1
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
2
|
Tai J, Wang L, Yan Z, Liu J. Single-cell sequencing and transcriptome analyses in the construction of a liquid-liquid phase separation-associated gene model for rheumatoid arthritis. Front Genet 2023; 14:1210722. [PMID: 37953920 PMCID: PMC10634374 DOI: 10.3389/fgene.2023.1210722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a disabling autoimmune disease that affects multiple joints. Accumulating evidence suggests that imbalances in liquid-liquid phase separation (LLPS) can lead to altered spatiotemporal coordination of biomolecular condensates, which play important roles in carcinogenesis and inflammatory diseases. However, the role of LLPS in the development and progression of RA remains unclear. Methods: We screened RA and normal samples from GSE12021, GSE55235, and GSE55457 transcriptome datasets and GSE129087 and GSE109449 single-cell sequencing datasets from Gene Expression Omnibus database to investigate the pathogenesis of LLPS-related hub genes at the transcriptome and single cell sequencing levels. Machine learning algorithms and weighted gene co-expression network analysis were applied to screen hub genes, and hub genes were validated using correlation studies. Results: Differential analysis showed that 36 LLPS-related genes were significantly differentially expressed in RA, further random forest and support vector machine identified four and six LLPS-related genes, respectively, and weighted gene co-expression network analysis identified 396 modular genes. Hybridization of the three sets revealed two hub genes, MYC and MAP1LC3B, with AUCs of 0.907 and 0.911, respectively. Further ROC analysis of the hub genes in the GSE55457 dataset showed that the AUCs of MYC and MAP1LC3B were 0.815 and 0.785, respectively. qRT-PCR showed that the expression of MYC and MAP1LC3B in RA synovial tissues was significantly lower than that in the normal control synovial tissues. Correlation analysis between hub genes and the immune microenvironment and single-cell sequencing analysis revealed that both MYC and MAP1LC3B were significantly correlated with the degree of infiltration of various innate and acquired immune cells. Conclusion: Our study reveals a possible mechanism for LLPS in RA pathogenesis and suggests that MYC and MAP1LC3B may be potential novel molecular markers for RA with immunological significance.
Collapse
Affiliation(s)
- Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Xie M, Wang F, Chen B, Wu Z, Chen C, Xu J. Systematic pan-cancer analysis identifies SLC35C1 as an immunological and prognostic biomarker. Sci Rep 2023; 13:5331. [PMID: 37005450 PMCID: PMC10067962 DOI: 10.1038/s41598-023-32375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
GDP-amylose transporter protein 1 (SLC35C1) plays an important role in many types of cancer. Therefore, it is clinically important to further investigate the expression profile of SLC35C1 in human tumors to provide new molecular clues for the pathogenesis of glioma. In this study, we performed a comprehensive pan-cancer analysis of SLC35C1 using a series of bioinformatics approaches and validated its differential tissue expression and biological function. The results showed that SLC35C1 was aberrantly expressed in different types of tumors and significantly correlated with overall survival (OS) and progression-free interval (PFI). More importantly, the expression level of SLC35C1 was closely correlated with Tumor Microenvironment (TME), immune infiltration and immune-related genes. In addition, we found that SLC35C1 expression was also closely related to Tumor Mutation Burden (TMB), Microsatellite Instability (MSI) and antitumor drug sensitivity in various cancer types. Functional bioinformatics analysis indicated that SLC35C1 may be involved in multiple signaling pathways and biological processes in glioma. Based on SLC35C1 expression, a risk factor model was found to predict OS of glioma. In addition, in vitro experiments showed that SLC35C1 knockdown significantly inhibited the proliferation, migration and invasive ability of glioma cells, while SLC35C1 overexpression promoted proliferation, migration, invasion and colony formation of glioma cells. Finally, quantitative real-time PCR confirmed that SLC35C1 was highly expressed in gliomas.
Collapse
Affiliation(s)
- Mingchen Xie
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Fuxu Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Zeyu Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Ci Chen
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China
| | - Jian Xu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Jiangsu Road No. 16, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
4
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Interplay between tumor-derived factors and tumor-associated neutrophils: opportunities for therapeutic interventions in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03100-0. [PMID: 36745341 DOI: 10.1007/s12094-023-03100-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Neutrophils have emerged as important players in the tumor microenvironment, largely attributed to their plasticity and heterogeneity. Evidence accumulated thus far indicates that neutrophils signaled by external cues can promote tumor progression via several mechanisms. Hence, in our quest to target tumor-associated neutrophils to improve treatment, understanding the mechanisms by which tumor-derived factors regulate neutrophils to gain pro-tumor functions and the feedback loop by which these neutrophils promote tumor progression is very crucial. Herein, we review the published data on how tumor-derived factors alter neutrophils phenotype to promote tumor progression with particular emphasis on immunosuppression, autophagy, angiogenesis, tumor proliferation, metastasis, and therapeutic resistance. These deeper insights could provide a wider view and novel therapeutic approach to neutrophil-targeted therapy in cancer.
