1
|
He D, Chang Y, Jiang B, Yang M, Deng C, Zhu X. Downregulation of LOX Overexpression Promotes Retinal Ganglion Cells Survival in an Acute Ocular Hypertension Model. Curr Eye Res 2024; 49:1171-1179. [PMID: 38979820 DOI: 10.1080/02713683.2024.2371140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE To investigate the effect of reducing Lysyl oxidase (LOX) overexpression on retinal ganglion cells (RGCs) apoptosis in an acute ocular hypertension (AOH) rat model. METHODS AOH rat model was performed by anterior chamber perfusion and either received an intravitreal injection with β-aminopropionitrile (BAPN) or normal saline. After 2wk, Quantification of survival RGCs in the retina was performed using Retrograde FluoroGold labeling. The mRNA expression levels of LOX, LOXL1-4, collagen 1a1 (Col1a1), collagen 3a1 (Col3a1), collagen4a1 (Col4a1), elastin (Eln), fibronectin1 (Fbn1), fibronectin4 (Fbn4) were determined by RT-qPCR. LOX expression was determined by Western blot (WB) analysis and immunohistochemistry. The RNA expression of LOX, Eln and Col1a1 in RGCs retrograde-labeled with 1,1'-dioctadecyl-3,3,3',3' tetra-methylindocarbocyanine perchlorate(DiI)that selected through FACS sorting were determined by RT-qPCR analysis. Changes of the retinal function were detected by Electroretinogram (ERG) analysis. RESULTS Results showed that significant LOX overexpression and loss of RGCs related to IOP exposure in AOH retinas. PCR analysis indicated significant increased mRNA level of Col1a1, Col3al and Eln in AOH retinas. Significant increase mRNA expression of LOX, Col1a1 and Eln in the RGCs were observed in AOH group compared with CON group. AOH rats injected with BAPN showed a significant decrease in LOX expression, reduced the loss of RGCs and retinal function damage. CONCLUSIONS The results demonstrated that changes of LOX and specific ECM components in retina were correlated with AOH. Findings from this study indicated that preventing LOX over-expression may be protective against RGCs loss and retinal function damage in AOH animal model.
Collapse
Affiliation(s)
- Dengling He
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Yun Chang
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Bingcai Jiang
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Man Yang
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Chengmin Deng
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Xiaoyan Zhu
- Zunyi Medical University, Zunyi City, Guizhou Province, China
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Buonfiglio F, Pfeiffer N, Gericke A. Glaucoma and the ocular renin-angiotensin-aldosterone system: Update on molecular signalling and treatment perspectives. Cell Signal 2024; 122:111343. [PMID: 39127136 DOI: 10.1016/j.cellsig.2024.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Glaucoma, a leading cause of blindness worldwide, encompasses a group of pathological conditions affecting the optic nerve and is characterized by progressive retinal ganglion cell loss, cupping of the optic nerve head, and distinct visual field defects. While elevated intraocular pressure (IOP) is the main risk factor for glaucoma, many patients do not have elevated IOP. Consequently, other risk factors, such as ocular blood flow abnormalities and immunological factors, have been implicated in its pathophysiology. Traditional therapeutic strategies primarily aim to reduce IOP, but there is growing interest in developing novel treatment approaches to improve disease management and reduce the high rates of severe visual impairment. In this context, targeting the ocular renin-angiotensin-aldosterone system (RAAS) has been found as a potential curative strategy. The RAAS contributes to glaucoma development through key effectors such as prorenin, angiotensin II, and aldosterone. Recent evidence has highlighted the potential of using RAAS modulators to combat glaucoma, yielding encouraging results. Our study aims to explore the molecular pathways linking the ocular RAAS and glaucoma, summarizing recent advances that elucidate the role of the RAAS in triggering oxidative stress, inflammation, and remodelling in the pathogenesis of glaucoma. Additionally, we will present emerging therapeutic approaches that utilize RAAS modulators and antioxidants to slow the progression of glaucoma.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Norbert Pfeiffer
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| | - Adrian Gericke
- Departments of Ophthalmology, University Medical Center of the Johannes Gutenberg- University, Langenbeckstr.1, 55131 Mainz, Germany.
| |
Collapse
|
3
|
Li X, Fu YH, Tong XW, Zhang YT, Shan YY, Xu YX, Pu SD, Gao XY. RAAS in diabetic retinopathy: mechanisms and therapies. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230292. [PMID: 38652701 PMCID: PMC11081058 DOI: 10.20945/2359-4292-2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/23/2023] [Indexed: 04/25/2024]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.
Collapse
Affiliation(s)
- Xin Li
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yu-Hong Fu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Xue-Wei Tong
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yi-Tong Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yong-Yan Shan
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yu-Xin Xu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Sheng-Dan Pu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Xin-Yuan Gao
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China,
| |
Collapse
|
4
|
Castro B, Steel JC, Layton CJ. AAV-mediated gene therapies for glaucoma and uveitis: are we there yet? Expert Rev Mol Med 2024; 26:e9. [PMID: 38618935 PMCID: PMC11062146 DOI: 10.1017/erm.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Glaucoma and uveitis are non-vascular ocular diseases which are among the leading causes of blindness and visual loss. These conditions have distinct characteristics and mechanisms but share a multifactorial and complex nature, making their management challenging and burdensome for patients and clinicians. Furthermore, the lack of symptoms in the early stages of glaucoma and the diverse aetiology of uveitis hinder timely and accurate diagnoses, which are a cause of poor visual outcomes under both conditions. Although current treatment is effective in most cases, it is often associated with low patient adherence and adverse events, which directly impact the overall therapeutic success. Therefore, long-lasting alternatives with improved safety and efficacy are needed. Gene therapy, particularly utilising adeno-associated virus (AAV) vectors, has emerged as a promising approach to address unmet needs in these diseases. Engineered capsids with enhanced tropism and lower immunogenicity have been proposed, along with constructs designed for targeted and controlled expression. Additionally, several pathways implicated in the pathogenesis of these conditions have been targeted with single or multigene expression cassettes, gene editing and silencing approaches. This review discusses strategies employed in AAV-based gene therapies for glaucoma and non-infectious uveitis and provides an overview of current progress and future directions.
