1
|
Tharp O, Sansbury BM, Kmiec EB. CRISPR-directed gene-editing induces genetic rearrangement within the human globin gene locus. Gene 2024; 931:148879. [PMID: 39179185 DOI: 10.1016/j.gene.2024.148879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
CRISPR-Cas is a revolutionary technology but has already demonstrated significant feasibility for clinical and non-clinical applications. While the efficiency and precision of this remarkable genetic tool is unprecedented, unfortunately, a series of collateral genetic rearrangement have been reported in response to double-stranded DNA breakage. Once these molecular scissions occur, the cascade of DNA repair reactions can lead to genomic rearrangements especially if breakage takes place within a family of sequence related genes. Here, we demonstrate that CRISPR- directed gene editing near the sickle cell mutation site generates a curious genetic outcome; a footprint of the δ globin gene proximal to the CRISPR/Cas cut site(s). This rearrangement is not dependent on the presence of an exogenously added DNA template but is apparently dependent on a double strand break. Our results the highlight recombinational capacity of double strand breaks in human chromosomes where the aim is to edit a human gene.
Collapse
Affiliation(s)
- Olivia Tharp
- Department of Medical and Molecular Sciences, University of Delaware, 210 South College Ave, Newark Delaware, 19716, United States
| | - Brett M Sansbury
- Gene Editing Institute, ChristianaCare, Delaware 550 South College Avenue, Suite 208, Newark, Delaware 19713, United States
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Delaware 550 South College Avenue, Suite 208, Newark, Delaware 19713, United States.
| |
Collapse
|
2
|
Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Cell Cycle. Int J Mol Sci 2022; 23:ijms23115992. [PMID: 35682671 PMCID: PMC9181127 DOI: 10.3390/ijms23115992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Genome editing is currently widely used in biomedical research; however, the use of this method in the clinic is still limited because of its low efficiency and possible side effects. Moreover, the correction of mutations that cause diseases in humans seems to be extremely important and promising. Numerous attempts to improve the efficiency of homology-directed repair-mediated correction of mutations in mammalian cells have focused on influencing the cell cycle. Homology-directed repair is known to occur only in the late S and G2 phases of the cell cycle, so researchers are looking for safe ways to enrich the cell culture with cells in these phases of the cell cycle. This review surveys the main approaches to influencing the cell cycle in genome editing experiments (predominantly using Cas9), for example, the use of cell cycle synchronizers, mitogens, substances that affect cyclin-dependent kinases, hypothermia, inhibition of p53, etc. Despite the fact that all these approaches have a reversible effect on the cell cycle, it is necessary to use them with caution, since cells during the arrest of the cell cycle can accumulate mutations, which can potentially lead to their malignant transformation.
Collapse
|
3
|
Sansbury BM, Hewes AM, Tharp OM, Masciarelli SB, Kaouser S, Kmiec EB. Homology directed correction, a new pathway model for point mutation repair catalyzed by CRISPR-Cas. Sci Rep 2022; 12:8132. [PMID: 35581233 PMCID: PMC9114366 DOI: 10.1038/s41598-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Gene correction is often referred to as the gold standard for precise gene editing and while CRISPR-Cas systems continue to expand the toolbox for clinically relevant genetic repair, mechanistic hurdles still hinder widespread implementation. One of the most prominent challenges to precise CRISPR-directed point mutation repair centers on the prevalence of on-site mutagenesis, wherein insertions and deletions appear at the targeted site following correction. Here, we introduce a pathway model for Homology Directed Correction, specifically point mutation repair, which enables a foundational analysis of genetic tools and factors influencing precise gene editing. To do this, we modified an in vitro gene editing system which utilizes a cell-free extract, CRISPR-Cas RNP and donor DNA template to catalyze point mutation repair. We successfully direct correction of four unique point mutations which include two unique nucleotide mutations at two separate targeted sites and visualize the repair profiles resulting from these reactions. This extension of the cell-free gene editing system to model point mutation repair may provide insight for understanding the factors influencing precise point mutation correction.