Collapse
|
6
|
Wang X, Li X, Wu Y, Hong J, Zhang M. The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification). BMC Cancer 2023; 23:20. [PMID: 36609243 PMCID: PMC9817270 DOI: 10.1186/s12885-022-10492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) in the tumor microenvironment are prognostic biomarkers in many malignancies. However, it is unclear whether TANs can serve as a prognostic marker for clinical outcomes in patients with glioblastoma (GBM), as classified according to World Health Organization Classification of Tumors of the Central Nervous System, fifth edition (CNS5). In the present study, we analyzed correlations of TANs and peripheral blood neutrophils prior to radiotherapy with overall survival (OS) in GBM (CNS5). METHODS RNA-seq expression profiles of patients with newly diagnosed GBM (CNS5) were extracted from The Cancer Genome Atlas (TCGA), and The Chinese Glioma Genome Atlas (CGGA). TAN infiltration was inferred using CIBERSORTx algorithm. Neutrophil counts prior to radiotherapy in newly diagnosed GBM (CNS5) were obtained from the First Affiliated Hospital of Fujian Medical University. The prognostic value of TANs and peripheral blood neutrophils before radiotherapy was investigated using Kaplan-Meier analysis and Cox proportional hazards models. The robustness of these findings was evaluated by sensitivity analysis, and E values were calculated. RESULTS A total of 146 and 173 individuals with GBM (CNS5) were identified from the TCGA and CGGA cohorts, respectively. High infiltration of TANs was of prognostic of poor OS in TCGA (HR = 1.621, 95% CI: 1.004-2.619) and CGGA (HR = 1.546, 95% CI: 1.029-2.323). Levels of peripheral blood neutrophils before radiotherapy (HR = 2.073, 95% CI: 1.077-3.990) were independently associated with poor prognosis. Sensitivity analysis determined that the E-value of high TANs infiltration was 2.140 and 2.465 in the TCGA and CGGA cohorts. CONCLUSIONS TANs and peripheral blood neutrophil levels before radiotherapy are prognostic of poor outcomes in GBM (CNS5).
Collapse
Affiliation(s)
- Xuezhen Wang
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoxia Li
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yufan Wu
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mingwei Zhang
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Zhao S, An L, Yang X, Wei Z, Zhang H, Wang Y. Identification and validation of the role of c-Myc in head and neck squamous cell carcinoma. Front Oncol 2022; 12:820587. [PMID: 36119473 PMCID: PMC9470836 DOI: 10.3389/fonc.2022.820587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/10/2022] [Indexed: 12/09/2022] Open
Abstract
Background Many studies have shown that c-Myc plays a critical role in tumorigenesis. However, the molecular role of c-Myc in head and neck squamous cell carcinoma (HNSC) remains unclear. Methods Several biological databases, including UALCAN, TIMER2.0, TCGAportal, GEPIA, KM plotter, OncoLnc, LinkedOmics, GSCA, and TCIA, were used to analyze the molecular role of c-Myc in HNSC. The expression levels of c-Myc were validated by real-time PCR (RT–PCR) and Western blot in CAL-27 cells. Results The expression of c-Myc mRNA were significantly increased in HPV-negative HNSC tissues. The expression of c-Myc gene level was correlated with TP53 mutation status. HNSC also showed hypomethylated c-Myc compared with normal tissues. c-Myc was identified as an ominous prognostic factor for HNSC patients and correlated with immune infiltrating levels. Moreover, high c-Myc expression was associated with decreased expression of a series of immune checkpoints, resulting in a dampened immune response. c-Myc potentially mediated IL-17 signaling pathway and Th1 and Th2 cell differentiation. Inhibition of c-Myc expression increased apoptosis of CAL-27 cells. Conclusions These findings suggest a new mechanism of c-Myc in the prognosis of HNSC, implying the potential of c-Myc as a therapeutic target for HNSC patients.