Collapse
Affiliation(s)
- Brenda Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
| | - Jason C. Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Christopher J. Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia
- Faculty of Medicine, Greenslopes Clinical School, The University of Queensland, Brisbane, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| |
Collapse
|
5
|
Zheng YX, Wang KX, Chen SJ, Liao MX, Chen YP, Guan DG, Wu J, Xiong K. Decoding the Key Functional Combined Components Group and Uncovering the Molecular Mechanism of Longdan Xiegan Decoction in Treating Uveitis. Drug Des Devel Ther 2022; 16:3991-4011. [PMID: 36420429 PMCID: PMC9677932 DOI: 10.2147/dddt.s385136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Longdan Xiegan Decoction (LXD) is a famous herbal formula in China. It has been proved that LXD has been shown to have a significant inhibitory effect on suppresses the inflammatory cells associated with uveitis. However, the key functional combination of component groups and their possible mechanisms remain unclear. Methods The community detecting model of the network, the functional response space, and reverse prediction model were utilized to decode the key components group (KCG) and possible mechanism of LXD in treating uveitis. Finally, MTT assay, NO assay and ELISA assay were applied to verify the effectiveness of KCG and the accuracy of our strategy. Results In the components-targets-pathogenic genes-disease (CTP) network, a combination of Huffman coding and random walk algorithm was used and eight foundational acting communities (FACs) were discovered with important functional significance. Verification has shown that FACs can represent the corresponding C-T network for treating uveitis. A novel node importance calculation method was designed to construct the functional response space and pick out 349 effective proteins. A total of 54 components were screened and defined as KCG. The pathway enrichment results showed that KCG and their targets enriched signal pathways of IL-17, Toll-like receptor, and T cell receptor played an important role in the pathogenesis of uveitis. Furthermore, experimental verification results showed that important KCG quercetin and sitosterol markedly inhibited the production of nitric oxide and significantly regulated the level of TNF-α and IFN-γ in Lipopolysaccharide-induced RAW264.7 cells. Discussion In this research, we decoded the potential mechanism of the multi-components-genes-pathways of LXD’s pharmacological action mode against uveitis based on an integrated pharmacology approach. The results provided a new perspective for the future studies of the anti-uveitis mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yi-Xu Zheng
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ke-Xin Wang
- Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, People’s Republic of China
| | - Si-Jin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mu-Xi Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, People’s Republic of China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jing Wu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Jing Wu; Ke Xiong, Email ;
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Liu M, Liu J, Wang W, Liu G, Jin X, Lei B. Longitudinal Photoreceptor Phenotype Observation and Therapeutic Evaluation of a Carbonic Anhydrase Inhibitor in a X-Linked Retinoschisis Mouse Model. Front Med (Lausanne) 2022; 9:886947. [PMID: 35836954 PMCID: PMC9273824 DOI: 10.3389/fmed.2022.886947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To study the long-term photoreceptor changes and to evaluate the effects of topical application of a carbonic anhydrase inhibitor (CAI) in a mouse model of X-linked retinoschisis (XLRS). Methods Conventional electroretinograms (ERGs) and dark-adapted 10-Hz flicker ERGs were recorded in control and Rs1−/Y mice generated with CRISPR/Cas9. ON-pathway blocker 2-amino-4-phosphobutyric acid (APB) was injected intravitreally. Morphology was evaluated with histology and optical coherence tomography (OCT). Mice were treated with a CAI inhibitor brinzolamide eye drops (10 mg/ml) three times a day for 3 months. OCT and ERG findings at 1, 4, and 10 months were analyzed. Results Negative ERGs and retinal cavities were evident in Rs1−/Y mice. Both a-wave and b-wave amplitudes decreased with age when compared with age-matched controls. The APB-isolated a-wave (a′) amplitudes of Rs1−/Y mice were reduced in all age groups. In dark-adapted 10-Hz flicker ERG, the amplitude-intensity curve of Rs1−/Y mice shifted down. The thickness of ONL and IS/OS decreased in Rs1−/Y mice. CAI reduced the splitting retinal cavities but didn't affect the ERG. Conclusions In addition to post receptoral impairments, photoreceptor cells underwent progressive dysfunction since early age in Rs1−/Y mice. Long-term CAI treatment improved the shrinkage of the splitting retinal cavity, while no functional improvement was observed.
Collapse
Affiliation(s)
- Meng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingyang Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weiping Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guangming Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiuxiu Jin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Bo Lei ; orcid.org/0000-0002-5497-0905
| |
Collapse
|
7
|
Weigelt CM, Zippel N, Fuchs H, Rimpelä AK, Schönberger T, Stierstorfer B, Bakker RA, Redemann NH. Characterization and Validation of In Vitro and In Vivo Models to Investigate TNF-α-Induced Inflammation in Retinal Diseases. Transl Vis Sci Technol 2022; 11:18. [PMID: 35579886 PMCID: PMC9123507 DOI: 10.1167/tvst.11.5.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Inflammation is implicated in the etiology of diverse retinopathies including uveitis, age-related macular degeneration or diabetic retinopathy. Tumor necrosis factor alpha (TNF-α) is a well-known proinflammatory cytokine that is described as a biomarker for inflammation in diverse retinopathies and therefore emerged as an interesting target to treat inflammation in the eye by neutralizing anti-TNF-α antibodies. Methods Recently, we have demonstrated that Adeno-associated virus (AAV)–mediated expression of human TNF-α in the murine eye induces retinal inflammation including vasculitis and fibrosis, thereby mimicking human disease-relevant pathologies. In a proof-of-mechanism study, we now tested whether AAV-TNF-α induced pathologies can be reversed by neutralizing TNF-α antibody treatment. Results Strikingly, a single intravitreal injection of the TNF-α antibody golimumab reduced AAV-TNF-α–induced retinal inflammation and retinal thickening. Furthermore, AAV-TNF-α–mediated impaired retinal function was partially rescued by golimumab as revealed by electroretinography recordings. Finally, to study TNF-α-induced vasculitis in human in vitro cell culture assays, we established a monocyte-to-endothelium adhesion co-culture system. Indeed, also in vitro TNF-α induced monocyte adhesion to human retinal endothelial cells, which was prevented by golimumab. Conclusions Overall, our study describes valuable in vitro and in vivo approaches to study the function of TNF-α in retinal inflammation and demonstrated a preclinical proof-of-mechanism treatment with golimumab. Translational Relevance The AAV-based model expressing human TNF-α allows us to investigate TNF-α–driven pathologies supporting research in mechanisms of retinal inflammation.
