are the main photosynthetic organ of plants and they occur in an array of different shapes. Leaf shape is determined by morphogenesis whereby patterning of the leaf margin can result in interspaced leaf serrations, lobes, or leaflets, depending on the species, developmental stage, and in some instances the environment. In Arabidopsis, mutations in the homeodomain transcription factors SAW1 and SAW2 result in more prominent leaf margin serrations. Here we show that serrations appear precociously in the saw1 saw2 mutant. The pattern of auxin maxima, and of PIN1 and CUC2 expression, which form a feedback loop that drives serration outgrowth, is altered in saw1 saw2 and correlates with precocious serration initiation. SAW1 is not expressed in the outer epidermal cell layer where PIN1 convergence points generate auxin maxima. Instead, SAW1 is expressed on the adaxial side of the leaf and expression in this domain is sufficient for function. We suggest that SAW1 and SAW2 repress serration initiation and outgrowth by promoting the transition to a determinate fate in the leaf margin.
Collapse
Affiliation(s)
- Hyung-Woo Jeon
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
16
|
Xiong W, Lan T, Mo B. Extraribosomal Functions of Cytosolic Ribosomal Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:607157. [PMID: 33968093 PMCID: PMC8096920 DOI: 10.3389/fpls.2021.607157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Ribosomes are basic translational machines in all living cells. The plant cytosolic ribosome is composed of four rRNAs and approximately 81 ribosomal proteins (RPs). In addition to the fundamental functions of RPs in the messenger RNA decoding process as well as in polypeptide synthesis and ribosome assembly, extraribosomal functions of RPs that occur in the absence of the ribosome have been proposed and studied with respect to RPs' ability to interact with RNAs and non-ribosomal proteins. In a few cases, extraribosomal functions of several RPs have been demonstrated with solid evidences in plants, including microRNA biogenesis, anti-virus defenses, and plant immunity, which have fascinated biologists. We believe that the widespread duplication of RP genes in plants may increase the potential of extraribosomal functions of RPs and more extraribosomal functions of plant RPs will be discovered in the future. In this article we review the current knowledge concerning the extraribosomal functions of RPs in plants and described the prospects for future research in this fascinating area.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Beixin Mo,
| |
Collapse
|
17
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
18
|
Chen D, Wang Y, Zhang W, Li N, Dai B, Xie F, Sun Y, Sun M, Peng X. Gametophyte-specific DEAD-box RNA helicase 29 is required for functional maturation of male and female gametophytes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4083-4092. [PMID: 32280991 DOI: 10.1093/jxb/eraa190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
The maturation of male and female gametophytes together with its impact on plant sexual reproduction has not received much attention, and the molecular mechanisms underlying the process are largely unknown. Here, we show that Arabidopsis DEAD-box RNA helicase 29 (RH29) is critical for the functional maturation of both male and female gametophytes. Homozygous rh29 mutants could not be obtained, and heterozygous mutant plants were semi-sterile. Progression of the cell cycle in rh29 female gametophytes was delayed. Delayed pollination experiments showed that rh29 female gametophytes underwent cell-fate specification but were unable to develop into functional gametophytes. Functional specification but not morphogenesis was also disrupted in rh29 male gametophytes, causing defective pollen tube growth in the pistil. RH29 was highly and specifically expressed in gametophytic cells. RH29 shares high amino acid sequence identity with yeast Dbp10p, which partially rescues the aborted-ovules phenotype of rh29/RH29 plants. RH29 is essential for the synthesis of REGULATORY PARTICLE TRIPLE A ATPase 5a (RPT5a), a subunit of the regulatory particle of the 26S proteasome. Our results suggest that gametophyte functional maturation is a necessary process for successful fertilization and that RH29 is essential for the functional maturation of both male and female gametophytes.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yameng Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Na Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Dai
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Kopka J. Systematic Review of Plant Ribosome Heterogeneity and Specialization. FRONTIERS IN PLANT SCIENCE 2020; 11:948. [PMID: 32670337 PMCID: PMC7332886 DOI: 10.3389/fpls.2020.00948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