Collapse
Affiliation(s)
- Sufeng Zhao
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sufeng Zhao, ; Xudong Yang,
| | - Li An
- Department of Geriatrics, Zhongda Hospital Southeast University, Nanjing, China
| | - Xudong Yang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Sufeng Zhao, ; Xudong Yang,
| | - Zheng Wei
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - He Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yufeng Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Kwiatkowska I, Hermanowicz JM, Iwinska Z, Kowalczuk K, Iwanowska J, Pawlak D. Zebrafish—An Optimal Model in Experimental Oncology. Molecules 2022; 27:molecules27134223. [PMID: 35807468 PMCID: PMC9268704 DOI: 10.3390/molecules27134223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/02/2023] Open
Abstract
A thorough understanding of cancer pathogenesis is a necessary step in the development of more effective and safer therapy. However, due to the complexity of the process and intricate interactions, studying tumor development is an extremely difficult and challenging task. In bringing this issue closer, different scientific models with various advancement levels are helpful. Cell cultures is a system that is too simple and does not allow for multidirectional research. On the other hand, rodent models, although commonly used, are burdened with several limitations. For this reason, new model organisms that will allow for the studying of carcinogenesis stages and factors reliably involved in them are urgently sought after. Danio rerio, an inconspicuous fish endowed with unique features, is gaining in importance in the world of scientific research. Including it in oncological research brings solutions to many challenges afflicting modern medicine. This article aims to illustrate the usefulness of Danio rerio as a model organism which turns out to be a powerful and unique tool for studying the stages of carcinogenesis and solving the hitherto incomprehensible processes that lead to the development of the disease.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Zaneta Iwinska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Jolanta Iwanowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| |
Collapse
|
9
|
Palominos MF, Calfún C, Nardocci G, Candia D, Torres-Paz J, Whitlock KE. The Olfactory Organ Is a Unique Site for Neutrophils in the Brain. Front Immunol 2022; 13:881702. [PMID: 35693773 PMCID: PMC9186071 DOI: 10.3389/fimmu.2022.881702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022] Open
Abstract
In the vertebrate olfactory tract new neurons are continuously produced throughout life. It is widely believed that neurogenesis contributes to learning and memory and can be regulated by immune signaling molecules. Proteins originally identified in the immune system have subsequently been localized to the developing and adult nervous system. Previously, we have shown that olfactory imprinting, a specific type of long-term memory, is correlated with a transcriptional response in the olfactory organs that include up-regulation of genes associated with the immune system. To better understand the immune architecture of the olfactory organs we made use of cell-specific fluorescent reporter lines in dissected, intact adult brains of zebrafish to examine the association of the olfactory sensory neurons with neutrophils and blood-lymphatic vasculature. Surprisingly, the olfactory organs contained the only neutrophil populations observed in the brain; these neutrophils were localized in the neural epithelia and were associated with the extensive blood vasculature of the olfactory organs. Damage to the olfactory epithelia resulted in a rapid increase of neutrophils both within the olfactory organs as well as the central nervous system. Analysis of cell division during and after damage showed an increase in BrdU labeling in the neural epithelia and a subset of the neutrophils. Our results reveal a unique population of neutrophils in the olfactory organs that are associated with both the olfactory epithelia and the lymphatic vasculature suggesting a dual olfactory-immune function for this unique sensory system.
Collapse
Affiliation(s)
- M Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Cristian Calfún
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Gino Nardocci
- Faculty of Medicine, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Danissa Candia
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge Torres-Paz
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Yang X, Ding Y, Sun L, Shi M, Zhang P, He A, Zhang X, Huang Z, Li R. WASF2 Serves as a Potential Biomarker and Therapeutic Target in Ovarian Cancer: A Pan-Cancer Analysis. Front Oncol 2022; 12:840038. [PMID: 35359421 PMCID: PMC8964075 DOI: 10.3389/fonc.2022.840038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Background Wiskott-Aldrich syndrome protein family member 2 (WASF2) has been shown to play an important role in many types of cancer. Therefore, it is worthwhile to further study expression profile of WASF2 in human cancer, which provides new molecular clues about the pathogenesis of ovarian cancer. Methods We used a series of bioinformatics methods to comprehensively analyze the relationship between WASF2 and prognosis, tumor microenvironment (TME), immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and tried to find the potential biological processes of WASF2 in ovarian cancer. Biological behaviors of ovarian cancer cells were investigated through CCK8 assay, scratch test and transwell assay. We also compared WASF2 expression between epithelial ovarian cancer tissues and normal ovarian tissues by using immunohistochemical staining. Results In the present study, we found that WASF2 was abnormally expressed across the diverse cancer and significantly correlated with overall survival (OS) and progression-free interval (PFI). More importantly, the WASF2 expression level also significantly related to the TME. Our results also showed that the expression of WASF2 was closely related to immune infiltration and immune-related genes. In addition, WASF2 expression was associated with TMB, MSI, and antitumor drugs sensitivity across various cancer types. Functional bioinformatics analysis demonstrated that the WASF2 might be involved in several signaling pathways and biological processes of ovarian cancer. A risk factor model was found to be predictive for OS in ovarian cancer based on the expression of WASF2. Moreover, in vitro experiments, it was demonstrated that the proliferative, migratory and invasive capacity of ovarian cancer cells was significantly inhibited due to WASF2 knockdown. Finally, the immunohistochemistry data confirmed that WASF2 were highly expressed in ovarian cancer. Conclusions Our study demonstrated that WASF2 expression was associated with a poor prognosis and may be involved in the development of ovarian cancer, which might be explored as a potential prognostic marker and new targeted treatments.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotan Zhang
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ruiman Li,
| |
Collapse
|
11
|
Ozel I, Duerig I, Domnich M, Lang S, Pylaeva E, Jablonska J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers (Basel) 2022; 14:cancers14030536. [PMID: 35158807 PMCID: PMC8833332 DOI: 10.3390/cancers14030536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an “angiogenic switch” could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.
