1
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
2
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Guo X, Cui Y, Irwin DM, Liu Y. Accelerated evolution of dim-light vision-related arrestin in deep-diving amniotes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1069088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arrestins are key molecules involved in the signaling of light-sensation initiated by visual pigments in retinal photoreceptor cells. Vertebrate photoreceptor cells have two types of arrestins, rod arrestin, which is encoded by SAG and is expressed in both rods and cones, and cone arrestin, encoded by ARR3 in cones. The arrestins can bind to visual pigments, and thus regulate either dim-light vision via interactions with rhodopsin or bright-light vision together with cone visual pigments. After adapting to terrestrial life, several amniote lineages independently went back to the sea and evolved deep-diving habits. Interestingly, the rhodopsins in these species exhibit specialized phenotypes responding to rapidly changing dim-light environments. However, little is known about whether their rod arrestin also experienced adaptive evolution associated with rhodopsin. Here, we collected SAG coding sequences from >250 amniote species, and examined changes in selective pressure experienced by the sequences from deep-diving taxa. Divergent patterns of evolution of SAG were observed in the penguin, pinniped and cetacean clades, suggesting possible co-adaptation with rhodopsin. After verifying pseudogenes, the same analyses were performed for cone arrestin (ARR3) in deep-diving species and only sequences from cetacean species, and not pinnipeds or penguins, have experienced changed selection pressure compared to other species. Taken together, this evidence for changes in selective pressures acting upon arrestin genes strengthens the suggestion that rapid dim-light adaptation for deep-diving amniotes require SAG, but not ARR3.
Collapse
|
4
|
Luo H, Luo S, Fang W, Lin Q, Chen X, Zhou X. Genomic insight into the nocturnal adaptation of the black-crowned night heron (Nycticorax nycticorax). BMC Genomics 2022; 23:683. [PMID: 36192687 PMCID: PMC9531477 DOI: 10.1186/s12864-022-08904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The black-crowned night heron (Nycticorax nycticorax) is an ardeid bird successfully adapted to the nocturnal environment. Previous studies had indicated that the eyes of the night herons have evolved several specialized morphological traits favoring nocturnal vision. However, the molecular mechanisms of the nocturnal vision adaptation of night herons remained inattentions. In this study, the whole genome of N. nycticorax was sequenced and comparative analyses were performed on the vision-related and olfactory receptor (OR) genes to understand the molecular mechanisms of the visual and olfactory adaptation of night herons. RESULTS The results indicated that a number of vision genes were under positive or relaxed selection in N. nycticorax, whereas a number of other vision genes were under relaxed or intensified selection in the boat-billed heron (Cochlearius cochlearius), which suggested that the two species adapt to nocturnality with different genetic mechanisms. The different selections acting on vision genes are probably associated with the enlargement of eye size and the enhancement of visual sensitivity in night herons. The analyses on olfactory receptor (OR) genes indicated that the total number of OR genes in the genomes of N. nycticorax and C. cochlearius were about half those in the little egret (Egretta garzetta), whereas the diversity of their OR genes was not remarkably different. Additionally, the number of expressed OR genes in the transcriptomes of N. nycticorax was also fewer than that in E. garzetta. These results suggest a reduced olfactory capability in night herons compared with E. garzetta. CONCLUSIONS Our results provided evidence that several vision genes of the night herons were subjected to different natural selections, which can contribute to a better understanding of the genetic mechanisms of visual adaptions of the night heron. In addition, the finding of the reduced number of total and expressed OR genes in night herons may reflect a trade-off between olfaction and vision.
Collapse
Affiliation(s)
- Haoran Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
5
|
Wu Y, Fan L, Bai L, Li Q, Gu H, Sun C, Jiang T, Feng J. Ambush predation and the origin of euprimates. SCIENCE ADVANCES 2022; 8:eabn6248. [PMID: 36103535 PMCID: PMC9473580 DOI: 10.1126/sciadv.abn6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Primates of modern aspect (euprimates) are characterized by a suite of characteristics (e.g., convergent orbits, grasping hands and feet, reduced claws, and leaping), but the selective pressures responsible for the evolution of these euprimate characteristics have long remained controversial. Here, we used a molecular phyloecological approach to determine the diet of the common ancestor of living primates (CALP), and the results showed that the CALP had increased carnivory. Given the carnivory of the CALP, along with the general observation that orbital convergence is largely restricted to ambush predators, our study suggests that the euprimate characteristics could have been more specifically adapted for ambush predation. In particular, our behavior experiment further shows that nonclaw climbing can significantly reduce noises, which could benefit the ancestral euprimates' stalking to ambush their prey in trees. Therefore, our study suggests that the distinctive euprimate characteristics may have evolved as their specialized adaptation for ambush predation in arboreal environments.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Longcheng Fan
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Lu Bai
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingqing Li
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Congnan Sun
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| |
Collapse
|
6
|
Tian R, Guo H, Jin Z, Zhang F, Zhao J, Seim I. Molecular evolution of vision-related genes may contribute to marsupial photic niche adaptations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vision plays an essential role in the life of many animals. While most mammals are night-active (nocturnal), many have adapted to novel light environments. This includes diurnal (day-active) and crepuscular (twilight-active) species. Here, we used integrative approaches to investigate the molecular evolution of 112 vision-related genes across 19 genomes representing most marsupial orders. We found that four genes (GUCA1B, GUCY2F, RGR, and SWS2) involved in retinal phototransduction likely became functionally redundant in the ancestor of marsupials, a group of largely obligate nocturnal mammals. We also show evidence of rapid evolution and positive selection of bright-light vision genes in the common ancestor of Macropus (kangaroos, wallaroos, and wallabies). Macropus-specific amino acid substitutions in opsin genes (LWS and SWS1), in particular, may be an adaptation for crepuscular vision in this genus via opsin spectral sensitivity tuning. Our study set the stage for functional genetics studies and provides a stepping stone to future research efforts that fully capture the visual repertoire of marsupials.