Collapse
Affiliation(s)
- Brett M Sansbury
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Amanda M Hewes
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Olivia M Tharp
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Sophia B Masciarelli
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Salma Kaouser
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.
| |
Collapse
|
4
|
Banas K, Modarai S, Rivera-Torres N, Yoo BC, Bialk PA, Barrett C, Batish M, Kmiec EB. Exon skipping induced by CRISPR-directed gene editing regulates the response to chemotherapy in non-small cell lung carcinoma cells. Gene Ther 2022; 29:357-367. [PMID: 35314779 PMCID: PMC9203268 DOI: 10.1038/s41434-022-00324-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
We have been developing CRISPR-directed gene editing as an augmentative therapy for the treatment of non-small cell lung carcinoma (NSCLC) by genetic disruption of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). NRF2 promotes tumor cell survival in response to therapeutic intervention and thus its disablement should restore or enhance effective drug action. Here, we report how NRF2 disruption leads to collateral damage in the form of CRISPR-mediated exon skipping. Heterogeneous populations of transcripts and truncated proteins produce a variable response to chemotherapy, dependent on which functional domain is missing. We identify and characterize predicted and unpredicted transcript populations and discover that several types of transcripts arise through exon skipping; wherein one or two NRF2 exons are missing. In one specific case, the presence or absence of a single nucleotide determines whether an exon is skipped or not by reorganizing Exonic Splicing Enhancers (ESEs). We isolate and characterize the diversity of clones induced by CRISPR activity in a NSCLC tumor cell population, a critical and often overlooked genetic byproduct of this exciting technology. Finally, gRNAs must be designed with care to avoid altering gene expression patterns that can account for variable responses to solid tumor therapy.
Collapse
Affiliation(s)
- Kelly Banas
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | | | | | | | - Pawel A Bialk
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | - Connor Barrett
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Newark, DE, USA.
| |
Collapse
|
5
|
Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A, Smith K, Hajian R, Gasiunas G, Kutanovas S, Kim D, Parkinson J, Dickerson K, Ripoll JJ, Peytavi R, Lu HW, Barron F, Goldsmith BR, Collins PG, Conboy IM, Siksnys V, Aran K. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 2021; 5:713-725. [PMID: 33820980 DOI: 10.1038/s41551-021-00706-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Simple and fast methods for the detection of target genes with single-nucleotide specificity could open up genetic research and diagnostics beyond laboratory settings. We recently reported a biosensor for the electronic detection of unamplified target genes using liquid-gated graphene field-effect transistors employing an RNA-guided catalytically deactivated CRISPR-associated protein 9 (Cas9) anchored to a graphene monolayer. Here, using unamplified genomic samples from patients and by measuring multiple types of electrical response, we show that the biosensors can discriminate within one hour between wild-type and homozygous mutant alleles differing by a single nucleotide. We also show that biosensors using a guide RNA-Cas9 orthologue complex targeting genes within the protospacer-adjacent motif discriminated between homozygous and heterozygous DNA samples from patients with sickle cell disease, and that the biosensors can also be used to rapidly screen for guide RNA-Cas9 complexes that maximize gene-targeting efficiency.
Collapse
Affiliation(s)
- Sarah Balderston
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | - Kandace Fung
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | | | - Kasey Smith
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
| | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | - Giedrius Gasiunas
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Daehwan Kim
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA
- Cardea, San Diego, CA, USA
| | | | | | | | | | - Virginijus Siksnys
- CasZyme, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, USA.
- Cardea, San Diego, CA, USA.