Collapse
|
12
|
A Novel Hypoxic-Angiogenesis-Immune-Related Gene Model for Prognostic and Therapeutic Effect Prediction in Hepatocellular Carcinoma Patients. DISEASE MARKERS 2022; 2022:9428660. [PMID: 35069936 PMCID: PMC8769836 DOI: 10.1155/2022/9428660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant tumors that have been discovered so far, which makes the prognostic prediction difficult. The hypoxia, angiogenesis, and immunity-related genes (HAIRGs) are closely related to the development of liver cancer. However, the prognostic and treatment effect of hypoxia, angiogenesis, and immunity-related genes in HCC continues to be further clarified. Methods The gene expression quantification data and clinical information in patients with liver cancer were downloaded from the TCGA database, and HAIRG signature was built by using the least absolute shrinkage and selection operator (LASSO) technique. Patient from the ICGC database validated the model. Then, tumor immune dysfunction and exclusion (TIDE) algorithm was applied to estimate the clinical response to immunotherapy and the sensitivity of drugs was evaluated by the half-maximal inhibitory concentration (IC50). Result The HAIRGs were identified between the HCC patients and normal patients in the TCGA database. In univariate Cox regression analysis, seventeen differentially expressed genes (DEGs) were associated with overall survival (OS). An eight HAIRG signature model was constructed and was used to divide the patients into two groups according to the median value of the risk score base on the TCGA dataset. Patients in the high-risk group had a significant reduction in OS compared to those in the low-risk group (P < 0.001 in the TCGA, P < 0.001 in the ICGC). For TCGA and ICGC databases of univariate Cox regression analyses, the risk score was used as an independent predictor of OS (HR > 1, P < 0.001). Functional analysis showed that the relevant immune pathways and immune responses were enriched, cellular component analysis showed that the immunoglobulin complex and other related substances were enriched, and immune status existed a difference in the high- and low-risk groups. Then, the tumor immune dysfunction and exclusion (TIDE) algorithm presented differences in immune response in the high- and low-risk groups (P < 0.05), and based on drug sensitivity prediction, patients in the high-risk group were more sensitive to cisplatin compared to those in the low-risk group in both the TCGA and ICGC cohorts (P < 0.05). Conclusions HAIRG signature can be utilized for prognostic prediction in HCC, while it can be considered a prediction model for clinical evaluation of immunotherapy response and chemotherapy sensitivity in HCC.
Collapse
|
13
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
14
|
Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, Chen Y, Jiang R. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000285. [PMID: 32581055 PMCID: PMC7319788 DOI: 10.1136/jitc-2019-000285] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background We have previously discovered a relationship between the low expression of protein tyrosine phosphatase, receptor type O (PTPRO) in tumor-infiltrating T cells and immunosuppression. The aim of the present study was to investigate the relationship between decreased PTPRO and increased programmed death ligand 1 (PD-L1) in both the peripheral monocytes and tumor-infiltrating macrophages of human hepatocellular carcinoma (HCC). Methods The expression and correlation of all the indices were explored in monocytes and tumor-infiltrating macrophages within both human and mice HCC. The mechanic regulations were studied by using both in vitro and in vivo studies. Results We found a significant decrease in PTPRO in HCC peripheral monocytes that was associated with increased PD-L1 expression in peripheral monocytes and tumor-associated macrophages (TAMs) in HCC. Monocyte PD-L1 and PTPRO therefore could serve as valuable prognostic indicators for post-surgery patients with HCC and were associated with increased T-cell exhaustion (Tim3+T cells). A depletion of PTPRO promoted PD-L1 secretion in both monocytes and macrophages through the JAK2/STAT1 and JAK2/STAT3/c-MYC pathways. Increased IL-6 expression was associated with activation of JAK2/STAT3/c-MYC and with decreased PTPRO expression through the STAT3/c-MYC/miR-25–3 p axis. Monocytes and TAMs showed significantly increased miR-25–3 p expression, which could target the 3′ untranslated region of PTPRO. The miR-25–3 p expression positively correlated with serum IL-6 levels, but inversely correlated with PTPRO in HCC monocytes. IL-6/STAT3/c-MYC activation enhanced in vitro miR-25–3 p transcription and decreased PTPRO, while further promoting PD-L1 secretion. Adoptive cell transfer of c-MYC/miR-25–3 p–modified monocytes promoted tumor growth by downregulating PTPRO and causing a PD-L1–induced immunosuppression in an orthotopic tumor transplantation model. Conclusions Increased serum IL-6 downregulated PTPRO expression in HCC monocytes and macrophages by activating STAT3/c-MYC/miR-25–3 p and by further enhancing PD-L1 expression through JAK2/STAT1 and JAK2/STAT3/c-MYC signaling.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhongyi Yan
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Hui Yang
- Department of Hematology, The first affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Medical School of Nanjing University, Nanjing, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, China
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Research Center for Clinical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of 15 Nanjing Medical University, Nanjing, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China .,Medical School of Nanjing University, Nanjing, China.,Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Abstract
Zebrafish are rapidly becoming a leading model organism for cancer research. The genetic pathways driving cancer are highly conserved between zebrafish and humans, and the ability to easily manipulate the zebrafish genome to rapidly generate transgenic animals makes zebrafish an excellent model organism. Transgenic zebrafish containing complex, patient-relevant genotypes have been used to model many cancer types. Here we present a comprehensive review of transgenic zebrafish cancer models as a resource to the field and highlight important areas of cancer biology that have yet to be studied in the fish. The ability to image cancer cells and niche biology in an endogenous tumor makes zebrafish an indispensable model organism in which we can further understand the mechanisms that drive tumorigenesis and screen for potential new cancer therapies.