Collapse
Affiliation(s)
- Carina M Weigelt
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nina Zippel
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Holger Fuchs
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anna-Kaisa Rimpelä
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tanja Schönberger
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Stierstorfer
- Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Remko A Bakker
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Norbert H Redemann
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
8
|
Therapeutic Applications of Adeno-Associated Virus (AAV) Gene Transfer of HLA-G in the Eye. Int J Mol Sci 2022; 23:ijms23073465. [PMID: 35408825 PMCID: PMC8998501 DOI: 10.3390/ijms23073465] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review human leukocyte antigen G (HLA-G) in the eye, its role in immune tolerance, and the potential therapeutic use of AAV gene transfer and expression of HLA-G in various ocular tissues. Several studies are reviewed that demonstrate efficacy in animal models of disease, including intracorneal delivery of AAV-HLA-G to treat corneal inflammation and prevent corneal graft rejection, subconjunctival injection of AAV-HLA-G for ocular graft vs. host disease and potentially dry eye disease, and intravitreal injection of AAV-HLA-G to inhibit uveitis. Furthermore, due to the anti-vascular function of HLA-G, AAV-HLA-G may be an effective therapy for posterior ocular diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and choroidal neovascularization. Therefore, AAV-mediated gene transfer of HLA-G may be an effective treatment for common immune-mediated, inflammatory, and neovascular diseases of the eye.
Collapse
|
9
|
Zhang X, Jia F, Ma W, Li X, Zhou X. DAD3 targets ACE2 to inhibit the MAPK and NF-κB signalling pathways and protect against LPS-induced inflammation in bovine mammary epithelial cells. Vet Res 2022; 53:104. [PMID: 36482404 PMCID: PMC9733329 DOI: 10.1186/s13567-022-01122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/21/2022] [Indexed: 12/13/2022] Open
Abstract
The protective arm of the renin-angiotensin system (RAS), the ACE 2/Ang-(1-7)/MasR axis, has become a new anti-inflammatory target. As a specific activator of ACE2, diminazene aceturate (DA) can promote anti-inflammatory effects by regulating the ACE2/Ang-(1-7)/MasR axis. However, due to the reported toxicity of DA, its application has been limited. In the current study, we synthesized a low toxicity DA derivative 3 (DAD3) and sought to determine whether DAD3 can also activate ACE2 in bovine mammary epithelial cells (BMEC) and regulate the RAS system to inhibit inflammation. We found that both DA and DAD3 can activate and promote ACE2 expression in BMEC. iRNA-mediated knockdown of ACE2 demonstrated that DAD3 activates the ACE2/Ang-(1-7)/MasR axis and plays an anti-inflammatory role in BMEC. Furthermore, the inhibitory effects of DA and DAD3 on the protein phosphorylation of MAPK and NF-κB pathways were reduced in ACE2-silenced BMEC. Our findings show that ACE2 is a target of DAD3, which leads to inhibition of the MAPK and NF-κB signalling pathways and protects against LPS-induced inflammation in BMEC. Thus, DAD3 may provide a new strategy to treat dairy cow mastitis.
Collapse
Affiliation(s)
- Xiangjun Zhang
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Fang Jia
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China ,grid.410612.00000 0004 0604 6392Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, 010110 China
| | - Weiwu Ma
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China
| | - Xueqiang Li
- grid.260987.20000 0001 2181 583XKey Laboratory of Energy Sources and Chemical Engineering, Development Center of Natural Products and Medication and School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 China
| | - Xuezhang Zhou
- grid.260987.20000 0001 2181 583XKey Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, 750021 Ningxia China
| |
Collapse
|
10
|
Glycyrrhizic Acid Alleviates Lipopolysaccharide (LPS)-Induced Acute Lung Injury by Regulating Angiotensin-Converting Enzyme-2 (ACE2) and Caveolin-1 Signaling Pathway. Inflammation 2021; 45:253-266. [PMID: 34427852 DOI: 10.1007/s10753-021-01542-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Acute lung injury (ALI) is mainly caused by severe infection, shock, trauma, and burn, which causes the extensive release of inflammatory factors and other mediators. As a major bioactive constituent of traditional Chinese herb licorice, glycyrrhizic acid (GA) plays an important effect on inflammatory regulation. Nevertheless, the exact mechanism of this effect remains unclear. The present study aims to explore the potential protective effect of GA on LPS-induced ALI. Our results showed that GA significantly attenuated LPS-induced ALI and decreased the production of inflammatory factors, including IL-1β, MCP-1, COX2, HMGB1, and adhesion molecules, such as E-selectin, VCAM-1, and modulated expression of angiotensin-converting enzyme 2 (ACE2). Moreover, treatment of ACE2 inhibitor (MLN-4760) reversed the effects of GA on the secretion of pro-inflammatory factors in ALI. Additionally, GA exerts its protective effect by regulating the ACE2 and caveolin-1/NF-κB signaling pathway. In conclusion, this study showed that GA alleviated LPS-induced ALI by upregulating ACE2 and inhibiting the caveolin-1/NF-κB signaling pathway.
Collapse
|
11
|
Yang M, Qiu R, Wang W, Liu J, Jin X, Li Y, Li L, Lei B. P2X7 Receptor Antagonist Attenuates Retinal Inflammation and Neovascularization Induced by Oxidized Low-Density Lipoprotein. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5520644. [PMID: 34457115 PMCID: PMC8397555 DOI: 10.1155/2021/5520644] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Age-related macular degeneration (AMD) is a common and severe blinding disease among people worldwide. Retinal inflammation and neovascularization are two fundamental pathological processes in AMD. Recent studies showed that P2X7 receptor was closely involved in the inflammatory response. Here, we aim to investigate whether A740003, a P2X7 receptor antagonist, could prevent retinal inflammation and neovascularization induced by oxidized low-density lipoprotein (ox-LDL) and explore the underlying mechanisms. ARPE-19 cells and C57BL/6 mice were treated with ox-LDL and A740003 successively for in vitro and in vivo studies. In this research, we found that A740003 suppressed reactive oxygen species (ROS) generation and inhibited the activation of Nod-like receptor pyrin-domain protein 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) pathway. A740003 also inhibited the generation of angiogenic factors in ARPE-19 cells and angiogenesis in mice. The inflammatory cytokines and phosphorylation of inhibitor of nuclear factor-κB alpha (IKBα) were repressed by A740003. Besides, ERG assessment showed that retinal functions were remarkably preserved in A740003-treated mice. In summary, our results revealed that the P2X7 receptor antagonist reduced retinal inflammation and neovascularization and protected retinal function. The protective effects were associated with regulation of NLRP3 inflammasome and the NF-κB pathway, as well as inhibition of angiogenic factors.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Lipoproteins, LDL/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- NF-kappa B/genetics
- NF-kappa B/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oxidative Stress
- Purinergic P2X Receptor Antagonists/pharmacology
- Reactive Oxygen Species/metabolism
- Receptors, Purinergic P2X7/chemistry
- Receptors, Purinergic P2X7/metabolism
- Retinitis/chemically induced
- Retinitis/drug therapy
- Retinitis/metabolism
- Retinitis/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ya Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Lei Li
- Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
12
|
Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, Helmstädter J, Steven S, Kuntic M, Daiber A, Gericke A. Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants (Basel) 2021; 10:antiox10081238. [PMID: 34439486 PMCID: PMC8389243 DOI: 10.3390/antiox10081238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Angiotensin II (Ang II) has been implicated in the pathophysiology of various age-dependent ocular diseases. The purpose of this study was to test the hypothesis that Ang II induces endothelial dysfunction in mouse ophthalmic arteries and to identify the underlying mechanisms. Ophthalmic arteries were exposed to Ang II in vivo and in vitro to determine vascular function by video microscopy. Moreover, the formation of reactive oxygen species (ROS) was quantified and the expression of prooxidant redox genes and proteins was determined. The endothelium-dependent artery responses were blunted after both in vivo and in vitro exposure to Ang II. The Ang II type 1 receptor (AT1R) blocker, candesartan, and the ROS scavenger, Tiron, prevented Ang II-induced endothelial dysfunction. ROS levels and NOX2 expression were increased following Ang II incubation. Remarkably, Ang II failed to induce endothelial dysfunction in ophthalmic arteries from NOX2-deficient mice. Following Ang II incubation, endothelium-dependent vasodilation was mainly mediated by cytochrome P450 oxygenase (CYP450) metabolites, while the contribution of nitric oxide synthase (NOS) and 12/15-lipoxygenase (12/15-LOX) pathways became negligible. These findings provide evidence that Ang II induces endothelial dysfunction in mouse ophthalmic arteries via AT1R activation and NOX2-dependent ROS formation. From a clinical point of view, the blockade of AT1R signaling and/or NOX2 may be helpful to retain or restore endothelial function in ocular blood vessels in certain ocular diseases.