- University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Lujan H, Romer E, Salisbury R, Hussain S, Sayes C. Determining the Biological Mechanisms of Action for Environmental Exposures: Applying CRISPR/Cas9 to Toxicological Assessments. Toxicol Sci 2021; 175:5-18. [PMID: 32105327 DOI: 10.1093/toxsci/kfaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxicology is a constantly evolving field, especially in the area of developing alternatives to animal testing. Toxicological research must evolve and utilize adaptive technologies in an effort to improve public, environmental, and occupational health. The most commonly cited mechanisms of toxic action after exposure to a chemical or particle test substance is oxidative stress. However, because oxidative stress involves a plethora of genes and proteins, the exact mechanism(s) are not commonly defined. Exact mechanisms of toxicity can be revealed using an emerging laboratory technique referred to as CRISPR (clustered regularly interspaced short palindromic repeats). This article reviews the most common CRISPR techniques utilized today and how each may be applied in Toxicological Sciences. Specifically, the CRISPR/CRISPR-associated protein complex is used for single gene knock-outs, whereas CRISPR interference/activation is used for silencing or activating (respectively) ribonucleic acid. Finally, CRISPR libraries are used for knocking-out entire gene pathways. This review highlights the application of CRISPR in toxicology to elucidate the exact mechanism through which toxicants perturb normal cellular functions.
Collapse
Affiliation(s)
- Henry Lujan
- Department of Environmental Science, Baylor University, Waco, Texas 76706
| | - Eric Romer
- Molecular Bioeffects Branch, Bioeffects Division, 711th Human Performance Wing, Air Force Research Laboratory, Dayton, Ohio 45433
| | - Richard Salisbury
- Molecular Bioeffects Branch, Bioeffects Division, 711th Human Performance Wing, Air Force Research Laboratory, Dayton, Ohio 45433
| | - Saber Hussain
- Molecular Bioeffects Branch, Bioeffects Division, 711th Human Performance Wing, Air Force Research Laboratory, Dayton, Ohio 45433
| | - Christie Sayes
- Department of Environmental Science, Baylor University, Waco, Texas 76706
| |
Collapse
|
7
|
Yao J, Wang Y, Cao C, Song R, Bi D, Zhang H, Li Y, Qin G, Hou N, Zhang N, Zhang J, Guo W, Yang S, Wang Y, Zhao J. CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:986-999. [PMID: 34094716 PMCID: PMC8141604 DOI: 10.1016/j.omtn.2021.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/09/2021] [Indexed: 01/23/2023]
Abstract
Gene therapy for curing congenital human diseases is promising, but the feasibility and safety need to be further evaluated. In this study, based on a pig model that carries the c.740T>C (L247S) mutation in MITF with an inheritance pattern and clinical pathology that mimics Waardenburg syndrome 2A (WS2A), we corrected the point mutation by the CRISPR-Cas9 system in the mutant fibroblast cells using single-stranded oligodeoxynucleotide (ssODN) and long donor plasmid DNA as the repair template. By using long donor DNA, precise correction of this point mutation was achieved. The corrected cells were then used as the donor cell for somatic cell nuclear transfer (SCNT) to produce piglets, which exhibited a successfully rescued phenotype of WS2A, including anophthalmia and hearing loss. Furthermore, engineered base editors (BEs) were exploited to make the correction in mutant porcine fibroblast cells and early embryos. The correction efficiency was greatly improved, whereas substantial off-targeting mutations were detected, raising a safety concern for their potential applications in gene therapy. Thus, we explored the possibility of precise correction of WS2A-causing gene mutation by the CRISPR-Cas9 system in a large-animal model, suggesting great prospects for its future applications in treating human genetic diseases.
Collapse
Affiliation(s)
- Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Dengfeng Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Naipeng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
8
|
Bloh K, Rivera-Torres N. A Consensus Model of Homology-Directed Repair Initiated by CRISPR/Cas Activity. Int J Mol Sci 2021; 22:3834. [PMID: 33917142 PMCID: PMC8067812 DOI: 10.3390/ijms22083834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The mechanism of action of ssODN-directed gene editing has been a topic of discussion within the field of CRISPR gene editing since its inception. Multiple comparable, but distinct, pathways have been discovered for DNA repair both with and without a repair template oligonucleotide. We have previously described the ExACT pathway for oligo-driven DNA repair, which consisted of a two-step DNA synthesis-driven repair catalyzed by the simultaneous binding of the repair oligonucleotide (ssODN) upstream and downstream of the double-strand break. In order to better elucidate the mechanism of ExACT-based repair, we have challenged the assumptions of the pathway with those outlines in other similar non-ssODN-based DNA repair mechanisms. This more comprehensive iteration of the ExACT pathway better described the many different ways where DNA repair can occur in the presence of a repair oligonucleotide after CRISPR cleavage, as well as how these previously distinct pathways can overlap and lead to even more unique repair outcomes.