Collapse
Affiliation(s)
- Alicia M. McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haley R. Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Boston, Massachusetts 02138, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Stem Cell and Regenerative Biology Department and Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02138, USA
| |
Collapse
|
16
|
Studying the Tumor Microenvironment in Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:69-92. [PMID: 34664234 DOI: 10.1007/978-3-030-73119-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment significantly contributes to tumor initiation, progression, neo-angiogenesis, and metastasis, and a better understanding of the role of the different cellular players would facilitate the development of novel therapeutic strategies for cancer treatment. Towards this goal, intravital imaging is a powerful method to unravel interaction partners of tumor cells. Among vertebrate model organisms, zebrafish is uniquely suited for in vivo imaging studies. In recent years zebrafish has also become a valuable model in cancer research. In this chapter, we will summarize, how zebrafish has been used to characterize cells of the tumor microenvironment. We will cover both genetically engineered cancer models and xenograft models in zebrafish. The majority of work has been done on the role of innate immune cells and their role during tumor initiation and metastasis, but we will also cover studies focusing on adipocytes, fibroblasts, and endothelial cells. Taken together, we will highlight the versatile use of the zebrafish model for in vivo tumor microenvironment studies.
Collapse
|
17
|
Guo L, Ren H, Pu L, Zhu X, Liu Y, Ma X. The Prognostic Value of Inflammation Factors in Hepatocellular Carcinoma Patients with Hepatic Artery Interventional Treatments: A Retrospective Study. Cancer Manag Res 2020; 12:7173-7188. [PMID: 33061563 PMCID: PMC7520139 DOI: 10.2147/cmar.s257934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
Background Hepatic artery interventional therapy has been recognized as the first choice for advanced liver cancer. However, reliable prognostic markers are still lacking. In the present study, we aimed to evaluate the prognostic value of inflammation factors including neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and monocyte to lymphocyte ratio (MLR) in hepatocellular carcinoma (HCC) patients with hepatic artery interventional treatments. Methods Patients undergoing hepatic artery interventional therapy after being diagnosed with HCC between 2007 and 2014 were enrolled. Pre-treatment NLR, PLR and MLR were calculated, and all factors including gender, age, TNM stage, BCLC staging, inflammation factors, LDH, ALP, CEA, AFP, hepatitis, liver cirrhosis, portal vein involvement, surgical history and hepatic artery interventional treatment on overall survival (OS) were evaluated by the univariate and multivariate Cox proportional hazards analyses. Results Overall, 407 patients were included. The optimal cutoff values determined by receiver operating characteristic (ROC) curve analyses for NLR, PLR and MLR were 3.82, 140.00 and 0.27, respectively. High NLR was associated with worse OS (median survival time: high NLR group 9 vs low NLR group 19 months, HR 1.842, 95% CI: 1.457–2.329, P<0.001). Elevated PLR was negatively correlated with OS (8 vs 18 months, HR 1.677, 95% CI: 1.302–2.161, P<0.001). Patients in high MLR group had a worse OS (10 vs 21 months, HR 1.626, 95% CI: 1.291–2.048, P<0.001). In multivariate analysis, NLR, LDH, ALP and portal vein involvement were independent prognostic factors for OS of HCC patients after hepatic artery interventional therapy. In addition, for patients in BCLC stage A and B, higher NLR, PLR and MLR were all significantly negatively correlated to median survival time (NLR: 17 vs 26 months, HR: 1.739 (95% CI: 1.279–2.365), P<0.001; PLR: 18 vs 26 months, HR: 1.681 (95% CI: 1.245–2.271), P=0.001; MLR: 20 vs 26 months, HR: 1.589 (95% CI: 1.185–2.129), P=0.002). Conclusion Elevated pre-treatment NLR, PLR and MLR were associated with worse survival time in HCC patients after hepatic artery interventional therapy. Among them, NLR was an independent prognostic factor for OS.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Ren
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lutong Pu
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xingyu Zhu
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yin Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
18
|
Qin XS, Zhang CL, Huang ZS. Influence of tumor microenvironment on angiogenesis in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:493-500. [DOI: 10.11569/wcjd.v28.i12.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the main malignant tumors that endanger human health, and hepatocellular carcinoma (HCC) is the most common histological type of this heterogeneous cancer. The tumor microenvironment (TME) is a dynamic system composed of tumor cells and tumor-related stroma. HCC can form tumor-related blood vessels through a variety of angiogenesis modes. Previous studies have shown that various components of TME mediate HCC angiogenesis in multiple ways, which brings big challenges to clinical anti-angiogenesis therapy. This article reviews the research progress of HCC angiogenesis model and the role of TME in the regulation of HCC angiogenesis, with an aim to provide a reference for basic and clinical research of liver cancer.