Collapse
|
7
|
Grosser S, Dutoit L, Foster Y, Robertson F, Fidler AE, Martini D, Knapp M, Robertson BC. Genomic evidence of a functional RH2 opsin in New Zealand parrots and implications for pest control. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2053554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Stefanie Grosser
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Yasmin Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Denise Martini
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Coastal People, Southern Skies Centre of Research Excellence, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
8
|
White ND, Batz ZA, Braun EL, Braun MJ, Carleton KL, Kimball RT, Swaroop A. A novel exome probe set captures phototransduction genes across birds (Aves) enabling efficient analysis of vision evolution. Mol Ecol Resour 2021; 22:587-601. [PMID: 34652059 DOI: 10.1111/1755-0998.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
The diversity of avian visual phenotypes provides a framework for studying mechanisms of trait diversification generally, and the evolution of vertebrate vision, specifically. Previous research has focused on opsins, but to fully understand visual adaptation, we must study the complete phototransduction cascade (PTC). Here, we developed a probe set that captures exonic regions of 46 genes representing the PTC and other light responses. For a subset of species, we directly compared gene capture between our probe set and low-coverage whole genome sequencing (WGS), and we discuss considerations for choosing between these methods. Finally, we developed a unique strategy to avoid chimeric assembly by using "decoy" reference sequences. We successfully captured an average of 64% of our targeted exome in 46 species across 14 orders using the probe set and had similar recovery using the WGS data. Compared to WGS or transcriptomes, our probe set: (1) reduces sequencing requirements by efficiently capturing vision genes, (2) employs a simpler bioinformatic pipeline by limiting required assembly and negating annotation, and (3) eliminates the need for fresh tissues, enabling researchers to leverage existing museum collections. We then utilized our vision exome data to identify positively selected genes in two evolutionary scenarios-evolution of night vision in nocturnal birds and evolution of high-speed vision specific to manakins (Pipridae). We found parallel positive selection of SLC24A1 in both scenarios, implicating the alteration of rod response kinetics, which could improve color discrimination in dim light conditions and/or facilitate higher temporal resolution.
Collapse
Affiliation(s)
- Noor D White
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA
| | - Zachary A Batz
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Karen L Carleton
- Behavior, Ecology, Evolution and Systematics Program, University of Maryland, College Park, Maryland, USA.,Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Wu Y, Yan Y, Zhao Y, Gu L, Wang S, Johnson DH. Genomic bases underlying the adaptive radiation of core landbirds. BMC Ecol Evol 2021; 21:162. [PMID: 34454438 PMCID: PMC8403425 DOI: 10.1186/s12862-021-01888-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Core landbirds undergo adaptive radiation with different ecological niches, but the genomic bases that underlie their ecological diversification remain unclear. RESULTS Here we used the genome-wide target enrichment sequencing of the genes related to vision, hearing, language, temperature sensation, beak shape, taste transduction, and carbohydrate, protein and fat digestion and absorption to examine the genomic bases underlying their ecological diversification. Our comparative molecular phyloecological analyses show that different core landbirds present adaptive enhancement in different aspects, and two general patterns emerge. First, all three raptorial birds (Accipitriformes, Strigiformes, and Falconiformes) show a convergent adaptive enhancement for fat digestion and absorption, while non-raptorial birds tend to exhibit a promoted capability for protein and carbohydrate digestion and absorption. Using this as a molecular marker, our results show relatively strong support for the raptorial lifestyle of the common ancestor of core landbirds, consequently suggesting a single origin of raptors, followed by two secondary losses of raptorial lifestyle within core landbirds. In addition to the dietary niche, we find at temporal niche that diurnal birds tend to exhibit an adaptive enhancement in bright-light vision, while nocturnal birds show an increased adaption in dim-light vision, in line with previous findings. CONCLUSIONS Our molecular phyloecological study reveals the genome-wide adaptive differentiations underlying the ecological diversification of core landbirds.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yi Yan
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yuanqin Zhao
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Li Gu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Songbo Wang
- Bio-Intelligence Co. Ltd, Shenzhen, 518000, China
| | - David H Johnson
- Global Owl Project, 6504 Carriage Drive, Alexandria, VA, 22310, USA.