Collapse
Affiliation(s)
- Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19710, USA
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
| |
Collapse
|
9
|
Zhu L, Yang X, Li J, Jia X, Bai X, Zhao Y, Cheng W, Shu M, Zhu Y, Jin S. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J Genet Genomics 2021; 48:134-146. [PMID: 33931338 DOI: 10.1016/j.jgg.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023]
Abstract
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Yang
- Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Precise and error-prone CRISPR-directed gene editing activity in human CD34+ cells varies widely among patient samples. Gene Ther 2020; 28:105-113. [PMID: 32873924 PMCID: PMC7902267 DOI: 10.1038/s41434-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated CRISPR-associated nucleases (Cas) are among the most promising technologies for the treatment of hemoglobinopathies including Sickle Cell Disease (SCD). We are only beginning to identify the molecular variables that influence the specificity and the efficiency of CRISPR- directed gene editing, including the position of the cleavage site and the inherent variability among patient samples selected for CRISPR-directed gene editing. Here, we target the beta globin gene in human CD34+ cells to assess the impact of these two variables and find that both contribute to the global diversity of genetic outcomes. Our study demonstrates a unique genetic profile of indels that is generated based on where along the beta globin gene attempts are made to correct the SCD single base mutation. Interestingly, even within the same patient sample, the location of where along the beta globin gene the DNA is cut, HDR activity varies widely. Our data establish a framework upon which realistic protocols inform strategies for gene editing for SCD overcoming the practical hurdles that often impede clinical success.
Collapse
|
11
|
Maurissen TL, Woltjen K. Synergistic gene editing in human iPS cells via cell cycle and DNA repair modulation. Nat Commun 2020; 11:2876. [PMID: 32513994 PMCID: PMC7280248 DOI: 10.1038/s41467-020-16643-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023] Open
Abstract
Precise gene editing aims at generating single-nucleotide modifications to correct or model human disease. However, precision editing with nucleases such as CRIPSR-Cas9 has seen limited success due to poor efficiency and limited practicality. Here, we establish a fluorescent DNA repair assay in human induced pluripotent stem (iPS) cells to visualize and quantify the frequency of DNA repair outcomes during monoallelic and biallelic targeting. We found that modulating both DNA repair and cell cycle phase via defined culture conditions and small molecules synergistically enhanced the frequency of homology-directed repair (HDR). Notably, targeting in homozygous reporter cells results in high levels of editing with a vast majority of biallelic HDR outcomes. We then leverage efficient biallelic HDR with mixed ssODN repair templates to generate heterozygous mutations. Synergistic gene editing represents an effective strategy to generate precise genetic modifications in human iPS cells. Precision editing with CRISPR-Cas9 often suffers from poor efficiency. Here the authors identify culture conditions and small molecules that synergize to promote homology-directed repair (HDR) in induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Thomas L Maurissen
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
12
|
Li Y, Li X, Qu J, Luo D, Hu Z. Cas9 Mediated Correction of β-catenin Mutation and Restoring the Expression of Protein Phosphorylation in Colon Cancer HCT-116 Cells Decrease Cell Proliferation in vitro and Hamper Tumor Growth in Mice in vivo. Onco Targets Ther 2020; 13:17-29. [PMID: 32021251 PMCID: PMC6954092 DOI: 10.2147/ott.s225556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the major contributors to cancer mortality and morbidity. Finding strategies to fight against CRC is urgently required. Mutations in driver genes of APC or β-catenin play an important role in the occurrence and progression of CRC. In the present study, we jointly apply CRISPR/Cas9-sgRNA system and Single-stranded oligodeoxynucleotide (ssODN) as templates to correct a heterozygous ΔTCT deletion mutation of β-catenin present in a colon cancer cell line HCT-116. This method