1
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Song Y, Cheng X, Song C, Li M, Gao S, Liu Z, Gao J, Wang X. Soil CO 2 and N 2O emissions and microbial abundances altered by temperature rise and nitrogen addition in active-layer soils of permafrost peatland. Front Microbiol 2022; 13:1093487. [PMID: 36583043 PMCID: PMC9792967 DOI: 10.3389/fmicb.2022.1093487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Changes in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth's climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20°C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg-1 to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, β-1,4-glucosidase (βG), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, β-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands.
Collapse
Affiliation(s)
- Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaofeng Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,School of Hydraulic Engineering, Dalian University of Technology, Dalian, China,*Correspondence: Changchun Song,
| | - Mengting Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Siqi Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhendi Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China,College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jinli Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xianwei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
3
|
Mombrikotb SB, Van Agtmaal M, Johnstone E, Crawley MJ, Gweon HS, Griffiths RI, Bell T. The interactions and hierarchical effects of long-term agricultural stressors on soil bacterial communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:711-718. [PMID: 35925021 PMCID: PMC9804416 DOI: 10.1111/1758-2229.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/19/2022] [Indexed: 06/17/2023]
Abstract
Soils are subjected to multiple anthropogenic modifications, but the synergistic impacts of simultaneous environmental stressors on below-ground communities are poorly understood. We used a large-scale (1152 plots), long-term (26 years), multi-factorial grassland experiment to assess the impact of five common agricultural practises (pesticides, herbicide, liming, fertilizers and grazing exclusion) and their interactive effects on the composition and activity of soil microbial communities. We confirmed that pH strongly impacts belowground communities, but further demonstrate that pH strongly mediates the impacts of other management factors. Notably, there was a significant interaction between liming and the effect of pesticide application, with only half of the taxa responding to pesticide being shared in both limed and unlimed treatments. Likewise, nutrient amendments significantly altered bacterial community structure in acidic soils. Not only do these results highlight an hierarchy of effect of commonly used agricultural practices but also the widespread interactions between treatments: many taxa were significantly affected by interactions between treatments, even in the absence of significant main effects. Furthermore, the results demonstrated that chemical amendments may not percolate deeply into physically unperturbed soils with effects concentrated between 0 and 30 cm, despite 20+ years of treatment. The research shows that future changes to agricultural practices will need to consider interactions among multiple factors.
Collapse
Affiliation(s)
| | - Maaike Van Agtmaal
- Department of Life SciencesImperial College London, AscotBerkshireUK
- Louis Bolk InstituutBunnikThe Netherlands
| | - Emma Johnstone
- Department of Life SciencesImperial College London, AscotBerkshireUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Hyun S. Gweon
- School of Biological SciencesUniversity of Reading, WhiteknightsReadingUK
- UK Centre of Ecology & HydrologyBangorUK
| | | | - Thomas Bell
- Department of Life SciencesImperial College London, AscotBerkshireUK
| |
Collapse
|
4
|
Jia X, Tao D, Ke Y, Li W, Yang T, Yang Y, He N, Smith MD, Yu Q. Dominant species control effects of nitrogen addition on ecosystem stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156060. [PMID: 35618129 DOI: 10.1016/j.scitotenv.2022.156060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Increased nitrogen (N) deposition is known to reduce the ecosystem stability, while the underlying mechanisms are still controversial. We conducted an 8-year multi-level N addition experiment in a temperate semi-arid grassland to identify the mechanisms (biodiversity, species asynchrony, population stability and dominant species stability) driving the N-induced loss of temporal stability of aboveground net primary productivity (ANPP). We found that N addition decreased ecosystem, population, and dominant species stability; decreased species richness and phylogenetic diversity; increased species dominance; but had nonsignificant effects on community-wide species asynchrony. Structural equation model revealed that N-induced loss of ecosystem stability was mainly driven by the loss of dominant species stability and the reduction in population stability. Moreover, species relative instability was negatively related with species relative production and the slopes increase with N addition, indicating that N addition weakened the stabilizing effect of dominant species on ecosystem function. Overall, our results highlight that the dominant species control the temporal stability of ANPP in grassland ecosystem under N addition, and support 'dominance management' as an effective strategy for conserving ecosystem functioning in grassland under N deposition.