Plants dedicate a high amount of energy and resources to the production of ribosomes. Historically, these multi-protein ribosome complexes have been considered static protein synthesis machines that are not subject to extensive regulation but only read mRNA and produce polypeptides accordingly. New and increasing evidence across various model organisms demonstrated the heterogeneous nature of ribosomes. This heterogeneity can constitute specialized ribosomes that regulate mRNA translation and control protein synthesis. A prominent example of ribosome heterogeneity is seen in the model plant, Arabidopsis thaliana, which, due to genome duplications, has multiple paralogs of each ribosomal protein (RP) gene. We support the notion of plant evolution directing high RP paralog divergence toward functional heterogeneity, underpinned in part by a vast resource of ribosome mutants that suggest specialization extends beyond the pleiotropic effects of single structural RPs or RP paralogs. Thus, Arabidopsis is a highly suitable model to study this phenomenon. Arabidopsis enables reverse genetics approaches that could provide evidence of ribosome specialization. In this review, we critically assess evidence of plant ribosome specialization and highlight steps along ribosome biogenesis in which heterogeneity may arise, filling the knowledge gaps in plant science by providing advanced insights from the human or yeast fields. We propose a data analysis pipeline that infers the heterogeneity of ribosome complexes and deviations from canonical structural compositions linked to stress events. This analysis pipeline can be extrapolated and enhanced by combination with other high-throughput methodologies, such as proteomics. Technologies, such as kinetic mass spectrometry and ribosome profiling, will be necessary to resolve the temporal and spatial aspects of translational regulation while the functional features of ribosomal subpopulations will become clear with the combination of reverse genetics and systems biology approaches.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Yin-Chen Hsieh
- Bioinformatics Subdivision, Wageningen University, Wageningen, Netherlands
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
20
|
Matilla AJ. Auxin: Hormonal Signal Required for Seed Development and Dormancy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E705. [PMID: 32492815 PMCID: PMC7356396 DOI: 10.3390/plants9060705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The production of viable seeds is a key event in the life cycle of higher plants. Historically, abscisic acid (ABA) and gibberellin (GAs) were considered the main hormones that regulate seed formation. However, auxin has recently emerged as an essential player that modulates, in conjunction with ABA, different cellular processes involved in seed development as well as the induction, regulation and maintenance of primary dormancy (PD). This review examines and discusses the key role of auxin as a signaling molecule that coordinates seed life. The cellular machinery involved in the synthesis and transport of auxin, as well as their cellular and tissue compartmentalization, is crucial for the development of the endosperm and seed-coat. Thus, auxin is an essential compound involved in integuments development, and its transport from endosperm is regulated by AGAMOUS-LIKE62 (AGL62) whose transcript is specifically expressed in the endosperm. In addition, recent biochemical and genetic evidence supports the involvement of auxins in PD. In this process, the participation of the transcriptional regulator ABA INSENSITIVE3 (ABI3) is critical, revealing a cross-talk between auxin and ABA signaling. Future experimental aimed at advancing knowledge of the role of auxins in seed development and PD are also discussed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Ma Q, Shi C, Su C, Liu Y. Complementary analyses of the transcriptome and iTRAQ proteome revealed mechanism of ethylene dependent salt response in bread wheat (Triticum aestivum L.). Food Chem 2020; 325:126866. [PMID: 32387982 DOI: 10.1016/j.foodchem.2020.126866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
In order to clarify the ethylene dependent salt response mechanism in wheat, 2-week-old wheat seedlings of cultivar 'Qingmai 6' treated with water, sodium chloride (NaCl), NaCl and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and NaCl and ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) were collected and analyzed by transcriptional sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. At least 1140 proteins and 73,401 genes were identified, and proteins including ribosomal proteins (RPs), nucleoside diphosphate kinases (CDPKs), transaldolases (TALs), beta-glucosidases (BGLUs), phosphoenlpyruvate carboxylases (PEPCs), superoxide dismutases (SODs), and 6-phosphogluconate dehydrogenases (6-PGDHs) were significantly differently expressed. These genes and proteins revealed that ethylene dependent salt response through RPs activation, chaperones synthesis, the reactive oxygen species (ROS) scavenging, and carbohydrate metabolites pathway. Our results provided transcriptomics and proteomics information with respect to the molecular mechanisms of ethylene regualted salt response.