provides a potential strategy in gene therapy for cancer. Methods A Cas9/β-catenin-sgRNA-eGFP co-expression vector was constructed and co-transfected with ssODN into HCT-116 cells. Mutation-corrected single-cell clones were sorted by FACS and judged by TA cloning and DNA sequencing. Effects of CRISPR/Cas9-mediated correction were tested by real-time quantitative PCR, Western blotting, CCK8, EDU dyeing and cell-plated clones. Moreover, the growth of cell clones derived tumors was analyzed at nude mice xenografts. Results CRISPR/Cas9-mediated β-catenin mutation correction resulted in the presence of TCT sequence and the re-expression of phosphorylation β-catenin at Ser45, which restored the normal function of phosphorylation β-catenin including reduction of the transportation of nuclear β-catenin and the expression of downstream c-myc, survivin. Significantly reduced cell growth was observed in β-catenin mutation-corrected cells. Mice xenografted with mutation-corrected HCT-116 cells showed significantly smaller tumor size than uncorrected xenografts. Conclusion The data of this study documented that correction of the driven mutation by the combination of CRISPR/Cas9 and ssODN could greatly remedy the biological behavior of the cancer cell line, suggesting a potential application of this strategy in gene therapy of cancer.
Collapse
Affiliation(s)
- Yanlan Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hunan 421001, People's Republic of China
| | - Xiangning Li
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Jiayao Qu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Dixian Luo
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| | - Zheng Hu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Hunan 432000, People's Republic of China.,National & Local Joint Engineering Laboratory for High-Through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Hunan 432000, People's Republic of China
| |
Collapse
|
13
|
Abstract
Various nanomaterials can mimic the activities of nucleases for hydrolytic and oxidative DNA cleavage on different sites allowing interesting biomedical and bioanalytical applications.
Collapse
Affiliation(s)
- Ruiqin Fang
- School of Life Science and Technology
- Center for Informational Biology
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
14
|
Artyukhova MA, Tyurina YY, Chu CT, Zharikova TM, Bayır H, Kagan VE, Timashev PS. Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radic Biol Med 2019; 144:279-292. [PMID: 31201850 PMCID: PMC6832799 DOI: 10.1016/j.freeradbiomed.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Loss of dopaminergic neurons in the substantia nigra is one of the pathogenic hallmarks of Parkinson's disease, yet the underlying molecular mechanisms remain enigmatic. While aberrant redox metabolism strongly associated with iron dysregulation and accumulation of dysfunctional mitochondria is considered as one of the major contributors to neurodegeneration and death of dopaminergic cells, the specific anomalies in the molecular machinery and pathways leading to the PD development and progression have not been identified. The high efficiency and relative simplicity of a new genome editing tool, CRISPR/Cas9, make its applications attractive for deciphering molecular changes driving PD-related impairments of redox metabolism and lipid peroxidation in relation to mishandling of iron, aggregation and oligomerization of alpha-synuclein and mitochondrial injury as well as in mechanisms of mitophagy and programs of regulated cell death (apoptosis and ferroptosis). These insights into the mechanisms of PD pathology may be used for the identification of new targets for therapeutic interventions and innovative approaches to genome editing, including CRISPR/Cas9.
Collapse
Affiliation(s)
- M A Artyukhova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA
| | - C T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - T M Zharikova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Russian Federation
| | - H Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Department of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, I.M. Sechenov Moscow State Medical University, Russian Federation; Department of Chemistry, University of Pittsburgh, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Department of Radiation Oncology, University of Pittsburgh, USA.
