1
|
Merola GP, Tarchi L, Saccaro LF, Delavari F, Piguet C, Van De Ville D, Castellini G, Ricca V. Transdiagnostic markers across the psychosis continuum: a systematic review and meta-analysis of resting state fMRI studies. Front Psychiatry 2024; 15:1378439. [PMID: 38895037 PMCID: PMC11184053 DOI: 10.3389/fpsyt.2024.1378439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Psychotic symptoms are among the most debilitating and challenging presentations of severe psychiatric diseases, such as schizophrenia, schizoaffective, and bipolar disorder. A pathophysiological understanding of intrinsic brain activity underlying psychosis is crucial to improve diagnosis and treatment. While a potential continuum along the psychotic spectrum has been recently described in neuroimaging studies, especially for what concerns absolute and relative amplitude of low-frequency fluctuations (ALFF and fALFF), these efforts have given heterogeneous results. A transdiagnostic meta-analysis of ALFF/fALFF in patients with psychosis compared to healthy controls is currently lacking. Therefore, in this pre-registered systematic review and meta-analysis PubMed, Scopus, and Embase were searched for articles comparing ALFF/fALFF between psychotic patients and healthy controls. A quantitative synthesis of differences in (f)ALFF between patients along the psychotic spectrum and healthy controls was performed with Seed-based d Mapping, adjusting for age, sex, duration of illness, clinical severity. All results were corrected for multiple comparisons by Family-Wise Error rates. While lower ALFF and fALFF were detected in patients with psychosis in comparison to controls, no specific finding survived correction for multiple comparisons. Lack of this correction might explain the discordant findings highlighted in previous literature. Other potential explanations include methodological issues, such as the lack of standardization in pre-processing or analytical procedures among studies. Future research on ALFF/fALFF differences for patients with psychosis should prioritize the replicability of individual studies. Systematic review registration https://osf.io/, identifier (ycqpz).
Collapse
Affiliation(s)
| | - Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Farnaz Delavari
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Camille Piguet
- Psychiatry Department, Geneva University Hospital and Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
- General Pediatric Division, Geneva University Hospital, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Metzner C, Dimulescu C, Kamp F, Fromm S, Uhlhaas PJ, Obermayer K. Exploring global and local processes underlying alterations in resting-state functional connectivity and dynamics in schizophrenia. Front Psychiatry 2024; 15:1352641. [PMID: 38414495 PMCID: PMC10897003 DOI: 10.3389/fpsyt.2024.1352641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction We examined changes in large-scale functional connectivity and temporal dynamics and their underlying mechanisms in schizophrenia (ScZ) through measurements of resting-state functional magnetic resonance imaging (rs-fMRI) data and computational modelling. Methods The rs-fMRI measurements from patients with chronic ScZ (n=38) and matched healthy controls (n=43), were obtained through the public schizConnect repository. Computational models were constructed based on diffusion-weighted MRI scans and fit to the experimental rs-fMRI data. Results We found decreased large-scale functional connectivity across sensory and association areas and for all functional subnetworks for the ScZ group. Additionally global synchrony was reduced in patients while metastability was unaltered. Perturbations of the computational model revealed that decreased global coupling and increased background noise levels both explained the experimentally found deficits better than local changes to the GABAergic or glutamatergic system. Discussion The current study suggests that large-scale alterations in ScZ are more likely the result of global rather than local network changes.