| |
Collapse
|
10
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
11
|
Toomey MB, Ronald KL. Avian color expression and perception: is there a carotenoid link? J Exp Biol 2021; 224:269205. [PMID: 34142139 DOI: 10.1242/jeb.203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carotenoids color many of the red, orange and yellow ornaments of birds and also shape avian vision. The carotenoid-pigmented oil droplets in cone photoreceptors filter incoming light and are predicted to aid in color discrimination. Carotenoid use in both avian coloration and color vision raises an intriguing question: is the evolution of visual signals and signal perception linked through these pigments? Here, we explore the genetic, physiological and functional connections between these traits. Carotenoid color and droplet pigmentation share common mechanisms of metabolic conversion and are both affected by diet and immune system challenges. Yet, the time scale and magnitude of these effects differ greatly between plumage and the visual system. Recent observations suggest a link between retinal carotenoid levels and color discrimination performance, but the mechanisms underlying these associations remain unclear. Therefore, we performed a modeling exercise to ask whether and how changes in droplet carotenoid content could alter the perception of carotenoid-based plumage. This exercise revealed that changing oil droplet carotenoid concentration does not substantially affect the discrimination of carotenoid-based colors, but might change how reliably a receiver can predict the carotenoid content of an ornament. These findings suggest that, if present, a carotenoid link between signal and perception is subtle. Deconstructing this relationship will require a deeper understanding of avian visual perception and the mechanisms of color production. We highlight several areas where we see opportunities to gain new insights, including comparative genomic studies of shared mechanisms of carotenoid processing and alternative approaches to investigating color vision.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, 800 S Tucker Dr., Tulsa, OK 74104, USA
| | - Kelly L Ronald
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49422, USA
| |
Collapse
|
12
|
Goedert D, Clement D, Calsbeek R. Evolutionary trade‐offs may interact with physiological constraints to maintain color variation. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Debora Goedert
- Department of Biological Sciences Dartmouth College Hanover03755 New Hampshire USA
- Ministry of Education of Brazil CAPES Foundation Brasília DF95616Brazil
| | - Dale Clement
- Department of Biological Sciences Dartmouth College Hanover03755 New Hampshire USA
| | - Ryan Calsbeek
- Department of Biological Sciences Dartmouth College Hanover03755 New Hampshire USA
| |
Collapse
|
13
|
Abstract
Ecological diversity among diurnal birds of prey, or raptors, is highlighted regarding their sensory abilities. While raptors are believed to forage primarily using sight, the sensory demands of scavengers and predators differ, as reflected in their visual systems. Here, I have reviewed the visual specialisations of predatory and scavenging diurnal raptors, focusing on (1) the anatomy of the eye and (2) the use of vision in foraging. Predators have larger eyes than scavengers relative to their body mass, potentially highlighting the higher importance of vision in these species. Scavengers possess one centrally positioned fovea that allows for the detection of carrion at a distance. In addition to the central fovea, predators have a second, temporally positioned fovea that views the frontal visual field, possibly for prey capture. Spatial resolution does not differ between predators and scavengers. In contrast, the organisation of the visual fields reflects important divergences, with enhanced binocularity in predators opposed to an enlarged field of view in scavengers. Predators also have a larger blind spot above the head. The diversity of visual system specializations according to the foraging ecology displayed by these birds suggests a complex interplay between visual anatomy and ecology, often unrelatedly of phylogeny.
Collapse
|
14
|
Visual adaptations of diurnal and nocturnal raptors. Semin Cell Dev Biol 2020; 106:116-126. [DOI: 10.1016/j.semcdb.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
|
15
|
Nokelainen O, Sreelatha LB, Brito JC, Campos JC, Scott-Samuel NE, Valkonen JK, Boratyński Z. Camouflage in arid environments: the case of Sahara-Sahel desert rodents. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ossi Nokelainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland; e-mail:
| | - Lekshmi B. Sreelatha
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal; e-mail:
| | - José Carlos Brito
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal; e-mail:
| | - João C. Campos
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal; e-mail:
| | | | - Janne K. Valkonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland; e-mail:
| | - Zbyszek Boratyński
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal; e-mail:
| |
Collapse
|
16
|
Borges R, Fonseca J, Gomes C, Johnson WE, O'Brien SJ, Zhang G, Gilbert MTP, Jarvis ED, Antunes A. Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biol Evol 2020; 11:2244-2255. [PMID: 31386143 PMCID: PMC6735850 DOI: 10.1093/gbe/evz111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Typical avian eyes are phenotypically engineered for photopic vision (daylight). In contrast, the highly derived eyes of the barn owl (Tyto alba) are adapted for scotopic vision (dim light). The dramatic modifications distinguishing barn owl eyes from other birds include: 1) shifts in frontal orientation to improve binocularity, 2) rod-dominated retina, and 3) enlarged corneas and lenses. Some of these features parallel mammalian eye patterns, which are hypothesized to have initially evolved in nocturnal environments. Here, we used an integrative approach combining phylogenomics and functional phenotypes of 211 eye-development genes across 48 avian genomes representing most avian orders, including the stem lineage of the scotopic-adapted barn owl. Overall, we identified 25 eye-development genes that coevolved under intensified or relaxed selection in the retina, lens, cornea, and optic nerves of the barn owl. The agtpbp1 gene, which is associated with the survival of photoreceptor populations, was pseudogenized in the barn owl genome. Our results further revealed that barn owl retinal genes responsible for the maintenance, proliferation, and differentiation of photoreceptors experienced an evolutionary relaxation. Signatures of relaxed selection were also observed in the lens and cornea morphology-associated genes, suggesting that adaptive evolution in these structures was essentially structural. Four eye-development genes (ephb1, phactr4, prph2, and rs1) evolved in positive association with the orbit convergence in birds and under relaxed selection in the barn owl lineage, likely contributing to an increased reliance on binocular vision in the barn owl. Moreover, we found evidence of coevolutionary interactions among genes that are expressed in the retina, lens, and optic nerve, suggesting synergetic adaptive events. Our study disentangles the genomic changes governing the binocularity and low-light perception adaptations of barn owls to nocturnal environments while revealing the molecular mechanisms contributing to the shift from the typical avian photopic vision to the more-novel scotopic-adapted eye.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - João Fonseca
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia.,Walter Reed Biosystematics Unit, Smithsonian Institution, Suitland, Maryland
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark.,China National GeneBank, BGI-Shenzen, Shenzhen, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, Rockefeller University.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
17
|
Ducrest A, Neuenschwander S, Schmid‐Siegert E, Pagni M, Train C, Dylus D, Nevers Y, Warwick Vesztrocy A, San‐Jose LM, Dupasquier M, Dessimoz C, Xenarios I, Roulin A, Goudet J. New genome assembly of the barn owl ( Tyto alba alba). Ecol Evol 2020; 10:2284-2298. [PMID: 32184981 PMCID: PMC7069322 DOI: 10.1002/ece3.5991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.