Collapse
Affiliation(s)
- Xiaotong Jia
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongxue Tao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuguang Ke
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjin Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Melinda D Smith
- Department of Biology, Colorado State University, CO 80523, USA
| | - Qiang Yu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Verma P, Sagar R. Soil respiration response to nitrogen fertilization experiment in tropical grassland. Ecol Res 2022. [DOI: 10.1111/1440-1703.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Preeti Verma
- Department of Botany Banaras Hindu University Varanasi India
- Department of Botany Government Degree College Basti India
| | - R. Sagar
- Department of Botany Banaras Hindu University Varanasi India
| |
Collapse
|
6
|
Impacts of corn stover management and fertilizer application on soil nutrient availability and enzymatic activity. Sci Rep 2022; 12:1985. [PMID: 35132132 PMCID: PMC8821671 DOI: 10.1038/s41598-022-06042-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Corn stover is a global resource used in many industrial sectors including bioenergy, fuel, and livestock operations. However, stover removal can negatively impact soil nutrient availability, especially nitrogen (N) and phosphorus (P), biological activity, and soil health. We evaluated the effects of corn stover management combined with N and P fertilization on soil quality, using soil chemical (nitrate, ammonium and Bray-1 P) and biological parameters (β-glucosidase, alkaline phosphatase, arylsulfatase activities and fluorescein diacetate hydrolysis—FDA). The experiment was performed on a Mollisol (Typic Endoaquoll) in a continuous corn system from 2013 to 2015 in Minnesota, USA. The treatments tested included six N rates (0 to 200 kg N ha−1), five P rates (0 to 100 kg P2O5 ha−1), and two residue management strategies (residue removed or incorporated) totalling 60 treatments. Corn stover management significantly impacted soil mineral-N forms and enzyme activity. In general, plots where residue was incorporated were found to have high NH4+ and enzyme activity compared to plots where residue was removed. In contrast, fields where residue was removed showed higher NO3− than plots where residue was incorporated. Residue management had little effect on soil available P. Soil enzyme activity was affected by both nutrient and residue management. In most cases, activity of the enzymes measured in plots where residue was removed frequently showed a positive response to added N and P. In contrast, soil enzyme responses to applied N and P in plots where residue was incorporated were less evident. Soil available nutrients tended to decrease in plots where residue was removed compared with plots where residue was incorporated. In conclusion, stover removal was found to have significant potential to change soil chemical and biological properties and caution should be taken when significant amounts of stover are removed from continuous corn fields. The residue removal could decrease different enzymes related to C-cycle (β-glucosidase) and soil microbial activity (FDA) over continuous cropping seasons, impairing soil health.
Collapse
|
7
|
Jiang Z, Bian H, Xu L, Li M, He N. Pulse Effect of Precipitation: Spatial Patterns and Mechanisms of Soil Carbon Emissions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.673310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rapid and strong release of CO2 caused by precipitation (known as the pulse effect) is a common phenomenon that significantly affects ecosystem C cycling. However, the degree to which the pulse effect occurs overlarge regional scales remains unclear. In this study, we conducted continuous and high-frequency measurements of soil CO2 release rates (Rs) for 48 h after simulated precipitation, along a precipitation gradient of different grassland types (i.e., meadow, typical, and desert) in Inner Mongolia, China. Pulse effects were assessed using the maximum Rs (Rsoil–max) and accumulated CO2 emissions (ARs–soil). Strong precipitation pulse effects were found in all sites; however, the effects differed among grassland types. In addition, an apparent decrease in both Rsoil–max and ARs–soil was observed from the east to west, i.e., along the decreasing precipitation gradient. ARs–soil values followed the order: temperate meadow grassland (0.097 mg C g–1 soil) > typical temperate grassland (0.081 mg C g–1 soil) > temperate desert grassland (0.040 mg C g–1 soil). Furthermore, Rsoil–max and ARs–soil were significantly positively correlated with soil quality (SOC, POC, and N, etc.; P < 0.01). ARs–soil (P < 0.05) and ARs–SOC (P < 0.01) were significantly affected. ARs–soil and ARs–SOC were also positively correlated with soil microbial biomass significantly (P < 0.05). Rsoil–max and ARs–soil had similar spatial variations and controlling mechanisms. These results greatly support the substrate supply hypothesis for the effects of precipitation pulses, and provide valuable information for predicting CO2 emissions. Our findings also verified the significant effect of soil CO2 release from precipitation pulses on the grasslands of arid and semi-arid regions. Our data provide a scientific basis for model simulations to better predict the responses of ecosystem carbon cycles in arid and semi-arid regions under predicted climate change scenarios.