Collapse
Affiliation(s)
- Christoph Metzner
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Cristiana Dimulescu
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Fabian Kamp
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sophie Fromm
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Peter J. Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Klaus Obermayer
- Neural Information Processing Group, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
3
|
Lang X, Wang D, Zhou H, Wang L, Kosten TR, Zhang XY. P50 inhibition defects, psychopathology and gray matter volume in patients with first-episode drug-naive schizophrenia. Asian J Psychiatr 2023; 80:103421. [PMID: 36563611 DOI: 10.1016/j.ajp.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sensory gating deficits and gray matter volume (GMV) abnormalities have been found to be associated with the pathogenesis and psychopathology of patients with schizophrenia (SCZ). However, no studies have investigated their interrelationship in first-episode treatment-naive (FETN) SCZ patients. METHODS We recruited 52 FETN SCZ patients and 57 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was used to measure the psychopathology of the patients. We collected magnetic resonance imaging and P50 inhibition data from all participants. RESULTS Compared to healthy controls, patients had shorter S1 and S2 latencies but larger S2 amplitudes and P50 ratio (Bonferroni adjusted all p < 0.01). In patients, S2 latency was independently associated with PANSS total score, negative symptoms and general psychopathology (t = 2.26-2.58, both P < 0.05), whereas S1 (t = 2.44, P < 0.05) and S2 latencies (t = 2.13, P < 0.05) were associated with PANSS cognitive factor. Moreover, GMV in the left inferior temporal gyrus, left lingual gyrus and right superior occipital gyrus, and bilateral dorsolateral superior frontal gyrus were each associated with the P50 components (all p < 0.05). In addition, GMV associated with S2 latency was negatively correlated with PANSS general psychopathology (t = -2.46, p < 0.05) and total score (t = -2.34, p < 0.05). CONCLUSIONS Our findings indicate that FETN SCZ patients exhibit deficits in P50 inhibition and GMV of brain regions associated with these deficits may be associated with their psychopathological symptoms, suggesting that brain structures associated with P50 components may be important biomarkers of SCZ psychopathology. Future studies could use a prospective longitudinal design to investigate the potential causal relationship of brain structures associated with P50 components in the psychopathological symptoms of SCZ patients.
Collapse
Affiliation(s)
- XiaoE Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Short-term Medication Effects on Brain Functional Activity and Network Architecture in First-Episode psychosis: a longitudinal fMRI study. Brain Imaging Behav 2023; 17:137-148. [PMID: 36646973 DOI: 10.1007/s11682-022-00704-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
The effect of antipsychotic medications is critical for the long-term outcome of symptoms and functions during first-episode psychosis (FEP). However, how brain functions respond to the antipsychotic treatment in the early stage of psychosis and its underlying neural mechanisms remain unclear. In this study, we explored the cross-sectional and longitudinal changes of regional homogeneity (ReHo), whole-brain functional connectivity, and network topological properties via resting-state functional magnetic resonance images. Thirty-two drug-naïve FEP patients and 30 matched healthy volunteers (HV) were included, where 23 patients were re-visited with effective responses after two months of antipsychotic treatment. Compared to HV, drug-naive patients demonstrated significantly different patterns of functional connectivity involving the right thalamus. These functional alterations mainly involved decreased ReHo, increased nodal efficiency in the right thalamus, and increased thalamic-sensorimotor-frontoparietal connectivity. In the follow-up analysis, patients after treatment showed reduced ReHo and nodal clustering in visual networks, as well as disturbances of visual-somatomotor and hippocampus-superior frontal gyrus connectivity. The longitudinal changes of ReHo in the visual cortex were associated with an improvement in general psychotic symptoms. This study provides new evidence regarding alterations in brain function linked to schizophrenia onset and affected by antipsychotic medications. Moreover, our results demonstrated that the functional alterations at baseline were not fully modulated by antipsychotic medications, suggesting that antipsychotic medications may reduce psychotic symptoms but limit the effects in regions involved in disease pathophysiology.
Collapse
|
5
|
Cai M, Wang R, Liu M, Du X, Xue K, Ji Y, Wang Z, Zhang Y, Guo L, Qin W, Zhu W, Fu J, Liu F. Disrupted local functional connectivity in schizophrenia: An updated and extended meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:93. [PMID: 36347874 PMCID: PMC9643538 DOI: 10.1038/s41537-022-00311-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 06/06/2023]
Abstract