Collapse
Affiliation(s)
- Anne‐Lyse Ducrest
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | | | | | - Marco Pagni
- Vital‐ITSwiss Institute of BioinformaticsLausanneSwitzerland
| | - Clément Train
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - David Dylus
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Yannis Nevers
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Alex Warwick Vesztrocy
- Center for Life's Origins and EvolutionDepartment of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Luis M. San‐Jose
- Laboratory Evolution and Biological DiversityUMR 5174CNRSUniversity of Toulouse III Paul SabatierToulouseFrance
| | | | - Christophe Dessimoz
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Ioannis Xenarios
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Alexandre Roulin
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Jérôme Goudet
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
18
|
Wu Y, Wang H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc Biol Sci 2020; 286:20182185. [PMID: 30963837 DOI: 10.1098/rspb.2018.2185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The diapsid lineage (birds) and synapsid lineage (mammals), share a suite of functionally similar characteristics (e.g. endothermy) that are considered to be a result of their convergent evolution, but the candidate selections leading to this convergent evolution are still under debate. Here, we used a newly developed molecular phyloecological approach to reconstruct the diel activity pattern of the common ancestors of living birds. Our results strongly suggest that they had adaptations to nocturnality during their early evolution, which is remarkably similar to that of ancestral mammals. Given their similar adaptation to nocturnality, we propose that the shared traits in birds and mammals may have partly evolved as a result of the convergent evolution of their early ancestors adapting to ecological factors (e.g. low ambient temperature) associated with nocturnality. Finally, a conceptually unifying ecological model on the evolution of endothermy in diverse organisms with an emphasis on low ambient temperature is proposed. We reason that endothermy may evolve as an adaptive strategy to enable organisms to effectively implement various life-cycle activities under relatively low-temperature environments. In particular, a habitat shift from high-temperature to relatively low-temperature environments is identified as a common factor underlying the evolution of endothermy.
Collapse
Affiliation(s)
- Yonghua Wu
- 1 School of Life Sciences, Northeast Normal University , 5268 Renmin Street, Changchun 130024 , People's Republic of China.,2 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , 2555 Jingyue Street, Changchun 130117 , People's Republic of China
| | - Haifeng Wang
- 3 Department of Bioengineering, Stanford University , Stanford, CA 94305 , USA
| |
Collapse
|
19
|
Potier S, Lieuvin M, Pfaff M, Kelber A. How fast can raptors see? ACTA ACUST UNITED AC 2020; 223:jeb.209031. [PMID: 31822552 DOI: 10.1242/jeb.209031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022]
Abstract
Birds, and especially raptors, are highly visual animals. Some of them have the highest spatial resolving power known in the animal kingdom, allowing prey detection at distance. While many raptors visually track fast-moving and manoeuvrable prey, requiring high temporal resolution, this aspect of their visual system has never been studied before. In this study, we estimated how fast raptors can see, by measuring the flicker fusion frequency of three species with different lifestyles. We found that flicker fusion frequency differed among species, being at least 129 Hz in the peregrine falcon, Falco peregrinus, 102 Hz in the saker falcon, Falco cherrug, and 81 Hz in the Harris's hawk, Parabuteo unicinctus We suggest a potential link between fast vision and hunting strategy, with high temporal resolution in the fast-flying falcons that chase fast-moving, manoeuvrable prey and a lower resolution in the Harris's hawk, which flies more slowly and targets slower prey.
Collapse
Affiliation(s)
- Simon Potier
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Margaux Lieuvin
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Michael Pfaff
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| |
Collapse
|
20
|
Vasconcelos FTGRD, Naman MJV, Hauzman E, Baron J, Fix Ventura D, Bonci DMO. LWS visual pigment in owls: Spectral tuning inferred by genetics. Vision Res 2019; 165:90-97. [DOI: 10.1016/j.visres.2019.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
|
21
|
Wu Y. Widespread nocturnality of living birds stemming from their common ancestor. BMC Evol Biol 2019; 19:189. [PMID: 31619159 PMCID: PMC6794809 DOI: 10.1186/s12862-019-1508-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/05/2019] [Indexed: 12/01/2022] Open
Abstract
Background Many living birds exhibit some nocturnal activity, but the genetic basis and evolutionary origins of their nocturnality remain unknown. Results Here, we used a molecular phyloecological approach to analyze the adaptive evolution of 33 phototransduction genes in diverse bird lineages. Our results suggest that functional enhancement of two night-vision genes, namely, GRK1 and SLC24A1, underlies the nocturnal adaption of living birds. Further analyses showed that the diel activity patterns of birds have remained relatively unchanged since their common ancestor, suggesting that the widespread nocturnal activity of many living birds may largely stem from their common ancestor rather than independent evolution. Despite this evolutionary conservation of diel activity patterns in birds, photoresponse recovery genes were found to be frequently subjected to positive selection in diverse bird lineages, suggesting that birds generally have evolved an increased capacity for motion detection. Moreover, we detected positive selection on both dim-light vision genes and bright-light vision genes in the class Aves, suggesting divergent evolution of the vision of birds from that of reptiles and that different bird lineages have evolved certain visual adaptions to their specific light conditions. Conclusions This study suggests that the widespread nocturnality of extant birds has a deep evolutionary origin tracing back to their common ancestor.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China. .,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
22
|
Cho YS, Jun JH, Kim JA, Kim HM, Chung O, Kang SG, Park JY, Kim HJ, Kim S, Kim HJ, Jang JH, Na KJ, Kim J, Park SG, Lee HY, Manica A, Mindell DP, Fuchs J, Edwards JS, Weber JA, Witt CC, Yeo JH, Kim S, Bhak J. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles. Genome Biol 2019; 20:181. [PMID: 31464627 PMCID: PMC6714440 DOI: 10.1186/s13059-019-1793-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023] Open
Abstract
Background Birds of prey (raptors) are dominant apex predators in terrestrial communities, with hawks (Accipitriformes) and falcons (Falconiformes) hunting by day and owls (Strigiformes) hunting by night. Results Here, we report new genomes and transcriptomes for 20 species of birds, including 16 species of birds of prey, and high-quality reference genomes for the Eurasian eagle-owl (Bubo bubo), oriental scops owl (Otus sunia), eastern buzzard (Buteo japonicus), and common kestrel (Falco tinnunculus). Our extensive genomic analysis and comparisons with non-raptor genomes identify common molecular signatures that underpin anatomical structure and sensory, muscle, circulatory, and respiratory systems related to a predatory lifestyle. Compared with diurnal birds, owls exhibit striking adaptations to the nocturnal environment, including functional trade-offs in the sensory systems, such as loss of color vision genes and selection for enhancement of nocturnal vision and other sensory systems that are convergent with other nocturnal avian orders. Additionally, we find that a suite of genes associated with vision and circadian rhythm are differentially expressed in blood tissue between nocturnal and diurnal raptors, possibly indicating adaptive expression change during the transition to nocturnality. Conclusions Overall, raptor genomes show genomic signatures associated with the origin and maintenance of several specialized physiological and morphological features essential to be apex predators. Electronic supplementary material The online version of this article (10.1186/s13059-019-1793-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jung A Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hak-Min Kim
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | - Seung-Gu Kang
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jin-Young Park
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hwa-Jung Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Sunghyun Kim
- Strategic Planning Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hee-Jong Kim
- Chungnam Wild Animal Rescue Center, Kongju National University, Yesan, Republic of Korea
| | - Jin-Ho Jang
- Chungnam Wild Animal Rescue Center, Kongju National University, Yesan, Republic of Korea
| | - Ki-Jeong Na
- College of veterinary medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeongho Kim
- Medical care team, Cheongju Zoo, Cheongju, Republic of Korea
| | - Seung Gu Park
- Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David P Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jérôme Fuchs
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Jeremy S Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Jessica A Weber
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea.