Collapse
|
8
|
Li W, Wang J, Li X, Wang S, Liu W, Shi S, Cao W. Nitrogen fertilizer regulates soil respiration by altering the organic carbon storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibet Plateau. Sci Rep 2019; 9:13735. [PMID: 31551506 PMCID: PMC6760222 DOI: 10.1038/s41598-019-50142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022] Open
Abstract
Soil respiration (Rs) plays a critical role in the global carbon (C) balance, especially in the context of globally increasing nitrogen (N) deposition. However, how N-addition influences C cycle remains unclear. Here, we applied seven levels of N application (0 (N0), 54 (N1), 90 (N2), 126 (N3), 144 (N4), 180 (N5) and 216 kg N ha−1 yr−1 (N6)) to quantify their impacts on Rs and its components (autotrophic respiration (Ra) and heterotrophic respiration (Rh)) and C and N storage in vegetation and soil in alpine meadow on the northeast margin of the Qinghai-Tibetan Plateau. We used a structural equation model (SEM) to explore the relative contributions of C and N storage, soil temperature and soil moisture and their direct and indirect pathways in regulating soil respiration. Our results revealed that the Rs, Ra and Rh, C and N storage in plant, root and soil (0–10 cm and 10–20 cm) all showed initial increases and then tended to decrease at the threshold level of 180 kg N ha−1 yr−1. The SEM results indicated that soil temperature had a greater impact on Rs than did volumetric soil moisture. Moreover, SEM also showed that C storage (in root, 0–10 and 10–20 cm soil layers) was the most important factor driving Rs. Furthermore, multiple linear regression model showed that the combined root C storage, 0–10 cm and 10–20 cm soil layer C storage explained 97.4–97.6% variations in Rs; explained 94.5–96% variations in Ra; and explained 96.3–98.1% in Rh. Therefore, the growing season soil respiration and its components can be well predicted by the organic C storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibetan Plateau. Our study reveals the importance of topsoil and root C storage in driving growing season Rs in alpine meadow on the northeast margin of Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Wen Li
- Grassland Ecosystem Key Laboratory of Ministry of Education, Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Grassland Science College of Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jinlan Wang
- Grassland Ecosystem Key Laboratory of Ministry of Education, Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Grassland Science College of Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xiaolong Li
- Grassland Ecosystem Key Laboratory of Ministry of Education, Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Grassland Science College of Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shilin Wang
- Grassland Ecosystem Key Laboratory of Ministry of Education, Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Grassland Science College of Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Wenhui Liu
- Grassland Institute, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, 810003, People's Republic of China
| | - Shangli Shi
- Grassland Ecosystem Key Laboratory of Ministry of Education, Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Grassland Science College of Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Wenxia Cao
- Grassland Ecosystem Key Laboratory of Ministry of Education, Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Grassland Science College of Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
9
|
Perveen N, Ayub M, Shahzad T, Siddiq MR, Memon MS, Barot S, Saeed H, Xu M. Soil carbon mineralization in response to nitrogen enrichment in surface and subsurface layers in two land use types. PeerJ 2019; 7:e7130. [PMID: 31328029 PMCID: PMC6622155 DOI: 10.7717/peerj.7130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/14/2019] [Indexed: 11/24/2022] Open
Abstract
Atmospheric nitrogen (N) deposition increases N availability in soils, with consequences affecting the decomposition of soil carbon (C). The impacts of increasing N availability on surface soil C dynamics are well studied. However, subsurface soils have been paid less attention although more than 50% soil C stock is present below this depth (below 20 cm). This study was designed to investigate the response of surface (0–20 cm) and subsurface (20–40 cm and 40–60 cm) C dynamics to 0 (0 kg N ha−1), low (70 kg N ha−1) and high (120 kg N ha−1) levels of N enrichment. The soils were sampled from a cropland and a grass lawn and incubated at 25 °C and 60% water holding capacity for 45 days. Results showed that N enrichment significantly decreased soil C mineralization (Rs) in all the three soil layers in the two studied sites (p < 0.05). The mineralization per unit soil organic carbon (SOC) increased with profile depth in both soils, indicating the higher decomposability of soil C down the soil profile. Moreover, high N level exhibited stronger suppression effect on Rs than low N level. Rs was significantly and positively correlated with microbial biomass carbon explaining 80% of variation in Rs. Overall; these results suggest that N enrichment may increase C sequestration both in surface and subsurface layers, by reducing C loss through mineralization.