Collapse
Affiliation(s)
- Qian Ma
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Changhai Shi
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunxue Su
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiguo Liu
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
22
|
Luo A, Zhan H, Zhang X, Du H, Zhang Y, Peng X. Cytoplasmic ribosomal protein L14B is essential for fertilization in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110394. [PMID: 32005399 DOI: 10.1016/j.plantsci.2019.110394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.
Collapse
Affiliation(s)
- An Luo
- College of Life Science, Yangtze University, Jingzhou, 434023, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuecheng Zhang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434023, China
| | - Yubo Zhang
- Department of Food Science, Foshan University, Foshan, 528231, China.
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
He SL, Hsieh HL, Jauh GY. SMALL AUXIN UP RNA62/75 Are Required for the Translation of Transcripts Essential for Pollen Tube Growth. PLANT PHYSIOLOGY 2018; 178:626-640. [PMID: 30093526 PMCID: PMC6181030 DOI: 10.1104/pp.18.00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 05/21/2023]
Abstract
Successful pollen tube elongation is critical for double fertilization, but the biological functions of pollen tube genes and the regulatory machinery underlying this crucial process are largely unknown. A previous translatomic study revealed two Arabidopsis (Arabidopsis thaliana) SAUR (SMALL AUXIN UP RNA) genes, SAUR62 and SAUR75, whose expression is up-regulated by pollination. Here, we found that both SAUR62 and SAUR75 localized mainly to pollen tube nuclei. The siliques of homozygous saur62 (saur62/-), saur75 (saur75/-), and the SAUR62/75 RNA interference (RNAi) knockdown line had many aborted seeds. These lines had normal pollen viability but defective in vitro and in vivo pollen tube growth, with branching phenotypes. Immunoprecipitation with transgenic SAUR62/75-GFP flowers revealed ribosomal protein RPL12 family members as potential interacting partners, and their individual interactions were confirmed further by yeast two-hybrid and bimolecular fluorescence complementation assays. Polysome profiling showed reduced 80S ribosome abundance in homozygous saur62, saur75, ribosomal large subunit12c, and SAUR62/75 RNAi flowers, suggesting that SAUR62/75 play roles in ribosome assembly. To clarify their roles in translation, we analyzed total proteins from RNAi versus wild-type flowers by isobaric tags for relative and absolute quantitation, revealing significantly reduced expression of factors participating in pollen tube wall biogenesis and F-actin dynamics, which are critical for the elastic properties of tube elongation. Indeed, RNAi pollen tubes showed mislocalization of deesterified and esterified pectins and F-actin organization. Thus, the biological roles of SAUR62/75 and their RPL12 partners are critical in ribosomal pre-60S subunit assembly for efficient pollen tube elongation and subsequent fertilization.
Collapse
Affiliation(s)
- Siou-Luan He
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
24
|
Xie F, Yan H, Sun Y, Wang Y, Chen H, Mao W, Zhang L, Sun M, Peng X. RPL18aB helps maintain suspensor identity during early embryogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:266-269. [PMID: 29193792 DOI: 10.1111/jipb.12616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
During embryogenesis, plants are thought to use a mechanism that allows the suspensor to maintain its identity. Here, we reported that RPL18aB is involved in this mechanism in Arabidopsis thaliana. The suspensor cells proliferated in rpl18aB and formed a multicellular structure rather than undergo programmed cell death, as in wild type. Suspensors of rpl18aB expressed the embryo proper marker, DRN::GFP, but not the suspensor marker, WOX8::GFP. In addition, auxin accumulated throughout the suspensors of rpl18aB proembryos. Suspensor-specific expression of RPL18aB could rescue the cell proliferation defects in rpl18aB suspensors. These findings supported a role for RPL18aB in maintaining suspensor identity.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailong Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yameng Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanying Mao
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liyao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Wójcik AM, Mosiolek M, Karcz J, Nodine MD, Gaj MD. Whole Mount in situ Localization of miRNAs and mRNAs During Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1277. [PMID: 30233621 PMCID: PMC6131960 DOI: 10.3389/fpls.2018.01277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/15/2018] [Indexed: 05/11/2023]
Abstract