| | - Jong Bhak
- Clinomics Inc, Ulsan, Republic of Korea. .,Korean Genomics Industrialization Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. .,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
23
|
Zhou C, Zhang W, Wen Q, Bu P, Gao J, Wang G, Jin J, Song Y, Sun X, Zhang Y, Jiang X, Yu H, Peng C, Shen Y, Price M, Li J, Zhang X, Fan Z, Yue B. Comparative Genomics Reveals the Genetic Mechanisms of Musk Secretion and Adaptive Immunity in Chinese Forest Musk Deer. Genome Biol Evol 2019; 11:1019-1032. [PMID: 30903183 PMCID: PMC6450037 DOI: 10.1093/gbe/evz055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 02/05/2023] Open
Abstract
The Chinese forest musk deer (Moschus berezovskii; FMD) is an artiodactyl mammal and is both economically valuable and highly endangered. To investigate the genetic mechanisms of musk secretion and adaptive immunity in FMD, we compared its genome to nine other artiodactyl genomes. Comparative genomics demonstrated that eight positively selected genes (PSGs) in FMD were annotated in three KEGG pathways that were related to metabolic and synthetic activity of musk, similar to previous transcriptome studies. Functional enrichment analysis indicated that many PSGs were involved in the regulation of immune system processes, implying important reorganization of the immune system in FMD. FMD-specific missense mutations were found in two PSGs (MHC class II antigen DRA and ADA) that were classified as deleterious by PolyPhen-2, possibly contributing to immune adaptation to infectious diseases. Functional assessment showed that the FMD-specific mutation enhanced the ADA activity, which was likely to strengthen the immune defense against pathogenic invasion. Single nucleotide polymorphism-based inference showed the recent demographic trajectory for FMD. Our data and findings provide valuable genomic resources not only for studying the genetic mechanisms of musk secretion and adaptive immunity, but also for facilitating more effective management of the captive breeding programs for this endangered species.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Wenbo Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Ping Bu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Jie Gao
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Guannan Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Jiazheng Jin
- Sichuan Engineering Research Center for Medicinal Animals, Xichang, P.R. China
| | - Yinjie Song
- Center of Infectious Diseases, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, P.R. China
| | - Xiaohong Sun
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yifan Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xue Jiang
- Sichuan Engineering Research Center for Medicinal Animals, Xichang, P.R. China
| | - Haoran Yu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yongmei Shen
- Sichuan Engineering Research Center for Medicinal Animals, Xichang, P.R. China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
24
|
Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol 2019; 28:3025-3041. [DOI: 10.1111/mec.15102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Luehrmann
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | | | - Fabio Cortesi
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Karen L. Cheney
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
25
|
Schott RK, Van Nynatten A, Card DC, Castoe TA, S W Chang B. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry. Mol Biol Evol 2019; 35:1376-1389. [PMID: 29800394 DOI: 10.1093/molbev/msy025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Daren C Card
- Department of Biology, University of Texas, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas, Arlington, TX
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance. Vision Res 2019; 158:109-119. [PMID: 30825468 DOI: 10.1016/j.visres.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/04/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
Most diurnal birds have cone-dominated retinae and tetrachromatic colour vision based on ultra-violet/violet-sensitive UV/V cones expressing short wavelength-sensitive opsin 1 (SWS1), S cones expressing short wavelength-sensitive opsin 2 (SWS2), M cones expressing medium wavelength-sensitive opsin (RH2) and L cones expressing long wavelength-sensitive opsin (LWS). Double cones (D) express LWS but do not contribute to colour vision. Each cone is equipped with an oil droplet, transparent in UV/V cones, but pigmented by carotenoids: galloxanthin in S, zeaxanthin in M, astaxanthin in L and a mixture in D cones. Owls (Strigiformes) are crepuscular or nocturnal birds with rod-dominated retinae and optical adaptations for high sensitivity. For eight species, the absence of functional SWS1 opsin has recently been documented, functional RH2 opsin was absent in three of these. Here we confirm the absence of SWS1 transcripts for the Long-eared owl (Asio otus) and demonstrate its absence for the Short-eared owl (Asio flammeus), Tawny owl (Strix aluco) and Boreal owl (Aegolius funereus). All four species had transcripts of RH2, albeit with low expression. All four species express all enzymes needed to produce galloxanthin, but lack CYP2J19 expression required to produce astaxanthin from dietary precursors. We also present ocular media transmittance of the Eurasian eagle owl (Bubo bubo) and Short-eared owl and predict spectral sensitivities of all photoreceptors of the Tawny owl. We conclude that owls, despite lacking UV/V cones, can detect UV light. This increases the sensitivity of their rod vision allowing them, for instance, to see UV-reflecting feathers as brighter signals at night.