Neuroimaging studies have shown that schizophrenia is associated with disruption of resting-state local functional connectivity. However, these findings vary considerably, which hampers our understanding of the underlying pathophysiological mechanisms of schizophrenia. Here, we performed an updated and extended meta-analysis to identify the most consistent changes of local functional connectivity measured by regional homogeneity (ReHo) in schizophrenia. Specifically, a systematic search of ReHo studies in patients with schizophrenia in PubMed, Embase, and Web of Science identified 18 studies (20 datasets), including 652 patients and 596 healthy controls. In addition, we included three whole-brain statistical maps of ReHo differences calculated based on independent datasets (163 patients and 194 controls). A voxel-wise meta-analysis was then conducted to investigate ReHo alterations and their relationship with clinical characteristics using the newly developed seed-based d mapping with permutation of subject images (SDM-PSI) meta-analytic approach. Compared with healthy controls, patients with schizophrenia showed significantly higher ReHo in the bilateral medial superior frontal gyrus, while lower ReHo in the bilateral postcentral gyrus, right precentral gyrus, and right middle occipital gyrus. The following sensitivity analyses including jackknife analysis, subgroup analysis, heterogeneity test, and publication bias test demonstrated that our results were robust and highly reliable. Meta-regression analysis revealed that illness duration was negatively correlated with ReHo abnormalities in the right precentral/postcentral gyrus. This comprehensive meta-analysis not only identified consistent and reliably aberrant local functional connectivity in schizophrenia but also helped to further deepen our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
6
|
Gao Z, Xiao Y, Zhang Y, Zhu F, Tao B, Tang X, Lui S. Comparisons of resting-state brain activity between insomnia and schizophrenia: a coordinate-based meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:80. [PMID: 36207333 PMCID: PMC9547062 DOI: 10.1038/s41537-022-00291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Growing evidence shows that insomnia is closely associated with schizophrenia (SCZ), but the neural mechanism under the association remains unclear. A direct comparison of the patterns of resting-state brain activities would help understand the above question. Using meta-analytic approach, 11 studies of insomnia vs. healthy controls (HC) and 39 studies of SCZ vs. HC were included to illuminate the common and distinct patterns between insomnia and SCZ. Results showed that SCZ and insomnia shared increased resting-state brain activities in frontolimbic structures including the right medial prefrontal gyrus (mPFC) and left parahippocampal gyrus. SCZ additionally revealed greater increased activities in subcortical areas including bilateral putamen, caudate and right insula and greater decreased activities in precentral gyrus and orbitofrontal gyrus. Our study reveals both shared and distinct activation patterns in SCZ and insomnia, which may provide novel insights for understanding the neural basis of the two disorders and enlighten the possibility of the development of treatment strategies for insomnia in SCZ in the future.
Collapse
Affiliation(s)
- Ziyang Gao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Zhang
- grid.412901.f0000 0004 1770 1022Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Zhu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangdong Tang
- grid.412901.f0000 0004 1770 1022Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Qiu X, Zhang R, Wen L, Jiang F, Mao H, Yan W, Xie S, Pan X. Alterations in Spontaneous Brain Activity in Drug-Naïve First-Episode Schizophrenia: An Anatomical/Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig 2022; 19:606-613. [PMID: 36059049 PMCID: PMC9441467 DOI: 10.30773/pi.2022.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The etiology of schizophrenia is unknown and is associated with abnormal spontaneous brain activity. There are no consistent results regarding the change in spontaneous brain activity of people with schizophrenia. In this study, we determined the specific changes in the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity (ReHo) in patients with drug-naïve first-episode schizophrenia (Dn-FES). METHODS A comprehensive search of databases such as PubMed, Web of Science, and Embase was conducted to find articles on resting-state functional magnetic resonance imaging using ALFF/fALFF and ReHo in schizophrenia patients compared to healthy controls (HCs) and then, anatomical/activation likelihood estimation was performed. RESULTS Eighteen eligible studies were included in this meta-analysis. Compared to the spontaneous brain activity of HCs, we found changes in spontaneous brain activity in Dn-FES based on these two methods, mainly including the frontal lobe, putamen, lateral globus pallidus, insula, cerebellum, and posterior cingulate cortex. CONCLUSION We found that widespread abnormalities of spontaneous brain activity occur in the early stages of the onset of schizophrenia and may provide a reference for the early intervention of schizophrenia.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wen
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Fuli Jiang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjun Mao
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinming Pan
- Department of Psychiatry, Jiangning District Second People's Hospital, Nanjing, China
| |
Collapse
|
8
|
Zong X, He C, Huang X, Xiao J, Li L, Li M, Yao T, Hu M, Liu Z, Duan X, Zheng J. Predictive Biomarkers for Antipsychotic Treatment Response in Early Phase of Schizophrenia: Multi-Omic Measures Linking Subcortical Covariant Network, Transcriptomic Signatures, and Peripheral Epigenetics. Front Neurosci 2022; 16:853186. [PMID: 35615285 PMCID: PMC9125083 DOI: 10.3389/fnins.2022.853186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Volumetric alterations of subcortical structures as predictors of antipsychotic treatment response have been previously corroborated, but less is known about whether their morphological covariance relates to treatment outcome and is driven by gene expression and epigenetic modifications. Methods Subcortical volumetric covariance was analyzed by using baseline T1-weighted magnetic resonance imaging (MRI) in 38 healthy controls and 38 drug-naïve first-episode schizophrenia patients. Patients were treated with 8-week risperidone monotherapy and divided into responder and non-responder groups according to the Remission in Schizophrenia Working Group (RSWG). We utilized partial least squares (PLS) regression to examine the spatial associations between gene expression of subcortical structures from a publicly available transcriptomic dataset and between-group variances of structural covariance. The peripheral DNA methylation (DNAm) status of a gene of interest (GOI), overlapping between genes detected in the PLS and 108 schizophrenia candidate gene loci previously reported, was examined in parallel with MRI scanning. Results In the psychotic symptom dimension, non-responders had a higher baseline structural covariance in the putamen-hippocampus-pallidum-accumbens pathway compared with responders. For disorganized symptoms, significant differences in baseline structural covariant connections were found in the putamen-hippocampus-pallidum-thalamus circuit between the two subgroups. The imaging variances related to psychotic symptom response were spatially related to the expression of genes enriched in neurobiological processes and dopaminergic pathways. The DNAm of GOI demonstrated significant associations with patients' improvement of psychotic symptoms. Conclusion Baseline subcortical structural covariance and peripheral DNAm may relate to antipsychotic treatment response. Phenotypic variations in subcortical connectome related to psychotic symptom response may be transcriptomically and epigenetically underlaid. This study defines a roadmap for future studies investigating multimodal imaging epigenetic biomarkers for treatment response in schizophrenia.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changchun He
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Meiling Li
- Department of Radiology, The Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Tao Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xujun Duan
- The High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Zheng
- The Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- The Functional Brain Imaging Institute, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
10
|
Hasuzawa S, Tomiyama H, Murayama K, Ohno A, Kang M, Mizobe T, Kato K, Matsuo A, Kikuchi K, Togao O, Nakao T. Inverse Association Between Resting-State Putamen Activity and Iowa Gambling Task Performance in Patients With Obsessive-Compulsive Disorder and Control Subjects. Front Psychiatry 2022; 13:836965. [PMID: 35633792 PMCID: PMC9136000 DOI: 10.3389/fpsyt.2022.836965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Symptoms of obsessive-compulsive disorder (OCD) have been conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit impairment during the decision-making process, as assessed by the Iowa Gambling Task (IGT). This impairment is independent of clinical severity and disease progression. However, the association between the decision-making deficit and resting-state brain activity of patients with OCD has not been examined. METHODS Fifty unmedicated patients with OCD and 55 matched control subjects completed IGT. Resting-state brain activity was examined using the fractional amplitude of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5 bands. Group comparisons were performed to determine the association between IGT performance and fALFFs. RESULTS There was a significant group difference in the association between the IGT total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p < 0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = -0.485; p < 0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no group difference in the association between the IGT total net score and slow-5 fALFFs. CONCLUSIONS These findings in unmedicated patients demonstrate the importance of resting-state putamen activity for decision-making deficit associated with OCD, as measured by IGT. The inverse correlation may be explained by the hypersensitive response of the putamen in patients with OCD.
Collapse
Affiliation(s)
- Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Mingi Kang
- Graduate School of Human Environment Studies, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Yang M, Jia X, Zhou H, Ren P, Deng H, Kong Z, Xie C, Hu W, Jiang W, Lai W, Zhang B, Zhao M, Liu T. Brain dysfunction of methamphetamine-associated psychosis in resting state: Approaching schizophrenia and critical role of right superior temporal deficit. Addict Biol 2021; 26:e13044. [PMID: 33957703 DOI: 10.1111/adb.13044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
Methamphetamine (MA)-associated psychosis (MAP) is highly debilitating and common among individuals who use the drug, yet the underlying neural mechanism is not clear. This study compared brain functions between patients with MAP and those with schizophrenia during resting state and investigated the effect of brain alteration on the association between MA use and psychosis in patients with MAP. Three groups, including 24 patients with MAP, 17 with schizophrenia in first-episode (SCZ) and 31 healthy controls (HCs), were included after receiving a resting-state functional MRI scan. The severity of psychosis was assessed with Positive and Negative Syndrome Scale (PANSS). Imaging data were analysed using regional homogeneity (ReHo) to measure individual's brain function. Compared with the HC subjects, the MAP and SCZ groups had significantly lower ReHo in the cortical regions including left postcentral cortex, right superior temporal gyrus and right rolandic operculum, while had higher ReHo in the left putamen, with brain dysfunctions being more pronounced in the SCZ group. Among the MAP subjects, a mediating effect of ReHo in the right superior temporal gyrus was found on the association between MA use frequency and PANSS positive score. MAP and schizophrenia had a common trend of brain alteration, with the dysfunction being more pronounced in schizophrenia. This finding implicated that MAP might be a condition with neuropathology approaching schizophrenia. The observed critical role of right superior temporal deficit between MA use and psychosis proposed a potential target for interventions.