Somatic embryogenesis (SE) results from the transition of differentiated plant somatic cells into embryogenic cells that requires the extensive reprogramming of the somatic cell transcriptome. Commonly, the SE-involved genes are identified by analyzing the heterogeneous population of explant cells and thus, it is necessary to validate the expression of the candidate genes in the cells that are competent for embryogenic transition. Here, we optimized and implemented the whole mount in situ hybridization (WISH) method (Bleckmann and Dresselhaus, 2016; Dastidar et al., 2016) in order to analyze the spatiotemporal localization of miRNAs (miR156, miR166, miR390, miR167) and mRNAs such as WOX5 and PHABULOSA-target of miR165/166 during the SE that is induced in Arabidopsis explants. This study presents a detailed step-by-step description of the WISH procedure in which DIG-labeled LNA and RNA probes were used to detect miRNAs and mRNAs, respectively. The usefulness of the WISH in the functional analysis of the SE-involved regulatory pathways is demonstrated and the advantages of this method are highlighted: (i) the ability to analyze intact non-sectioned plant tissue; (ii) the specificity of transcript detection; (iii) the detection of miRNA; and (iv) a semi-quantitative assessment of the RNA abundance.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Magdalena Mosiolek
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- *Correspondence: Małgorzata D. Gaj,
| |
Collapse
|
26
|
Saha A, Das S, Moin M, Dutta M, Bakshi A, Madhav MS, Kirti PB. Genome-Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit (RPL) Genes in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1553. [PMID: 28966624 PMCID: PMC5605565 DOI: 10.3389/fpls.2017.01553] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/25/2017] [Indexed: 05/07/2023]
Abstract
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.
Collapse
Affiliation(s)
- Anusree Saha
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Shubhajit Das
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mazahar Moin
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mouboni Dutta
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - M. S. Madhav
- Department of Biotechnology, Indian Institute of Rice ResearchHyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of HyderabadHyderabad, India
| |
Collapse
|
27
|
Huang J, Chen D, Yan H, Xie F, Yu Y, Zhang L, Sun M, Peng X. Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:642-656. [PMID: 28294536 DOI: 10.1111/jipb.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase (NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed during most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically through complementation by NAGK in pollen, or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Loss-of-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion, our results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailong Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Yu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liyao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Xie T, Chen D, Wu J, Huang X, Wang Y, Tang K, Li J, Sun M, Peng X. Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5687-5698. [PMID: 27670716 PMCID: PMC5066490 DOI: 10.1093/jxb/erw331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most pentatricopeptide repeat (PPR) proteins are involved in organelle post-transcriptional processes, including RNA editing. The PPR proteins include the PLS subfamily, containing characteristic triplets of P, L, and S motifs; however, their editing mechanisms and roles in developmental processes are not fully understood. In this study, we isolated the Arabidopsis thaliana Growing slowly 1 (AtGRS1) gene and showed that it functions in RNA editing and plant development. Arabidopsis null mutants of grs1 exhibit slow growth and sterility. Further analysis showed that cell division activity was reduced dramatically in the roots of grs1 plants. We determined that GRS1 is a nuclear-encoded mitochondria-localized PPR protein, and is a member of the PLS subfamily. GRS1 is responsible for the RNA editing at four specific sites of four mitochondrial mRNAs: nad1-265, nad4L-55, nad6-103, and rps4-377 The first three of these mRNAs encode for the subunits of complex I of the electron transport chain in mitochondria. Thus, the activity of complex I is strongly reduced in grs1 Changes in RPS4 editing in grs1 plants affect mitochondrial ribosome biogenesis. Expression of the alternative respiratory pathway and the abscisic acid response gene ABI5 were up-regulated in grs1 mutant plants Genetic analysis revealed that ABI5 is involved in the short root phenotype of grs1 Taken together, our results indicate that AtGRS1 regulates plant development by controlling RNA editing in Arabidopsis.
Collapse
Affiliation(s)
- Tingting Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaorong Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yifan Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Keli Tang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|