Collapse
|
27
|
Zhou C, Jin J, Peng C, Wen Q, Wang G, Wei W, Jiang X, Price M, Cui K, Meng Y, Song Z, Li J, Zhang X, Fan Z, Yue B. Comparative genomics sheds light on the predatory lifestyle of accipitrids and owls. Sci Rep 2019; 9:2249. [PMID: 30783131 PMCID: PMC6381159 DOI: 10.1038/s41598-019-38680-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023] Open
Abstract
Raptors are carnivorous birds including accipitrids (Accipitridae, Accipitriformes) and owls (Strigiformes), which are diurnal and nocturnal, respectively. To examine the evolutionary basis of adaptations to different light cycles and hunting behavior between accipitrids and owls, we de novo assembled besra (Accipiter virgatus, Accipitridae, Accipitriformes) and oriental scops owl (Otus sunia, Strigidae, Strigiformes) draft genomes. Comparative genomics demonstrated four PSGs (positively selected genes) (XRCC5, PRIMPOL, MDM2, and SIRT1) related to the response to ultraviolet (UV) radiation in accipitrids, and one PSG (ALCAM) associated with retina development in owls, which was consistent with their respective diurnal/nocturnal predatory lifestyles. We identified five accipitrid-specific and two owl-specific missense mutations and most of which were predicted to affect the protein function by PolyPhen-2. Genome comparison showed the diversification of raptor olfactory receptor repertoires, which may reflect an important role of olfaction in their predatory lifestyle. Comparison of TAS2R gene (i.e. linked to tasting bitterness) number in birds with different dietary lifestyles suggested that dietary toxins were a major selective force shaping the diversity of TAS2R repertoires. Fewer TAS2R genes in raptors reflected their carnivorous diet, since animal tissues are less likely to contain toxins than plant material. Our data and findings provide valuable genomic resources for studying the genetic mechanisms of raptors' environmental adaptation, particularly olfaction, nocturnality and response to UV radiation.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiazheng Jin
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Guannan Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Weideng Wei
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Kai Cui
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
28
|
Bringmann A. Structure and function of the bird fovea. Anat Histol Embryol 2019; 48:177-200. [DOI: 10.1111/ahe.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty University of Leipzig Leipzig Germany
| |
Collapse
|
29
|
Shultz AJ, Sackton TB. Immune genes are hotspots of shared positive selection across birds and mammals. eLife 2019; 8:e41815. [PMID: 30620335 PMCID: PMC6338464 DOI: 10.7554/elife.41815] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Consistent patterns of positive selection in functionally similar genes can suggest a common selective pressure across a group of species. We use alignments of orthologous protein-coding genes from 39 species of birds to estimate parameters related to positive selection for 11,000 genes conserved across birds. We show that functional pathways related to the immune system, recombination, lipid metabolism, and phototransduction are enriched for positively selected genes. By comparing our results with mammalian data, we find a significant enrichment for positively selected genes shared between taxa, and that these shared selected genes are enriched for viral immune pathways. Using pathogen-challenge transcriptome data, we show that genes up-regulated in response to pathogens are also enriched for positively selected genes. Together, our results suggest that pathogens, particularly viruses, consistently target the same genes across divergent clades, and that these genes are hotspots of host-pathogen conflict over deep evolutionary time.
Collapse
Affiliation(s)
- Allison J Shultz
- Informatics GroupHarvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
- Museum of Comparative ZoologyHarvard UniversityCambridgeUnited States
| | | |
Collapse
|
30
|
O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, Bennett S, Slack EA, Allanson E, Larkin DM, Griffin DK. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol 2018; 19:171. [PMID: 30355328 PMCID: PMC6201548 DOI: 10.1186/s13059-018-1550-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/24/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions. RESULTS We used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest. CONCLUSIONS The tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects.
Collapse
Affiliation(s)
| | - Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Lucas Kiazim
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Sophie Bennett
- School of Biosciences, University of Kent, Canterbury, UK
| | - Eden A Slack
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Emily Allanson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
31
|
Iglesias TL, Dornburg A, Warren DL, Wainwright PC, Schmitz L, Economo EP. Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts. J Evol Biol 2018; 31:1082-1092. [DOI: 10.1111/jeb.13299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Teresa L. Iglesias
- Physics and Biology Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
- Macquarie University; Sydney NSW Australia
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences; Raleigh NC USA
| | - Dan L. Warren
- Macquarie University; Sydney NSW Australia
- Senckenberg Biodiversity and Climate Research Center (SBiK-F); Frankfurt am Main Germany
| | | | - Lars Schmitz
- W.M. Keck Science Department Claremont; Claremont McKenna, Scripps and Pitzer Colleges; Claremont CA USA
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
| |
Collapse
|
32
|
Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci Rep 2018; 8:1713. [PMID: 29379083 PMCID: PMC5789060 DOI: 10.1038/s41598-018-20098-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
Reciprocal coevolutionary changes in predation and anti-predator behaviours have long been hypothesized, but evolutionary-scale evidence is rare. Here, we reconstructed the evolutionary-scale changes in the diel activity patterns of a predator-prey system (carnivorous and herbivorous mammals) based on a molecular phyloecological approach, providing evidence of long-term antagonistic coevolutionary changes in their diel activities. Our molecular reconstruction of diel activity patterns, which is supported by morphological evidence, consistently showed that carnivorous mammals were subjected to a shift from diurnality to nocturnality, while herbivorous mammals experienced a shift from nocturnality to diurnality during their evolutionary histories. A shift in the diel activity of the herbivores as a result of carnivore avoidance is hypothesized based on molecular, morphological and behavioural evidence, and our results suggest an evolutionary-scale arms race of diel activity shifts between carnivorous and herbivorous mammals.