Collapse
Affiliation(s)
- Michael Birk
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Department of Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Ewa Baum
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Department of Social Sciences and the Humanities, Poznan University of Medical Sciences, ul. Rokietnicka 7, 60-806 Poznań, Poland
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Marin Kuntic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center, Johannes Gutenberg University, Building 605, Langenbeckstr. 1, 55131 Mainz, Germany; (J.H.); (S.S.); (M.K.); (A.D.)
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (M.B.); (E.B.); (J.K.Z.); (C.M.); (N.P.)
- Correspondence: ; Tel.: +49-613-117-8276
| |
Collapse
|
13
|
Kaplan N, Gonzalez E, Peng H, Batlle D, Lavker RM. Emerging importance of ACE2 in external stratified epithelial tissues. Mol Cell Endocrinol 2021; 529:111260. [PMID: 33781838 PMCID: PMC7997854 DOI: 10.1016/j.mce.2021.111260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 03/20/2021] [Indexed: 02/09/2023]
Abstract
Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), has been identified as the receptor for the SARS-CoV-2. Several RAS components including ACE2 and its substrate Ang II are present in both eye and skin, two stratified squamous epithelial tissues that isolate organisms from external environment. Our recent findings in cornea and others in both skin and eye suggest contribution of this system, and specifically of ACE2 in variety of physiological and pathological responses of these organ systems. This review will focus on the role RAS system plays in both skin and cornea, and will specifically discuss our recent findings on ACE2 in corneal epithelial inflammation, as well as potential implications of ACE2 in patients with COVID-19.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Elena Gonzalez
- Department of Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
| | - Daniel Batlle
- Department of Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Wang W, Liu J, Yang M, Qiu R, Li Y, Bian S, Hao B, Lei B. Intravitreal Injection of an Exosome-Associated Adeno-Associated Viral Vector Enhances Retinoschisin 1 Gene Transduction in the Mouse Retina. Hum Gene Ther 2021; 32:707-716. [PMID: 33832349 DOI: 10.1089/hum.2020.328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate whether exosome-associated adeno-associated virus (AAV) retinoschisin 1 (RS1) vector improved the transduction efficiency of RS1 in the mouse retina. pAAV2-RS1-ZsGreen plasmid was constructed by homologous recombination. Exosome-associated AAV vectors containing human RS1 gene (exosome-associated AAV [exo-AAV]2-RS1-ZsGreen) were isolated from producer cells' supernatant, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. In vitro, HEK-293T cells were transduced with AAV2-RS1-ZsGreen and exo-AAV2-RS1-ZsGreen. In vivo, 1 μL of AAV2-RS1-ZsGreen or 1 μL exo-AAV2-RS1-ZsGreen (2 × 108 genome copies/μL) was injected intravitreally into the C57BL/6J mouse eyes. Phosphate buffer saline was injected as controls. The mRNA and the protein expression in the retina were detected. Exo-AAV2-RS1-ZsGreen possessed lipid bilayers, a saucer-like structures and an average of 120 nm particle size. The expression of RS1 and ZsGreen in exo-AAV2-RS1-ZsGreen group were 7.6 times and 5.7 times that of AAV2-RS1-ZsGreen group in HEK-293T cells, respectively. Furthermore, RS1 protein expression increased by 11.8 times in HEK-293T cells. Intravitreal injection of exo-AAV significantly increased the transduction efficiency of RS1 than AAV. Exo-AAV may be a powerful gene delivery system for gene therapy of X-link retinoschisis as well as other inherited retina degenerations.
Collapse
Affiliation(s)
- Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shasha Bian
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
15
|
ACE2 as therapeutic agent. Clin Sci (Lond) 2021; 134:2581-2595. [PMID: 33063820 DOI: 10.1042/cs20200570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin-angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein-coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.
Collapse
|
16
|
Sui A, Chen X, Demetriades AM, Shen J, Cai Y, Yao Y, Yao Y, Zhu Y, Shen X, Xie B. Inhibiting NF-κB Signaling Activation Reduces Retinal Neovascularization by Promoting a Polarization Shift in Macrophages. Invest Ophthalmol Vis Sci 2021; 61:4. [PMID: 32492108 PMCID: PMC7415323 DOI: 10.1167/iovs.61.6.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling is involved in regulating tumor angiogenesis and metastasis; however, the exact mechanism of action in retinal neovascularization (RNV) remains unclear. The purpose of this study was to determine the role and underlying mechanism of NF-κB in regulating RNV in retinal neovascularization mice. Methods Expression levels of NF-κB signaling were detected by immunofluorescence staining and western blotting in retinas of oxygen-induced retinopathy (OIR) mice. OIR mice were treated with either pyrrolidinedithiocarbamate (PDTC), a NF-κB signaling inhibitor, or PBS, and retinal flat-mounts were performed to quantify the area of RNV and the recruitment of retinal macrophages by immunofluorescence staining. Macrophage polarization detected by flow cytometric analysis and the expression of macrophage polarization-associated genes were evaluated by immunofluorescence staining, quantitative RT-PCR, and western blotting. Results Expression levels of phosphorylated IκBα (p-IκBα) and p-p65 increased in OIR mice. Inhibiting NF-κB signaling activation by PDTC significantly reduced RNV. After treatment with PDTC, a reduction in the quantity of macrophages was observed: M1 polarized macrophages decreased, and M2 polarized macrophages increased; the expression of M1 macrophage-associated cytokines decreased and M2 macrophage-associated cytokines increased in the retinas of OIR mice. Conclusions Blocking activation of NF-κB signaling reduces RNV by promoting polarization of M1 macrophages to M2 macrophages in OIR mice.