Collapse
Affiliation(s)
- Xiao-Shan Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Cai-Ling Zhang
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
19
|
de Oliveira S, Houseright RA, Korte BG, Huttenlocher A. DnaJ-PKAc fusion induces liver inflammation in a zebrafish model of fibrolamellar carcinoma. Dis Model Mech 2020; 13:dmm042564. [PMID: 32102783 PMCID: PMC7197716 DOI: 10.1242/dmm.042564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer that affects adolescents and young adults. Genomic analysis of FLC has revealed a 400 kb deletion in chromosome 19 that leads to the chimeric transcript DNAJB1-PRKACA (DnaJ-PKAc), comprised of the first exon of heat shock protein 40 (DNAJB1) and exons 2-10 of the catalytic subunit of protein kinase A (PRKACA). Here, we report a new zebrafish model of FLC induced by ectopic expression of zebrafish Dnaja-Pkaca (zfDnaJa-Pkaca) in hepatocytes that is amenable to live imaging of early innate immune inflammation. Expression of zfDnaJa-Pkaca in hepatocytes induces hepatomegaly and increased hepatocyte size. In addition, FLC larvae exhibit early innate immune inflammation characterized by early infiltration of neutrophils and macrophages into the liver microenvironment. Increased Caspase-a (the zebrafish homolog for human caspase-1) activity was also found in the liver of FLC larvae, and pharmacological inhibition of Tnfα and caspase-a decreased liver size and inflammation. Overall, these findings show that innate immune inflammation is an early feature in a zebrafish model of FLC and that pharmacological inhibition of TNFα or caspase-1 activity might be targets to treat inflammation and progression in FLC patients.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sofia de Oliveira
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ruth A Houseright
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin G Korte
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
20
|
Addisu KD, Hsu WH, Hailemeskel BZ, Andrgie AT, Chou HY, Yuh CH, Lai JY, Tsai HC. Mixed Lanthanide Oxide Nanoparticles Coated with Alginate-Polydopamine as Multifunctional Nanovehicles for Dual Modality: Targeted Imaging and Chemotherapy. ACS Biomater Sci Eng 2019; 5:5453-5469. [PMID: 33464065 DOI: 10.1021/acsbiomaterials.9b01226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating anticancer drugs and diagnostic agents in a polymer nanosystem is an emerging and promising strategy for improving cancer treatment. However, the development of multifunctional nanoparticles (NPs) for an "all-in-one" platform characterized by specific targeting, therapeutic efficiency, and imaging feedback remains an unmet clinical need. In this study, pH-responsive mixed-lanthanide-based multifunctional NPs were fabricated based on simple metal-ligand interactions for simultaneous cancer cell imaging and drug delivery. We investigated two new systems of alginate-polydopamine complexed with either terbium/europium or dysprosium/erbium oxide NPs (Tb/Eu@AlgPDA or Dy/Er@AlgPDA NPs). Tb/Eu@AlgPDA NPs were then functionalized with the tumor-targeting ligand folic acid (FA) and loaded with the anticancer drug doxorubicin (DOX) to form FA-Tb/Eu@AlgPDA-DOX NPs. Using such systems, the mussel-inspired property of PDA was introduced to improve tumor targetability and penetration, in addition to active targeting (via FA-folate receptor interactions). Determining the photoluminescence efficiency showed that the Tb/Eu@AlgPDA system was superior to the Dy/Er@AlgPDA system, presenting intense and sharp emission peaks on the fluorescence spectra. In addition, compared to Dy/Er@AlgPDA NPs (82.4%), Tb/Eu@AlgPDA NPs exhibited negligible cytotoxicity with >93.3% HeLa cell viability found in MTT assays at NP concentrations of up to 0.50 mg/mL and high biocompatibility when incubated with zebrafish (Danio rerio) embryos and larvae. The FA-Tb/Eu@AlgPDA-DOX system exhibited a pH-responsive and sustained drug-release pattern. In a spheroid model of HeLa cells, the FA-Tb/Eu@AlgPDA-DOX system showed a better penetration efficiency and spheroid growth-inhibitory effect than free DOX. After incubation with zebrafish embryos, the FA-Tb/Eu@AlgPDA-DOX system also showed improved antitumor efficacies versus the other experimental groups in HeLa tumor cell xenografted zebrafish. Therefore, our results suggested that FA-Tb/Eu@AlgPDA-DOX NPs are promising multifunctional nanocarriers with therapeutic capacity for tumor targeting and penetration.
Collapse
Affiliation(s)
- Kefyalew Dagnew Addisu
- Faculty of Chemical and Food Engineering, Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia P. O. Box 26
| | | | | | | | | | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350 Miaoli, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101 Section 2, Guangfu Road, Hsinchu 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, No. 1001 Daxue Road, East District, Hsinchu 30010, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Zhongli District, Taoyuan 320, Taiwan
| | | |
Collapse
|
21
|
de Oliveira S, Houseright RA, Graves AL, Golenberg N, Korte BG, Miskolci V, Huttenlocher A. Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. J Hepatol 2019; 70:710-721. [PMID: 30572006 PMCID: PMC6436385 DOI: 10.1016/j.jhep.2018.11.034] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) is an increasing clinical problem associated with progression to hepatocellular carcinoma (HCC). The effect of a high-fat diet on the early immune response in HCC is poorly understood, while the role of metformin in treating NAFLD and HCC remains controversial. Herein, we visualized the early immune responses in the liver and the effect of metformin on progression of HCC using optically transparent zebrafish. METHODS We used live imaging to visualize liver inflammation and disease progression in a NAFLD/NASH-HCC zebrafish model. We combined a high-fat diet with a transgenic zebrafish HCC model induced by hepatocyte-specific activated beta-catenin and assessed liver size, angiogenesis, micronuclei formation and inflammation in the liver. In addition, we probed the effects of metformin on immune cell composition and early HCC progression. RESULTS We found that a high-fat diet induced an increase in liver size, enhanced angiogenesis, micronuclei formation and neutrophil infiltration in the liver. Although macrophage number was not affected by diet, a high-fat diet induced changes in macrophage morphology and polarization with an increase in liver associated TNFα-positive macrophages. Treatment with metformin altered macrophage polarization, reduced liver size and reduced micronuclei formation in NAFLD/NASH-associated HCC larvae. Moreover, a high-fat diet reduced T cell density in the liver, which was reversed by treatment with metformin. CONCLUSIONS These findings suggest that diet alters macrophage polarization and exacerbates the liver inflammatory microenvironment and cancer progression in a zebrafish model of NAFLD/NASH-associated HCC. Metformin specifically affects the progression induced by diet and modulates the immune response by affecting macrophage polarization and T cell infiltration, suggesting possible effects of metformin on tumor surveillance. LAY SUMMARY This paper reports a new zebrafish model that can be used to study the effects of diet on liver cancer. We found that a high-fat diet promotes non-resolving inflammation in the liver and enhances cancer progression. In addition, we found that metformin, a drug used to treat diabetes, inhibits high-fat diet-induced cancer progression in this model, by reducing diet-induced non-resolving inflammation and potentially restoring tumor surveillance.