Collapse
|
33
|
Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in red carotenoid synthesis. Mol Phylogenet Evol 2018; 118:47-53. [DOI: 10.1016/j.ympev.2017.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/26/2023]
|
34
|
Bleiweiss R. Concerted Shifts in Absorption Maxima of Yellow and Red Plumage Carotenoids Support Specialized Tuning of Chromatic Signals to Different Visual Systems in Near-Passerine Birds. Evol Biol 2017. [DOI: 10.1007/s11692-017-9437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, Mindell DP, Bowie RCK, DeRisi JL, Dumbacher JP. Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes. Genome Biol Evol 2017; 9:2522-2545. [PMID: 28992302 PMCID: PMC5629816 DOI: 10.1093/gbe/evx158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates.
Collapse
Affiliation(s)
- Zachary R. Hanna
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - James B. Henderson
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Jeffrey D. Wall
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Jérôme Fuchs
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- UMR 7205 Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Charles Runckel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
- Runckel & Associates, Portland, Oregon, USA
| | - David P. Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - John P. Dumbacher
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
36
|
Wu Y, Wang H, Wang H, Hadly EA. Rethinking the Origin of Primates by Reconstructing Their Diel Activity Patterns Using Genetics and Morphology. Sci Rep 2017; 7:11837. [PMID: 28928374 PMCID: PMC5605515 DOI: 10.1038/s41598-017-12090-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
Phylogenetic inference typically invokes nocturnality as ancestral in primates; however, some recent studies posit that diurnality is. Here, through adaptive evolutionary analyses of phototransduction genes by using a variety of approaches (restricted branch/branch-site models and unrestricted branch-site-based models (BS-REL, BUSTED and RELAX)), our results consistently showed that ancestral primates were subjected to enhanced positive selection for bright-light vision and relatively weak selection for dim-light vision. These results suggest that ancestral primates were mainly diurnal with some crepuscularity and support diurnality as plesiomorphic from Euarchontoglires. Our analyses show relaxed selection on motion detection in ancestral primates, suggesting that ancestral primates decreased their emphasis on mobile prey (e.g., insects). However, within primates, the results show that ancestral Haplorrhini were likely nocturnal, suggesting that evolution of the retinal fovea occurred within ancestral primates rather than within haplorrhines as was previously hypothesized. Our findings offer a reassessment of the visual adaptation of ancestral primates. The evolution of the retinal fovea, trichromatic vision and orbital convergence in ancestral primates may have helped them to efficiently discriminate, target, and obtain edible fruits and/or leaves from a green foliage background instead of relying on mobile insect prey.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China. .,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California, 94305, USA
| | - Haitao Wang
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| |
Collapse
|
37
|
Sun Y, Kurisaki M, Hashiguchi Y, Kumazawa Y. Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing. BMC Genomics 2017; 18:665. [PMID: 28851277 PMCID: PMC5576253 DOI: 10.1186/s12864-017-4080-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genes encoded in vertebrate mitochondrial DNAs are transcribed as a polycistronic transcript for both strands, which is later processed into individual mRNAs, rRNAs and tRNAs, followed by modifications, such as polyadenylation at the 3' end of mRNAs. Although mechanisms of the mitochondrial transcription and RNA processing have been extensively studied using some model organisms, structural variability of mitochondrial mRNAs across different groups of vertebrates is poorly understood. We conducted the high-throughput RNA sequencing to identify major polyadenylation sites for mitochondrial mRNAs in the Japanese grass lizard, Takydromus tachydromoides and compared the polyadenylation profiles with those identified similarly for 23 tetrapod species, featuring sauropsid taxa (reptiles and birds). RESULTS As compared to the human, a major polyadenylation site for the NADH dehydrogenase subunit 5 mRNA of the grass lizard was located much closer to its stop codon, resulting in considerable truncation of the 3' untranslated region for the mRNA. Among the other sauropsid taxa, several distinct polyadenylation profiles from the human counterpart were found for different mRNAs. They included various truncations of the 3' untranslated region for NADH dehydrogenase subunit 5 mRNA in four taxa, bird-specific polyadenylation of the light-strand-transcribed NADH dehydrogenase subunit 6 mRNA, and the combination of the ATP synthase subunit 8/6 mRNA with a neighboring mRNA into a tricistronic mRNA in the side-necked turtle Pelusios castaneus. In the last case of P. castaneus, as well as another example for NADH dehydrogenase subunit 1 mRNAs of some birds, the association between the polyadenylation site change and the gene overlap was highlighted. The variations in the polyadenylation profile were suggested to have arisen repeatedly in diverse sauropsid lineages. Some of them likely occurred in response to gene rearrangements in the mitochondrial DNA but the others not. CONCLUSIONS These results demonstrate structural variability of mitochondrial mRNAs in sauropsids. The efficient and comprehensive characterization of the mitochondrial mRNAs will contribute to broaden our understanding of their structural and functional evolution.