Collapse
|
17
|
Verma A, Zhu P, Xu K, Du T, Liao S, Liang Z, Raizada MK, Li Q. Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Transl Vis Sci Technol 2020; 9:20. [PMID: 33344064 PMCID: PMC7735952 DOI: 10.1167/tvst.9.13.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose A multitude of animal studies substantiates the beneficial effects of Ang-(1-7), a peptide hormone in the protective axis of the renin angiotensin system, in diabetes and its associated complications including diabetic retinopathy (DR). However, the clinical application of Ang-(1-7) is limited due to unfavorable pharmacological properties. As emerging evidence implicates gut dysbiosis in pathogenesis of diabetes and supports beneficial effects of probiotics, we sought to develop probiotics-based expression and delivery system to enhance Ang-(1-7) and evaluate the efficacy of engineered probiotics expressing Ang-(1-7) in attenuation of DR in animal models. Methods Ang-(1-7) was expressed in the Lactobacillus species as a secreted fusion protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the effects of Ang-(1-7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS-/- and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1-7) (LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively. Results Ang-(1-7) is efficiently expressed from different Lactobacillus species and secreted into circulation in mice fed with LP-A. Oral administration of LP-A significantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory cytokine expression in both diabetic eNOS-/- and Akita mice. Conclusions These results provide proof-of-concept for feasibility and efficacy of using engineered probiotic species as live vector for delivery of Ang-(1-7) with enhanced bioavailability. Translational Relevance Probiotics-based delivery of Ang-(1-7) may hold important therapeutic potential for the treatment of DR and other diabetic complications.
Collapse
Affiliation(s)
- Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kang Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tao Du
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shengquan Liao
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhibing Liang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K. Raizada
- Physiology & Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Novaes Rocha V. Viral replication of SARS-CoV-2 could be self-limitative - The role of the renin-angiotensin system on COVID-19 pathophysiology. Med Hypotheses 2020; 145:110330. [PMID: 33049594 PMCID: PMC7528883 DOI: 10.1016/j.mehy.2020.110330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Currently, the world is suffering with one of the biggest pandemics of recent history. Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus disease 2019 (COVID-19) is provoking devastating consequences on economic and social fields throughout all continents. Therefore, pathophysiological knowledge about COVID-19 is imperative for better planning of preventive measures, diagnosis, and therapeutics of the disease. Based on previous studies, this work proposes new hypothesis related to the role of the renin-angiotensin system on the pathophysiology of COVID-19, and its purpose is to enrich the discussion and to offer alternative ways for experimental and clinical studies aiming at the formulation of new diagnosis and/or treatment methods.
Collapse
Affiliation(s)
- Vinicius Novaes Rocha
- Laboratory of Pathology and Veterinary Histology, Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Brazil.
| |
Collapse
|
19
|
Zhu M, Yang H, Chen Z, Xia X, Deng Q, Shen Y. A cell-permeable peptide inhibitor of p55PIK signaling alleviates ocular inflammation in mouse models of uveitis. Exp Eye Res 2020; 199:108180. [PMID: 32777209 DOI: 10.1016/j.exer.2020.108180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Previously we developed TAT-N24 as a synthetic cell-permeable peptide inhibitor of p55PIK signaling and demonstrated its anti-inflammatory effects. This study aimed to evaluate the potential of TAT-N24 as a new agent for the treatment of ocular inflammatory diseases. METHODS The endotoxin-induced uveitis (EIU) model was established by intravitreal injection of lipopolysaccharide (LPS) in BALB/c mice and experimental autoimmune uveitis (EAU) model was established by subcutaneous injection of a peptide spanning amino acid residues 161-180 of interphotoreceptor retinoid binding protein (IRBP161-180) with complete Freund's adjuvant (CFA) in B10.RIII mice. TAT-N24 was topically administered in EIU model and intraperitoneally administered in EAU model. The severity levels of uveitis were assessed by clinical and histopathological scores. The mRNA levels of inflammatory cytokines in iris-ciliary body (ICB) and retina were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The protein levels of inflammatory factors were determined by ELISA or Western blotting. RESULTS The results showed that TAT-N24 alleviated clinical signs, decreased inflammatory cell infiltration and the expression of inflammatory cytokines in both EIU and EAU models. Furthermore, protein levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in aqueous humor and mRNA and protein levels of NF-κB p65 in the ICB significantly decreased in EIU model. In EAU model, TAT-N24 application induced a significant decrease of IFN-gamma (IFN-γ) and interleukin-17 (IL-17) in the retina, which were secreted by Th1 and Th17 cells, respectively. CONCLUSION In conclusion, TAT-N24 suppressed intraocular inflammation in both EIU and EAU models, and the anti-inflammatory effects were mediated by suppressing the expression of inflammatory cytokines by PI3K/NF-κB signaling pathway. TAT-N24 could be potential candidate for the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Meijuan Zhu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei, China
| | - Hongxia Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xianmin Xia
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, Hubei, China
| | - Qinqin Deng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
20
|
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K, Staniloae C, Williams M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol 2020; 219:108544. [PMID: 32707089 PMCID: PMC7374140 DOI: 10.1016/j.clim.2020.108544] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency facilitates human coronavirus infection due to glutathione depletion. G6PD deficiency may especially predispose to hemolysis upon coronavirus disease-2019 (COVID-19) infection when employing pro-oxidant therapy. However, glutathione depletion is reversible by N-acetylcysteine (NAC) administration. We describe a severe case of COVID-19 infection in a G6PD-deficient patient treated with hydroxychloroquine who benefited from intravenous (IV) NAC beyond reversal of hemolysis. NAC blocked hemolysis and elevation of liver enzymes, C-reactive protein (CRP), and ferritin and allowed removal from respirator and veno-venous extracorporeal membrane oxygenator and full recovery of the G6PD-deficient patient. NAC was also administered to 9 additional respirator-dependent COVID-19-infected patients without G6PD deficiency. NAC elicited clinical improvement and markedly reduced CRP in all patients and ferritin in 9/10 patients. NAC mechanism of action may involve the blockade of viral infection and the ensuing cytokine storm that warrant follow-up confirmatory studies in the setting of controlled clinical trials.