Collapse
Affiliation(s)
- Sofia de Oliveira
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States.
| | - Ruth A Houseright
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States
| | - Alyssa L Graves
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States
| | - Benjamin G Korte
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, United States.
| |
Collapse
|
22
|
Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 2019; 9:1509. [PMID: 30728369 PMCID: PMC6365535 DOI: 10.1038/s41598-018-36605-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated the pro-tumoral role of neutrophils using a kras-induced zebrafish hepatocarcinogenesis model. To further illustrate the molecular basis of the pro-tumoral role, Tumor-associated neutrophils (TANs) were isolated by fluorescence-activated cell sorting (FACS) and transcriptomic analyses were carried out by RNA-Seq. Differentially expressed gene profiles of TANs from larvae, male and female livers indicate great variations during liver tumorigenesis, but the common responsive canonical pathways included an immune pathway (Acute Phase Response Signaling), a liver metabolism-related pathway (LXR/RXR Activation) and Thrombin Signaling. Consistent with the pro-tumoral role of TANs, gene module analysis identified a consistent down-regulation of Cytotoxicity module, which may allow continued proliferation of malignant cells. Gene Set Enrichment Analysis indicated up-regulation of several genes promoting angiogenesis. Consistent with this, we found decreased density of blood vessels accompanied with decreased oncogenic liver sizes in neutrophil-depleted larvae. Collectively, our study has indicated some molecular mechanisms of the pro-tumoral roles of TANs in hepatocarcinogenesis, including weakened immune clearance against tumor cells and enhanced function in angiogenesis.
Collapse
|
23
|
Toxicity Evaluation and Biomarker Selection with Validated Reference Gene in Embryonic Zebrafish Exposed to Mitoxantrone. Int J Mol Sci 2018; 19:ijms19113516. [PMID: 30413070 PMCID: PMC6274943 DOI: 10.3390/ijms19113516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Notwithstanding the widespread use and promising clinical value of chemotherapy, the pharmacokinetics, toxicology, and mechanism of mitoxantrone remains unclear. To promote the clinical value in the treatment of human diseases and the exploration of potential subtle effects of mitoxantrone, zebrafish embryos were employed to evaluate toxicity with validated reference genes based on independent stability evaluation programs. The most stable and recommended reference gene was gapdh, followed by tubα1b, for the 48 h post fertilization (hpf) zebrafish embryo mitoxantrone test, while both eef1a1l1 and rpl13α were recommended as reference genes for the 96 hpf zebrafish embryo mitoxantrone test. With gapdh as an internal control, we analyzed the mRNA levels of representative hepatotoxicity biomarkers, including fabp10a, gclc, gsr, nqo1, cardiotoxicity biomarker erg, and neurotoxicity biomarker gfap in the 48 hpf embryo mitoxantrone test. The mRNA levels of gclc, gsr, and gfap increased significantly in 10 and 50 μg/L mitoxantrone-treated 48 hpf embryos, while the transcript levels of fabp10a decreased in a dose-dependent manner, indicating that mitoxantrone induced hepatotoxicity and neurotoxicity. Liver hematoxylin–eosin staining and the spontaneous movement of embryos confirmed the results. Thus, the present research suggests that mitoxantrone induces toxicity during the development of the liver and nervous system in zebrafish embryos and that fabp10a is recommended as a potential biomarker for hepatotoxicity in zebrafish embryos. Additionally, gapdh is proposed as a reference gene for the 48 hpf zebrafish embryo mitoxantrone toxicity test, while eef1a1l1 and rpl13α are proposed as that for the 96 hpf test.