Collapse
Affiliation(s)
- Yao Sun
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Masaki Kurisaki
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan
| | | | - Yoshinori Kumazawa
- Department of Information and Basic Science and Research Center for Biological Diversity, Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, 467-8501, Japan.
| |
Collapse
|
38
|
Scholtyßek C, Kelber A. [Color vision in animals : From color blind seals to tetrachromatic vision in birds]. Ophthalmologe 2017; 114:978-985. [PMID: 28752388 DOI: 10.1007/s00347-017-0543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The colors in which we see an object are not only dependent on the spectral composition of the reflected light but also represent an interpretation by our eyes and the trichromatic visual system. OBJECTIVE How do animals of other species see the world? RESULTS The majority of mammals do not have three but only two types of cones and therefore have dichromatic color vision. Marine mammals and some nocturnally active mammals even have only one type of cone and are completely color blind. In contrast, birds as well as many fish and reptiles see in the world in more color hues and with four types of cones. Many vertebrates, insects and crustaceans can see not only the spectrum perceived by us but also ultraviolet radiation as light. CONCLUSION In order to understand how animals of other species see the world, their visual systems must be understood and the animals must be tested in behavioral investigations.
Collapse
Affiliation(s)
- C Scholtyßek
- The Priory Road Complex, School of Experimental Psychology, Priory Road, BS8 1TU, Clifton, UK
| | - A Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Schweden.
| |
Collapse
|
39
|
Wu Y, Wang H, Hadly EA. Invasion of Ancestral Mammals into Dim-light Environments Inferred from Adaptive Evolution of the Phototransduction Genes. Sci Rep 2017; 7:46542. [PMID: 28425474 PMCID: PMC5397851 DOI: 10.1038/srep46542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 02/02/2023] Open
Abstract
Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogenetic analyses of the vision genes involved in the phototransduction pathway to predict the diel activity patterns of ancestral mammals and reptiles. Our results demonstrated that the common ancestor of the extant Mammalia was dominated by positive selection for dim-light vision, supporting the predominate nocturnality of the ancestral mammals. Further analyses showed that the nocturnality of the ancestral mammals was probably derived from the predominate diurnality of the ancestral amniotes, which featured strong positive selection for bright-light vision. Like the ancestral amniotes, the common ancestor of the extant reptiles and various taxa in Squamata, one of the main competitors of the temporal niches of the ancestral mammals, were found to be predominate diurnality as well. Despite this relatively apparent temporal niche partitioning between ancestral mammals and the relevant reptiles, our results suggested partial overlap of their temporal niches during crepuscular periods.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| |
Collapse
|
40
|
González-Martín-Moro J, Hernández-Verdejo JL, Clement-Corral A. The visual system of diurnal raptors: updated review. ACTA ACUST UNITED AC 2017; 92:225-232. [PMID: 28209509 DOI: 10.1016/j.oftal.2016.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Diurnal birds of prey (raptors) are considered the group of animals with highest visual acuity (VA). The purpose of this work is to review all the information recently published about the visual system of this group of animals. MATERIAL AND METHODS A bibliographic search was performed in PubMed. The algorithm used was (raptor OR falcon OR kestrel OR hawk OR eagle) AND (vision OR «visual acuity» OR eye OR macula OR retina OR fovea OR «nictitating membrane» OR «chromatic vision» OR ultraviolet). The search was restricted to the «Title» and «Abstract» fields, and to non-human species, without time restriction. RESULTS The proposed algorithm located 97 articles. CONCLUSIONS Birds of prey are endowed with the highest VA of the animal kingdom. However most of the works study one individual or a small group of individuals, and the methodology is heterogeneous. The most studied bird is the Peregrine falcon (Falco peregrinus), with an estimated VA of 140 cycles/degree. Some eagles are endowed with similar VA. The tubular shape of the eye, the large pupil, and a high density of photoreceptors make this extraordinary VA possible. In some species, histology and optic coherence tomography demonstrate the presence of 2foveas. The nasal fovea (deep fovea) has higher VA. Nevertheless, the exact function of each fovea is unknown. The vitreous contained in the deep fovea could behave as a third lens, adding some magnification to the optic system.
Collapse
Affiliation(s)
- J González-Martín-Moro
- Servicio de Oftalmología, Hospital Universitario del Henares, Coslada (Madrid), España; Universidad Francisco de Vitoria, Madrid, España.
| | | | - A Clement-Corral
- Servicio de Oftalmología, Hospital Universitario del Henares, Coslada (Madrid), España
| |
Collapse
|
41
|
Schott RK, Panesar B, Card DC, Preston M, Castoe TA, Chang BS. Targeted Capture of Complete Coding Regions across Divergent Species. Genome Biol Evol 2017; 9:398-414. [PMID: 28137744 PMCID: PMC5381602 DOI: 10.1093/gbe/evx005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Despite continued advances in sequencing technologies, there is a need for methods that can efficiently sequence large numbers of genes from diverse species. One approach to accomplish this is targeted capture (hybrid enrichment). While these methods are well established for genome resequencing projects, cross-species capture strategies are still being developed and generally focus on the capture of conserved regions, rather than complete coding regions from specific genes of interest. The resulting data is thus useful for phylogenetic studies, but the wealth of comparative data that could be used for evolutionary and functional studies is lost. Here, we design and implement a targeted capture method that enables recovery of complete coding regions across broad taxonomic scales. Capture probes were designed from multiple reference species and extensively tiled in order to facilitate cross-species capture. Using novel bioinformatics pipelines we were able to recover nearly all of the targeted genes with high completeness from species that were up to 200 myr divergent. Increased probe diversity and tiling for a subset of genes had a large positive effect on both recovery and completeness. The resulting data produced an accurate species tree, but importantly this same data can also be applied to studies of molecular evolution and function that will allow researchers to ask larger questions in broader phylogenetic contexts. Our method demonstrates the utility of cross-species approaches for the capture of full length coding sequences, and will substantially improve the ability for researchers to conduct large-scale comparative studies of molecular evolution and function.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Bhawandeep Panesar
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Daren C. Card
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Matthew Preston
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genomes and Function, University of Toronto, Canada
| |
Collapse
|