Collapse
Affiliation(s)
- Mei Yang
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Xiaojian Jia
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Hongying Zhou
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
- School of Mental Health (Research Institute of Mental Health) Jining Medical University Jining China
| | - Ping Ren
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Huan Deng
- School of International Education Beijing University of Chemical Technology Beijing China
| | - Zhi Kong
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Chunyu Xie
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Wenjun Hu
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Wentao Jiang
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Wentao Lai
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| | - Bin Zhang
- Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital) Guangzhou China
| | - Min Zhao
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tiebang Liu
- Shenzhen Mental Health Center Shenzhen Kangning Hospital Shenzhen China
| |
Collapse
|
12
|
Chopra S, Francey SM, O’Donoghue B, Sabaroedin K, Arnatkeviciute A, Cropley V, Nelson B, Graham J, Baldwin L, Tahtalian S, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Fornito A. Functional Connectivity in Antipsychotic-Treated and Antipsychotic-Naive Patients With First-Episode Psychosis and Low Risk of Self-harm or Aggression: A Secondary Analysis of a Randomized Clinical Trial. JAMA Psychiatry 2021; 78:994-1004. [PMID: 34160595 PMCID: PMC8223142 DOI: 10.1001/jamapsychiatry.2021.1422] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Altered functional connectivity (FC) is a common finding in resting-state functional magnetic resonance imaging (rs-fMRI) studies of people with psychosis, yet how FC disturbances evolve in the early stages of illness, and how antipsychotic treatment influences these disturbances, remains unknown. OBJECTIVE To investigate longitudinal FC changes in antipsychotic-naive and antipsychotic-treated patients with first-episode psychosis (FEP). DESIGN, SETTING, AND PARTICIPANTS This secondary analysis of a triple-blind, randomized clinical trial was conducted over a 5-year recruitment period between April 2008 and December 2016 with 59 antipsychotic-naive patients with FEP receiving either a second-generation antipsychotic or a placebo pill over a treatment period of 6 months. Participants were required to have low suicidality and aggression, to have a duration of untreated psychosis of less than 6 months, and to be living in stable accommodations with social support. Both FEP groups received intensive psychosocial therapy. A healthy control group was also recruited. Participants completed rs-fMRI scans at baseline, 3 months, and 12 months. Data were analyzed from May 2019 to August 2020. INTERVENTIONS Resting-state functional MRI was used to probe brain FC. Patients received either a second-generation antipsychotic or a matched placebo tablet. Both patient groups received a manualized psychosocial intervention. MAIN OUTCOMES AND MEASURES The primary outcomes of this analysis were to investigate (1) FC differences between patients and controls at baseline; (2) FC changes in medicated and unmedicated patients between baseline and 3 months; and (3) associations between longitudinal FC changes and clinical outcomes. An additional aim was to investigate long-term FC changes at 12 months after baseline. These outcomes were not preregistered. RESULTS Data were analyzed for 59 patients (antipsychotic medication plus psychosocial treatment: 28 [47.5%]; mean [SD] age, 19.5 [3.0] years; 15 men [53.6%]; placebo plus psychosocial treatment: 31 [52.5%]; mean [SD] age, 18.8 [2.7]; 16 men [51.6%]) and 27 control individuals (mean [SD] age, 21.9 [1.9] years). At baseline, patients showed widespread functional dysconnectivity compared with controls, with reductions predominantly affecting interactions between the default mode network, limbic systems, and the rest of the brain. From baseline to 3 months, patients receiving placebo showed increased FC principally within the same systems; some of these changes correlated with improved clinical outcomes (canonical correlation analysis R = 0.901; familywise error-corrected P = .005). Antipsychotic exposure was associated with increased FC primarily between the thalamus and the rest of the brain. CONCLUSIONS AND RELEVANCE In this secondary analysis of a clinical trial, antipsychotic-naive patients with FEP showed widespread functional dysconnectivity at baseline, followed by an early normalization of default mode network and cortical limbic dysfunction in patients receiving placebo and psychosocial intervention. Antipsychotic exposure was associated with FC changes concentrated on thalamocortical networks. TRIAL REGISTRATION ACTRN12607000608460.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Shona M. Francey
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O’Donoghue
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Tahtalian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia,Department of Social Work, Monash University, Caulfield, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Stephen J. Wood