| | - P S Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Russian Federation; Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, Russian Federation; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, Russian Federation
| |
Collapse
|
15
|
Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D, Berman JN. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 2019; 46:e102. [PMID: 29905858 PMCID: PMC6158492 DOI: 10.1093/nar/gky512] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Charlotte Fuller
- Michael G. DeGroote School of Medicine, McMaster University,Hamilton, ON, L8S4L8, Canada
| | | | - Chansey J Veinotte
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Babak Razaghi
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Johane M Robitaille
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher R McMaster
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam Shlien
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - David Malkin
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Jason N Berman
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
16
|
High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Sci Rep 2018; 8:15126. [PMID: 30310080 PMCID: PMC6181960 DOI: 10.1038/s41598-018-33244-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF1 in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an eGFP-to-BFP conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9-HF1 increases the frequency of single allele editing in comparison to SpCas9-WT. We used SpCas9-HF1 to demonstrate the introduction of monoallelic and biallelic point mutations into the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise genome editing with high efficiency in PGCs.
Collapse
|
17
|
Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, McMaster CR, Shlien A, Malkin D, Berman JN. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res 2018; 46:e102. [PMID: 29905858 PMCID: PMC6158492 DOI: 10.1093/nar/gky512 10.1093/nar/gky674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 01/19/2024] Open
Abstract
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Charlotte Fuller
- Michael G. DeGroote School of Medicine, McMaster University,Hamilton, ON, L8S4L8, Canada
| | | | - Chansey J Veinotte
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Babak Razaghi
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Johane M Robitaille
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher R McMaster
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Adam Shlien
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - David Malkin
- Departments of Pediatrics and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Jason N Berman
- Departments of Pediatrics, Microbiology & Immunology, and Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
18
|
Lanza DG, Gaspero A, Lorenzo I, Liao L, Zheng P, Wang Y, Deng Y, Cheng C, Zhang C, Seavitt JR, DeMayo FJ, Xu J, Dickinson ME, Beaudet AL, Heaney JD. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 2018; 16:69. [PMID: 29925370 PMCID: PMC6011517 DOI: 10.1186/s12915-018-0529-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The International Mouse Phenotyping Consortium is generating null allele mice for every protein-coding gene in the genome and characterizing these mice to identify gene-phenotype associations. While CRISPR/Cas9-mediated null allele production in mice is highly efficient, generation of conditional alleles has proven to be more difficult. To test the feasibility of using CRISPR/Cas9 gene editing to generate conditional knockout mice for this large-scale resource, we employed Cas9-initiated homology-driven repair (HDR) with short and long single stranded oligodeoxynucleotides (ssODNs and lssDNAs). RESULTS Using pairs of single guide RNAs and short ssODNs to introduce loxP sites around a critical exon or exons, we obtained putative conditional allele founder mice, harboring both loxP sites, for 23 out of 30 targeted genes. LoxP sites integrated in cis in at least one mouse for 18 of 23 genes. However, loxP sites were mutagenized in 4 of the 18 in cis lines. HDR efficiency correlated with Cas9 cutting efficiency but was minimally influenced by ssODN homology arm symmetry. By contrast, using pairs of guides and single lssDNAs to introduce loxP-flanked exons, conditional allele founders were generated for all four genes targeted, although one founder was found to harbor undesired mutations within the lssDNA sequence interval. Importantly, when employing either ssODNs or lssDNAs, random integration events were detected. CONCLUSIONS Our studies demonstrate that Cas9-mediated HDR with pairs of ssODNs can generate conditional null alleles at many loci, but reveal inefficiencies when applied at scale. In contrast, lssDNAs are amenable to high-throughput production of conditional alleles when they can be employed. Regardless of the single-stranded donor utilized, it is essential to screen for sequence errors at sites of HDR and random insertion of donor sequences into the genome.
Collapse
Affiliation(s)
- Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Angelina Gaspero
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Lan Liao
- Department of Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Genetically Engineered Mouse Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ping Zheng
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ying Wang
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yu Deng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
- Department of Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Jianming Xu
- Department of Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Genetically Engineered Mouse Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM225, Houston, TX, 77030, USA.