Collapse
Affiliation(s)
- Nazia Perveen
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, China.,Department of Environmental Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mariam Ayub
- Department of Environmental Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rashid Siddiq
- Institut für Biowissenschaften, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Muhammad Sohail Memon
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, Pakistan
| | - Sébastien Barot
- IEES-Paris (IRD, CNRS, UPMC, INRA, UPEC), 4 place Jussieu, Paris, France
| | - Hamid Saeed
- Department of Environmental Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Ming Xu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Wu R, Cheng X, Zhou W, Han H. Microbial regulation of soil carbon properties under nitrogen addition and plant inputs removal. PeerJ 2019; 7:e7343. [PMID: 31346503 PMCID: PMC6642627 DOI: 10.7717/peerj.7343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/24/2019] [Indexed: 11/20/2022] Open
Abstract
Background Soil microbial communities and their associated enzyme activities play key roles in carbon cycling in terrestrial ecosystems. Soil microbial communities are sensitive to resource availability, but the mechanisms of microbial regulation have not been thoroughly investigated. Here, we tested the mechanistic relationships between microbial responses and multiple interacting resources. Methods We examined soil carbon properties, soil microbial community structure and carbon-related functions under nitrogen addition and plant inputs removal (litter removal (NL), root trench and litter removal (NRL)) in a pure Larix principis-rupprechtii plantation in northern China. Results We found that nitrogen addition affected the soil microbial community structure, and that microbial biomass increased significantly once 100 kg ha−1 a−1 of nitrogen was added. The interactions between nitrogen addition and plant inputs removal significantly affected soil bacteria and their enzymatic activities (oxidases). The NL treatment enhanced soil microbial biomass under nitrogen addition. We also found that the biomass of gram-negative bacteria and saprotrophic fungi directly affected the soil microbial functions related to carbon turnover. The biomass of gram-negative bacteria and peroxidase activity were key factors controlling soil carbon dynamics. The interactions between nitrogen addition and plant inputs removal strengthened the correlation between the hydrolases and soil carbon. Conclusions This study showed that nitrogen addition and plant inputs removal could alter soil enzyme activities and further affect soil carbon turnover via microbial regulation. The increase in soil microbial biomass and the microbial regulation of soil carbon both need to be considered when developing effective sustainable forest management practices for northern China. Moreover, further studies are also needed to exactly understand how the complex interaction between the plant and below-ground processes affects the soil microbial community structure.
Collapse
Affiliation(s)
- Ran Wu
- Beijing Key Laboratory of Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Xiaoqin Cheng
- Beijing Key Laboratory of Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Wensong Zhou
- Beijing Key Laboratory of Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| | - Hairong Han
- Beijing Key Laboratory of Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Wang J, Fu X, Zhang Z, Li M, Cao H, Zhou X, Ni H. Responses of soil respiration to nitrogen addition in the Sanjiang Plain wetland, northeastern China. PLoS One 2019; 14:e0211456. [PMID: 30703158 PMCID: PMC6355000 DOI: 10.1371/journal.pone.0211456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
This study was designed to test the hypothesis that nitrogen (N) addition leads to enhanced soil respiration (SR) in nitrogen deficient marsh. Here, we report the response of SR to simulated N deposition in a temperate marsh of northeastern China from June 2009 to September 2011. The experiment included three-levels of N treatment (control: no N addition, Low-N: 4g N m-2 y-1, and High-N: 8 g N m-2 y-1). Our study showed various responses of SR to level and duration of N addition. Yearly SR was increased by 11.8%-15.2% (P<0.05) under Low-N addition during the three years, while SR showed a strong increase by 27.5% (P<0.05) in the first year and then decreased by 4.4% (P>0.05) and 15.4% (P<0.05) in the next two years under High-N addition. Soil respiration was positively correlated with soil temperature and negatively correlated with soil water content. High-N treatment reduced soil pH value (P<0.05). The negative response of SR to High-N addition in the following two years may attribute to lower microbial activity, microbial biomass and alteration in the microbial community due to lower soil pH, which consequently leads to decreased SR. Meanwhile, we found root biomass were increased under High-N addition. This implies that the increase of autotrophic respiration was lower than the decline of heterotrophic respiration in the following two years. Our findings suggest complex interactions between N deposition and SR, which is needed to be further investigated in the future studies.