Collapse
|
24
|
Zhao Y, Liu Y, Sun J, Sha H, Yang Y, Ye Q, Yang Q, Huang B, Yu Y, Huang H. Acute toxic responses of embryo-larval zebrafish to zinc pyrithione (ZPT) reveal embryological and developmental toxicity. CHEMOSPHERE 2018; 205:62-70. [PMID: 29684692 DOI: 10.1016/j.chemosphere.2018.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Zinc pyrithione (ZPT) is widely used in industrial and human daily life, due to its broad antimicrobial spectrum activity. Persistent accumulation of ZTP in the aquatic environment and bioaccumulation in the living organisms attracts more and more attention. However, only very limited information is available so far for the evaluation of systematic toxicity effects of ZPT on multiple organs development. This study intends to deepen our knowledge about the potential toxicity elicited by ZPT by assessing its acute effects on zebrafish (Danio rerio) through morphological, histological and molecular investigations. It has been verified that ZPT exhibits a broad spectrum of toxicity which causes growth retardation and tissue pathological and physiology alternations in heart, liver, eye, notochord, kidney and other organisms of zebrafish. The acute toxicity values of LC50 (95% CI) 96-h is calculated as 0.073 μM. Furthermore, the organ toxicity was verified due to up-regulation of expression of biomarker genes related to organ function and development. In sum, this study demonstrats systematic acute embryological and developmental toxicity of the ZPT on zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing, 211800, China.
| | - Yuyang Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Jing Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Hongtao Sha
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Yu Yang
- College of Environmental Sciences, Nanjing Tech University, Nanjing, 211800, China
| | - Qian Ye
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Qi Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Baoqi Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
25
|
Hypoxia Enhances Fusion of Oral Squamous Carcinoma Cells and Epithelial Cells Partly via the Epithelial-Mesenchymal Transition of Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5015203. [PMID: 29581976 PMCID: PMC5822897 DOI: 10.1155/2018/5015203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Increasing evidence and indications showed that cell fusion is crucial in tumor development and metastasis, and hypoxia, a closely linked factor to tumor microenvironment, which can lead to EMT, induces angiogenesis and metastasis in tumor growth. However, the relationship between hypoxia and fusion has not been reported yet. EMT will change some proteins in the epithelial cell surface and the changes of proteins in cell surface may increase cell fusion. This study found that hypoxia promotes the spontaneous cell fusion between Oral Squamous Carcinoma Cells (OSCCs) and Human Immortalized Oral Epithelial Cells (HIOECs). At the same time, Hypoxia can lead to EMT, and hypoxia-pretreated HIOECs increased fusion rate with OSCC, while the fusion rate was significantly reduced by DAPT, a kind of EMT blocker. Therefore, epithelial cells can increase spontaneously cell fusion with OSCC by EMT. Our study may provide a new insight to link among tumor microenvironment, cell fusion, and cancer.
Collapse
|
26
|
Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm Sin B 2018; 8:4-13. [PMID: 29872618 PMCID: PMC5985693 DOI: 10.1016/j.apsb.2017.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/01/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
Precise drug delivery to tumors with low system toxicity is one of the most important and challenging tasks for pharmaceutical researchers. Despite progress in the field of nanotherapeutics, the use of artificially synthesized nanocarriers still faces several challenges, including rapid clearance from blood circulation and limited capability of overcoming multiple physiological barriers, which hamper the clinical application of nanoparticle-based therapies. Since leukocytes (including monocytes/macrophages, neutrophils, dendritic cells and lymphocytes) target tumors and can migrate across physiological barriers, leukocytes are increasing utilized as carriers to transfer nanoparticles to tumors. In this review we specifically focus on the molecular and cellular mechanisms of leukocytes that can be exploited as a vehicle to deliver nanoparticles to tumors and summarize the latest research on how leukocytes can be harnessed to improve therapeutic end-points. We also discuss the challenges and opportunities of this leukocyte-derived nanoparticle drug delivery system.
Collapse
|
27
|
Gutiérrez-Lovera C, Vázquez-Ríos AJ, Guerra-Varela J, Sánchez L, de la Fuente M. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes (Basel) 2017; 8:E349. [PMID: 29182542 PMCID: PMC5748667 DOI: 10.3390/genes8120349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.
Collapse
Affiliation(s)
- C Gutiérrez-Lovera
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| | - A J Vázquez-Ríos
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| | - J Guerra-Varela
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
- Geneaqua S.L., Lugo 27002, Spain.
| | - L Sánchez
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - M de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| |
Collapse
|
28
|
Kirchberger S, Sturtzel C, Pascoal S, Distel M. Quo natas, Danio? -Recent Progress in Modeling Cancer in Zebrafish. Front Oncol 2017; 7:186. [PMID: 28894696 PMCID: PMC5581328 DOI: 10.3389/fonc.2017.00186] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, zebrafish has proven to be a powerful model in cancer research. Zebrafish form tumors that histologically and genetically resemble human cancers. The live imaging and cost-effective compound screening possible with zebrafish especially complement classic mouse cancer models. Here, we report recent progress in the field, including genetically engineered zebrafish cancer models, xenotransplantation of human cancer cells into zebrafish, promising approaches toward live investigation of the tumor microenvironment, and identification of therapeutic strategies by performing compound screens on zebrafish cancer models. Given the recent advances in genome editing, personalized zebrafish cancer models are now a realistic possibility. In addition, ongoing automation will soon allow high-throughput compound screening using zebrafish cancer models to be part of preclinical precision medicine approaches.
Collapse
Affiliation(s)
- Stefanie Kirchberger
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Caterina Sturtzel
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Susana Pascoal
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| |
Collapse
|