- Mouse ES Cell Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Ringer KP, Roth MG, Garey MS, Piorczynski TB, Suli A, Hansen JM, Alder JK. Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques. Cell Biol Int 2018; 42:849-858. [PMID: 29457665 DOI: 10.1002/cbin.10952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized genome engineering. While Cas9 was not the first programmable endonuclease identified, its simplicity of use has driven widespread adoption in a short period of time. While CRISPR-Cas genome editing holds enormous potential for clinical applications, its use in laboratory settings for genotype-phenotype studies and genome-wide screens has led to breakthroughs in the understanding of many molecular pathways. Numerous protocols have been described for introducing CRISPR-Cas components into cells, and here we sought to simplify and optimize a protocol for genome editing using readily available and inexpensive tools. We compared plasmid, ribonucleoprotein (RNP), and RNA transfection to determine which was method was most optimal for editing cells in a laboratory setting. We limited our comparison to lipofection-mediated introduction because the reagents are widely available. To facilitate optimization, we developed a novel reporter assay to measure gene disruption and the introduction of a variety of exogenous DNA tags. Each method efficiently disrupted endogenous genes and was able to stimulate the introduction of foreign DNA at specific sites, albeit to varying efficiencies. RNP transfection produced the highest level of gene disruption and was the most rapid and efficient method overall. Finally, we show that very short homology arms of 30 base pairs can mediate site-specific editing. The methods described here should broaden the accessibility of RNP-mediated lipofection for laboratory genome-editing experiments.
Collapse
Affiliation(s)
- Kelsey P Ringer
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Mark G Roth
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Mitchell S Garey
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Ted B Piorczynski
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Arminda Suli
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Jason M Hansen
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| | - Jonathan K Alder
- Physiology & Developmental Biology, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
20
|
Modarai SR, Man D, Bialk P, Rivera-Torres N, Bloh K, Kmiec EB. Efficient Delivery and Nuclear Uptake Is Not Sufficient to Detect Gene Editing in CD34+ Cells Directed by a Ribonucleoprotein Complex. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:116-129. [PMID: 29858048 PMCID: PMC5992347 DOI: 10.1016/j.omtn.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
Abstract
CD34+ cells are prime targets for therapeutic strategies for gene editing, because modified progenitor cells have the capacity to differentiate through an erythropoietic lineage. Although experimental advances have been reported, the associated experimental protocols have largely been less than clear or robust. As such, we evaluated the relationships among cellular delivery; nuclear uptake, often viewed as the benchmark metric of successful gene editing; and single base repair. We took a combinatorial approach using single-stranded oligonucleotide and a CRISPR/Cas9 ribonucleoprotein to convert wild-type HBB into the sickle cell genotype by evaluating conditions for two common delivery strategies of gene editing tools into CD34+ cells. Confocal microscopy data show that the CRISPR/Cas9 ribonucleoprotein tends to accumulate at the outer membrane of the CD34+ cell nucleus when the Neon Transfection System is employed, while the ribonucleoproteins do pass into the cell nucleus when nucleofection is used. Despite the high efficiency of cellular transformation, and the traditional view of success in efficient nuclear uptake, neither delivery methodology enabled gene editing activity. Our results indicate that more stringent criteria must be established to facilitate the clinical translation and scientific robustness of gene editing for sickle cell disease.
Collapse
Affiliation(s)
- Shirin R Modarai
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA
| | - Dula Man
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA
| | - Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA
| | | | - Kevin Bloh
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, DE 19713, USA.
| |
Collapse
|
21
|
Cebrian-Serrano A, Zha S, Hanssen L, Biggs D, Preece C, Davies B. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models. PLoS One 2017; 12:e0169887. [PMID: 28081254 PMCID: PMC5231326 DOI: 10.1371/journal.pone.0169887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 12/24/2016] [Indexed: 12/24/2022] Open
Abstract
Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply.
Collapse
Affiliation(s)
| | - Shijun Zha
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lars Hanssen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christopher Preece
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Rivera-Torres N, Banas K, Bialk P, Bloh KM, Kmiec EB. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides. PLoS One 2017; 12:e0169350. [PMID: 28052104 PMCID: PMC5214427 DOI: 10.1371/journal.pone.0169350] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
| | - Kelly Banas
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
| | - Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Kevin M. Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|