Collapse
Affiliation(s)
- Homam Ibrahim
- New York University Grossman School of Medicine, NY, New York, United States of America.
| | - Andras Perl
- Upstate Medical University Hospital, Syracuse, New York, United States of America.
| | - Deane Smith
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Tyler Lewis
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Zachary Kon
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Ronald Goldenberg
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Kinan Yarta
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Cezar Staniloae
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Mathew Williams
- New York University Grossman School of Medicine, NY, New York, United States of America
| |
Collapse
|
21
|
Ma D, Chen CB, Jhanji V, Xu C, Yuan XL, Liang JJ, Huang Y, Cen LP, Ng TK. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye (Lond) 2020; 34:1212-1219. [PMID: 32382146 PMCID: PMC7205026 DOI: 10.1038/s41433-020-0939-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To determine the expressions of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2) genes in human and mouse ocular cells and comparison to other tissue cells. METHODS Human conjunctiva and primary pterygium tissues were collected from pterygium patients who underwent surgery. The expression of ACE2 and TMPRSS2 genes was determined in human primary conjunctival and pterygium cells, human ocular and other tissue cell lines, mesenchymal stem cells as well as mouse ocular and other tissues by reverse transcription-polymerase chain reaction (RT-PCR) and SYBR green PCR. RESULTS RT-PCR analysis showed consistent expression by 2 ACE2 gene primers in 2 out of 3 human conjunctival cells and pterygium cell lines. Expression by 2 TMPRSS2 gene primers could only be found in 1 out of 3 pterygium cell lines, but not in any conjunctival cells. Compared with the lung A549 cells, similar expression was noted in conjunctival and pterygium cells. In addition, mouse cornea had comparable expression of Tmprss2 gene and lower but prominent Ace2 gene expression compared with the lung tissue. CONCLUSION Considering the necessity of both ACE2 and TMPRSS2 for SARS-CoV-2 infection, our results suggest that conjunctiva would be less likely to be infected by SARS-CoV-2, whereas pterygium possesses some possibility of SARS-CoV-2 infection. With high and consistent expression of Ace2 and Tmprss2 in cornea, cornea rather than conjunctiva has higher potential to be infected by SARS-CoV-2. Precaution is necessary to prevent possible SARS-CoV-2 infection through ocular surface in clinical practice.
Collapse
Affiliation(s)
- Di Ma
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Department of Ophthalmology, UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China.
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong.
- Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
22
|
Fang Y, Gao F, Liu Z. Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-κB and Nrf2 pathways. QJM 2019; 112:914-924. [PMID: 31393582 DOI: 10.1093/qjmed/hcz206] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To investigate the role of angiotensin-converting enzyme 2 (ACE2) in hyperoxic lung injury. METHODS Adult mice were exposed to 95% O2 for 72 h to induce hyperoxic lung injury, and simultaneously treated with ACE2 agonist diminazene aceturate (DIZE) or inhibitor MLN-4760. ACE2 expression/activity in lung tissue and angiotensin (Ang)-(1-7)/Ang II in bronchoalveolar lavage fluid (BALF), and the severity of hyperoxic lung injury were evaluated. The levels of inflammatory factors in BALF and lung tissue and the expression levels of phospho-p65, p65 and IkBα were measured. Oxidative parameter and antioxidant enzyme levels in lung tissue were measured to assess oxidative stress. Finally, the expression levels of nuclear factor-erythroid-2-related factor (Nrf2), NAD(P)H quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were measured using Western blotting. RESULTS Hyperoxia treatment significantly decreased lung ACE2 expression/activity and increased the Ang II/Ang-(1-7) ratio, while co-treatment with hyperoxia and DIZE significantly increased lung ACE2 expression/activity and decreased the Ang II/Ang-(1-7) ratio. By contrast, co-treatment with hyperoxia and MLN-4760 significantly decreased lung ACE2 expression/activity and increased the Ang II/Ang-(1-7) ratio. Hyperoxia treatment induced significant lung injury, inflammatory response and oxidative stress, which were attenuated by DIZE but aggravated by MLN-4760. The NF-κB pathways were activated by hyperoxia and MLN-4760 but inhibited by DIZE. The Nrf2 pathway and its downstream proteins NQO1 and HO-1 were activated by DIZE but inhibited by MLN-4760. CONCLUSION Activation of ACE2 can reduce the severity of hyperoxic lung injury by inhibiting inflammatory response and oxidative stress. ACE2 can inhibit the NF-κB pathway and activate the Nrf2/HO-1/NQO1 pathway, which may be involved in the underlying mechanism.
Collapse
Affiliation(s)
- Y Fang
- Department of Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, 85 WuJin Road, Shanghai, China
| | - F Gao
- Department of Respiratory Medicine, Shanghai Construction Group Hospital, No. 666, Zhongshan North 1st Road, Shanghai, China
| | - Z Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 85 WuJing Road, Shanghai, China
| |
Collapse
|
23
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
25
|
Zhu F, Wang Y, Xu Z, Qu H, Zhang H, Niu L, Xue H, Jing D, He H. Novel adeno‑associated virus‑based genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Mol Med Rep 2018; 19:1016-1023. [PMID: 30569131 PMCID: PMC6323296 DOI: 10.3892/mmr.2018.9739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue despite the introduction of several direct-acting antiviral agents (DAAs), with some 185 million individuals infected with HCV worldwide. There is an urgent need for an effective prophylactic HCV vaccine. In the present study, we constructed genetic vaccines based on novel recombinant adeno-associated viral (rAAV) vectors (AAV2/8 or AAV2/rh32.33) that express the envelope glycoprotein E2 from the HCV genotype 1b. Expression of HCV E2 protein in 293 cells was confirmed by western blot analysis. rAAV2/8.HCV E2 vaccine or rAAV2/rh32.33.HCV E2 vaccine was intramuscularly injected into C57BL/6 mice. HCV E2-specific antigen was produced, and long-lasting specific antibody responses remained detectable XVI weeks following immunization. In addition, the rAAV2/rh32.33 vaccine induced higher antigen-specific antibody levels than the rAAV2/8 vaccine or AAV plasmid. Moreover, both AAV vaccines induced neutralizing antibodies against HCV genotypes 1a and 1b. Finally, it is worth mentioning that neutralizing antibody levels directed against AAV2/rh32.33 were lower than those against AAV2/8 in both mouse and human serum. These results demonstrate that AAV vectors, especially the AAVrh32.33, have particularly favorable immunogenicity for development into an effective HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haiyang Qu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingling Niu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
26
|
Huang XT, Wang B, Zhang WH, Peng MQ, Lin D. Total glucosides of paeony suppresses experimental autoimmune uveitis in association with inhibition of Th1 and Th2 cell function in mice. Int J Immunopathol Pharmacol 2018; 32:394632017751547. [PMID: 29363368 PMCID: PMC5849247 DOI: 10.1177/0394632017751547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Total glucosides of paeony (TGP) are active components extracted from the roots
of Paeonia lactiflora Pall. In this study, we
investigated the role and mechanisms of TGP in experimental autoimmune uveitis
(EAU) model of mice. The C57BL/6 mice were randomly divided into three groups:
sham group, EAU-control group, and EAU-TGP group. Clinical score of images of
the eye fundus were taken on 7, 14, 21, and 28 days after induction of EAU. The
concentrations of proinflammatory cytokines in intraocular fluid were measured
at 14 days after EAU induction with the use of a multiplex assay system. Flow
cytometry was used to analyze the frequency of CD4+, CD8+, interferon-gamma
(IFN-γ), and CD4+/CD8+ ratio in spleen and lymph nodes. Western blotting was
used to measure expressions of mitogen-activated protein kinase (MAPK)
pathway-related proteins in retina. Clinical scores for uveitis were lower in
TGP-treated EAU mice than those without TGP treatment. Importantly, the
concentrations of cytokines induced by T-helper 1 (Th1) and T-helper 2 (Th2)
cells in intraocular fluid were reduced in EAU mice treated with TGP.