Collapse
Affiliation(s)
- Jianbo Wang
- Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
- Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaoling Fu
- Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Zhen Zhang
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Maihe Li
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Jilin, China
| | - Hongjie Cao
- Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Xiaoliang Zhou
- The Honghe National Nature Reserve, Jiansanjiang, Heilongjiang, China
| | - Hongwei Ni
- Institute of Natural resources and Ecology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Differential responses of heterotrophic and autotrophic respiration to nitrogen addition and precipitation changes in a Tibetan alpine steppe. Sci Rep 2018; 8:16546. [PMID: 30410000 PMCID: PMC6224420 DOI: 10.1038/s41598-018-34969-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
Abstract
Soil respiration (Rs) is an important source of atmospheric CO2 flux and is sensitive to changes in soil nutrient and water contents. Despite extensive studies on the effects of enhanced atmospheric nitrogen (N) deposition and changes in precipitation (P) on Rs, few studies have taken into account the effects of interactions between these factors on Rs of alpine grasslands. To address these questions, we investigated the effects of N addition (10 g N m−2 yr−1), changes in precipitation (±50% precipitation), and their interaction on soil respiration and its components, including heterotrophic respiration (Rh) and autotrophic respiration (Ra),in a Tibetan alpine steppe during three consecutive growing seasons. We found that Rs differed in its response to N addition and precipitation regimes. Specifically, decreased precipitation led to a significant reduction in Rs during the last two years, whereas N addition minimally impacted Rs. Another important finding was that soil respiration components differed in their response to N addition and precipitation regimes. Nitrogen addition significantly enhanced Ra, whereas Rh was not altered in response to N addition. By contrast, the precipitation regime led to marked changes in Rh, but exhibited marginally significant effects on Ra. Therefore, our findings highlighted that soil respiration differed in its response to N addition and precipitation regimes mainly due to the different responses of soil respiration components to these factors. Therefore, carbon dynamics should take soil respiration components into account under global change scenarios.
Collapse
|
13
|
Lo Cascio M, Morillas L, Ochoa-Hueso R, Munzi S, Roales J, Hasselquist NJ, Manrique E, Spano D, Jaoudé RA, Mereu S. Contrasting effects of nitrogen addition on soil respiration in two Mediterranean ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26160-26171. [PMID: 28386895 DOI: 10.1007/s11356-017-8852-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Increased atmospheric nitrogen (N) deposition is known to alter ecosystem carbon source-sink dynamics through changes in soil CO2 fluxes. However, a limited number of experiments have been conducted to assess the effects of realistic N deposition in the Mediterranean Basin, and none of them have explored the effects of N addition on soil respiration (R s ). To fill this gap, we assessed the effects of N supply on R s dynamics in the following two Mediterranean sites: Capo Caccia (Italy), where 30 kg ha-1 year-1 was supplied for 3 years, and El Regajal (Spain), where plots were treated with 10, 20, or 50 kg N ha-1 year-1 for 8 years. Results show a complex, non-linear response of soil respiration (R s ) to N additions with R s overall increasing at Capo Caccia and decreasing at El Regajal. This suggests that the response of R s to N addition depends on dose and duration of N supply, and the existence of a threshold above which the N introduced in the ecosystem can affect the ecosystem's functioning. Soil cover and seasonality of precipitations also play a key role in determining the effects of N on R s as shown by the different responses observed across seasons and in bare soil vs. the soil under canopy of the dominant species. These results show how increasing rates of N addition may influence soil C dynamics in semiarid ecosystems in the Mediterranean Basin and represent a valuable contribution for the understanding and the protection of Mediterranean ecosystems.
Collapse
Affiliation(s)
- Mauro Lo Cascio
- Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy.
- Euro-Mediterranean Centre on Climate Change (CMCC), IAFES Division, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy.
| | - Lourdes Morillas
- Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
| | - Raúl Ochoa-Hueso
- Department of Ecology, Autonomous University of Madrid, Darwin St., 2, 28049, Madrid, Spain
| | - Silvana Munzi
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Javier Roales
- Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
| | - Niles J Hasselquist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Esteban Manrique
- Department Biogeography and Global Change, Spanish National Research Council (MNCN-CSIC), National Museum of Natural Sciences, C/Serrano 115 Dpdo, 28006, Madrid, Spain
| | - Donatella Spano
- Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
- Euro-Mediterranean Centre on Climate Change (CMCC), IAFES Division, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
| | - Renée Abou Jaoudé
- Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
| | - Simone Mereu
- Department of Science for Nature and Environmental Resources (DipNET), University of Sassari, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
- Euro-Mediterranean Centre on Climate Change (CMCC), IAFES Division, Via Enrico de Nicola, No. 9, 07100, Sassari, Italy
| |
Collapse
|