Furthermore, the frequency of CD4+, IFN-γ, and CD4+/CD8+ ratio was decreased and
the frequency of CD8+ was increased in spleen and lymph nodes of mice treated
with TGP. The anti-inflammatory effects of TGP were mediated by inhibiting the
MAPK signaling pathways. Our results showed that TGP suppressed uveitis in mice
via the inhibition of Th1 and Th2 cell function. Thus, TGP may be a promising
therapeutic strategy for uveitis, as well as other ocular inflammatory
diseases.
Collapse
Affiliation(s)
- Xue-Tao Huang
- 1 Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, China.,2 Department of Ophthalmology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bin Wang
- 3 Department of Dermatology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Wen-Hua Zhang
- 4 Department of Ophthalmology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Man-Qiang Peng
- 1 Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, China
| | - Ding Lin
- 1 Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, China
| |
Collapse
|
27
|
Dynamic DNA Methylation Changes of Tbx21 and Rorc during Experimental Autoimmune Uveitis in Mice. Mediators Inflamm 2018; 2018:9129163. [PMID: 30254507 PMCID: PMC6142759 DOI: 10.1155/2018/9129163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
The key transcription factors of T helper cell subpopulations, including T-bet, GATA3, RORγt, and Foxp3 are involved in various autoimmune diseases. Whether methylation of these master transcription factors is associated with the development of experimental autoimmune uveitis (EAU) and the possible epigenetic regulatory mechanisms involved has however not yet been addressed. In our study, significant methylation changes in both Tbx21 and Rorc were observed in one CpG site in the retinas of EAU mice. Two CpG sites of Tbx21 and one CpG site of Rorc showed significant dynamic methylation changes in the RPE-choroid complex during EAU. The mRNA expressions of Tbx21 and Rorc in both the retinas and RPE-choroid complexes correlated with the methylation changes at the various time points during EAU development. The methylation changes were associated with the production of the Th1/Th17 cells' signature cytokines, IFN-γ and IL-17. Dynamic changes in mRNA expression of DNA methyltransferases (DNMT1) were also noted, which may be related to the observed methylation changes of these genes. The present study provides evidence that DNA methylation of Tbx21 and Rorc may be associated with the development of EAU. DNMT1 activation may have an important effect on regulating DNA methylation dynamics.
Collapse
|
28
|
Huang Y, He J, Liang H, Hu K, Jiang S, Yang L, Mei S, Zhu X, Yu J, Kijlstra A, Yang P, Hou S. Aryl Hydrocarbon Receptor Regulates Apoptosis and Inflammation in a Murine Model of Experimental Autoimmune Uveitis. Front Immunol 2018; 9:1713. [PMID: 30090104 PMCID: PMC6068235 DOI: 10.3389/fimmu.2018.01713] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Uveitis is characterized as a common cause of blindness worldwide. Aryl hydrocarbon receptor (AhR), a ligand-activated nuclear receptor, has been implicated to play a role in human uveitis, although the exact mechanisms remain poorly understood. The purpose of this study was to enhance our knowledge concerning the role of AhR during intraocular inflammation. We immunized wild-type and AhR-knockout C57BL/6J mice with IRBP651–670 to induce experimental autoimmune uveitis (EAU). Disease severity was evaluated with both clinical and histopathological grading. Blood–retinal barrier (BRB) integrity was tested by Evans blue and tight junction proteins qualifications. Apoptosis was measured using TdT-mediated dUTP nick end labeling staining. Macrophage/microglia activation and polarization were studied by immunofluorescence and Western blot. Following EAU induction, AhR−/− mice had more severe clinical and histopathological manifestations of uveitis than AhR+/+ mice. Increased vascular permeability and apoptotic cells were observed in AhR−/− EAU mice when compared with AhR+/+ EAU mice. In addition, AhR−/− EAU mice showed evidence of a significantly increased macrophage/microglia cells and a stronger polarization from the M2 to the M1 phenotype as compared to AhR+/+ EAU mice. The levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were increased in AhR−/− EAU mice, which was associated with the activation of NF-κB and signal transducers and activators of transcription (STAT) pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an agonist of AhR, caused a significant decrease in the clinical and histopathological manifestations, preserved BRB integrity, reduced apoptotic cells, inhibited macrophage/microglia activation, and shifted their polarization from M1 toward M2. Moreover, decreased expression of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β and inhibition of NF-κB and STAT pathways were found in EAU mice following TCDD treatment. In conclusion, AhR activation with TCDD exhibits an immunomodulatory effect by reducing BRB breakdown, inhibiting retinal cell apoptosis, and reducing pro-inflammatory cytokine expression during EAU. The underlying mechanism may involve the modulation of macrophages/microglia polarization and the downregulation of NF-κB and STAT pathways.
Collapse
Affiliation(s)
- Yike Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Junchi He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Shaoqiu Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Lu Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Suyin Mei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| |
Collapse
|
29
|
Ahmed CM, Massengill MT, Brown EE, Ildefonso CJ, Johnson HM, Lewin AS. A cell penetrating peptide from SOCS-1 prevents ocular damage in experimental autoimmune uveitis. Exp Eye Res 2018; 177:12-22. [PMID: 30048621 DOI: 10.1016/j.exer.2018.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
We describe an immunosuppressive peptide corresponding to the kinase inhibitory region (KIR) of the intracellular checkpoint protein suppressor of cytokine signaling 1 (SOCS-1) that binds to the phospho-tyrosine containing regions of the tyrosine kinases JAK2 and TYK2 and the adaptor protein MAL, and thereby inhibits signaling downstream from these signaling mediators. The peptide, SOCS1-KIR, is thus capable of downregulating overactive JAK/STAT or NF-kB signaling in somatic cells, including those in many compartments of the eye. Attachment of poly-arginine to this peptide (R9-SOCS1-KIR) allows it to penetrate the plasma membrane in aqueous media. R9-SOCS1-KIR was tested in ARPE-19 cells and was found to attenuate mediators of inflammation by blocking the inflammatory effects of IFNγ, TNFα, or IL-17A. R9-SOCS1-KIR and also protected against TNFα or IL-17A mediated damage to the barrier properties of ARPE-19 cells, as evidenced by immunostaining with the tight junction protein, zona occludin 1 (ZO-1), and measurement of transepithelial electrical resistance (TEER). Experimental autoimmune uveitis (EAU) was generated in B10. RIII mice using a peptide of interphotoreceptor retinal binding protein (IRBP161-180) as immunogen. Topical administration of R9-SOCS1-KIR, 2 days before (prophylactic), or 7 days after immunization (therapeutic) protected ocular structure and function as seen by fundoscopy, optical coherence tomography (OCT), and electroretinography (ERG). The ability R9-SOCS1-KIR to suppress ocular inflammation and preserve barrier properties of retinal pigment epithelium makes it a potential candidate for treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA
| | - Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA
| | - Emily E Brown
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA
| | | | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610 USA.
| |
Collapse
|
30
|
Zheng S, Xiao L, Liu Y, Wang Y, Cheng L, Zhang J, Yan N, Chen D. DZNep inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice. Cell Death Dis 2018; 9:310. [PMID: 29472543 PMCID: PMC5833420 DOI: 10.1038/s41419-018-0349-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative diseases causing progressive loss of photoreceptors. Numerous gene mutations are identified to be related with RP, but epigenetic modifications may also be involved in the pathogenesis. Previous studies suggested that both DNA methylation and histone acetylation regulate photoreceptor cell death in RP mouse models. However, the role of histone methylation in RP has never been investigated. In this study, we found that trimethylation of several lysine sites of histone H3, including lysine 27 (H3K27me3), increased in the retinas of rd1 mice. Histone methylation inhibitor DZNep significantly reduced the calpain activity, delayed the photoreceptor loss, and improved ERG response of rd1 retina. RNA-sequencing indicated that DZNep synergistically acts on several molecular pathways that regulate photoreceptor survival in rd1 retina, including PI3K-Akt and photoreceptor differentiation pathways, revealing the therapeutic potential of DZNep for RP treatment. PI3K-Akt pathway and H3K27me3 form a feedback loop in rd1 retina, thus PI3K inhibitor LY294002 reduces phosphorylation of Ezh2 at serine 21 and enhances H3K27me3 deposition, and inhibiting H3K27me3 by DZNep can activate PI3K-Akt pathway by de-repressing gene expression of PI3K subunits Pik3r1 and Pik3r3. These findings suggest that histone methylation, especially H3K27me3 deposition is a novel mechanism and therapeutic target for retinal degenerative diseases, similar to H3K27me3-mediated ataxia-telangiectasia in Atm−/− mouse.
Collapse
Affiliation(s)
- Shijie Zheng
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yu Liu
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantations Street, Worcester, MA, 01606, USA
| | - Yujiao Wang
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lin Cheng
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital Affiliated to Jinan University, 518040, Shenzhen, China
| | - Junjun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
31
|
Mao Y, Pei N, Chen X, Chen H, Yan R, Bai N, Li A, Li J, Zhang Y, Du H, Chen B, Sumners C, Wang X, Wang S, Li H. Angiotensin 1-7 Overexpression Mediated by a Capsid-optimized AAV8 Vector Leads to Significant Growth Inhibition of Hepatocellular Carcinoma In vivo. Int J Biol Sci 2018; 14:57-68. [PMID: 29483825 PMCID: PMC5821049 DOI: 10.7150/ijbs.22235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Angiotensin-(1-7) [Ang-(1-7)] has been identified to inhibit the growth of many types of tumor cells both in vitro and in vivo. However, the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Adeno-associated virus (AAV) serotype-8 is a remarkable vector for long-term in vivo gene delivery. Method: This study was designed to investigate the effects of AAV-mediated Ang-(1-7) overexpression on hepatocellular carcinoma. We first generated three different tyrosine (Y) to phenylalanine (F) mutants of AAV8 (Y447F, Y703F, Y708F) and evaluated their in vivo transduction efficiencies. Results: The data indicated that the Y703F mutant elicited a significant enhancement of liver gene delivery when compared with wild-type AAV8 (wtAAV8). The anti-tumor effect of Ang-(1-7) mediated by this optimized vector was evaluated in H22 hepatoma-bearing mice. Our results demonstrated that AAV-Ang-(1-7) persistently inhibited the growth of hepatocellular carcinoma by significantly downregulating angiogenesis. This was confirmed by observed decreases in the levels of the proangiogenic factors VEGF and PIGF. Conclusion: Collectively, these data suggest that Ang-(1-7) overexpression mediated by the optimized vector may be an effective alternative for hepatocellular carcinoma therapy due to its long-term and significant anti-tumor activity.
Collapse
Affiliation(s)
- Yingying Mao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Nana Pei
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- Clinical Laboratory,The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huiying Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Renhe Yan
- Guangzhou Bioneeds Biotechnology CO., LTD, Guangzhou, Guangdong, China
| | - Na Bai
- Deparement of Nuclear Medicine, People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns University School of Medicine, Baltimore, USA
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baihong Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Colin Sumners
- Departments of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
- ✉ Corresponding authors: ; ;
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
- ✉ Corresponding authors: ; ;
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- ✉ Corresponding authors: ; ;
| |
Collapse
|
32
|
Lei C, Lin R, Wang J, Tao L, Fu X, Qiu Y, Lei B. Amelioration of amyloid β-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-κB signaling and NLRP3 inflammasome. Neuroscience 2017; 360:48-60. [DOI: 10.1016/j.neuroscience.2017.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
|