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia,University of Birmingham School of Psychology, Edgbaston, United Kingdom
| | - Patrick McGorry
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Gao J, Tang X, Wang C, Yu M, Sha W, Wang X, Zhang H, Zhang X, Zhang X. Aberrant cerebellar neural activity and cerebro-cerebellar functional connectivity involving executive dysfunction in schizophrenia with primary negative symptoms. Brain Imaging Behav 2021; 14:869-880. [PMID: 30612342 DOI: 10.1007/s11682-018-0032-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deficit schizophrenia (DS) is a distinct subtype of schizophrenia characterized by primary and enduring negative symptoms. More severe executive dysfunctions were observed in DS patients, however, the associated neuroimaging characteristics, especially cerebellar functional anomalies in DS, remain largely unknown. We employed resting-state functional and structural MRI data of 106 male participants, including data from 29 DS patients, 39 non-deficit schizophrenia (NDS) patients and 38 healthy controls (HCs). Z-standardized fractional amplitude of low-frequency fluctuation (zfALFF) values were calculated in order to examine spontaneous regional brain activity. Cerebro-cerebellar functional connectivity and changes in the volume of gray matter in the cerebellum were also examined. Relative to the HCs, both DS and NDS patients exhibited decreased zfALFF in the bilateral cerebellar lobules VIII and IX. The zfALFF in the left Crus II was lower in DS patients compared to NDS patients. No significant difference was observed in the volume of cerebellar gray matter among the three groups. Compared with NDS patients, cerebro-cerebellar functional connectivity analysis revealed increased connectivity in the left orbital medial frontal cortex and right putamen regions in DS patients. Reduced zfALFF in the left Crus II in the DS group was significantly positively correlated with Stroop Color and Word scores, while negatively correlated with Trail-Making Test part B scores. The increased functional connectivity in the right putamen in DS patients was significantly positively correlated with Animal Naming Test and semantic Verbal Fluency Test scores. These results highlight cerebellar functional abnormality in DS patients and provide insight into the pathophysiological mechanism of executive dysfunction.
Collapse
Affiliation(s)
- Ju Gao
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Department I of Geriatric Psychiatry, Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Xiaowei Tang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, 225003, Jiangsu Province, China
| | - Congjie Wang
- Department of Psychiatry, Huai'an No. 3 People's Hospital, Huai'an, 223001, Jiangsu, China
| | - Miao Yu
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Weiwei Sha
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, 225003, Jiangsu Province, China
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya Hospital, Changsha, 410011, Hunan, China
| | - Hongying Zhang
- Department of Radiology, Subei People's Hospital of Jiangsu province, Yangzhou, 225001, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xiaobin Zhang
- Department of Psychiatry, Wutaishan Hospital of Yangzhou, Yangzhou, 225003, Jiangsu Province, China.
| |
Collapse
|
14
|
Yang C, Tang J, Liu N, Yao L, Xu M, Sun H, Tao B, Gong Q, Cao H, Zhang W, Lui S. The Effects of Antipsychotic Treatment on the Brain of Patients With First-Episode Schizophrenia: A Selective Review of Longitudinal MRI Studies. Front Psychiatry 2021; 12:593703. [PMID: 34248691 PMCID: PMC8264251 DOI: 10.3389/fpsyt.2021.593703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
A large number of neuroimaging studies have detected brain abnormalities in first-episode schizophrenia both before and after treatment, but it remains unclear how these abnormalities reflect the effects of antipsychotic treatment on the brain. To summarize the findings in this regard and provide potential directions for future work, we reviewed longitudinal structural and functional imaging studies in patients with first-episode schizophrenia before and after antipsychotic treatment. A total of 36 neuroimaging studies was included, involving 21 structural imaging studies and 15 functional imaging studies. Both anatomical and functional brain changes in patients after treatment were consistently observed in the frontal and temporal lobes, basal ganglia, limbic system and several key components within the default mode network (DMN). Alterations in these regions were affected by factors such as antipsychotic type, course of treatment, and duration of untreated psychosis (DUP). Over all we showed that: (a) The striatum and DMN were core target regions of treatment in schizophrenia, and their changes were related to different antipsychotics; (b) The gray matter of frontal and temporal lobes tended to reduce after long-term treatment; and (c) Longer DUP was accompanied with faster hippocampal atrophy after initial treatment, which was also associated with poorer outcome. These findings are in accordance with previous notions but should be interpreted with caution. Future studies are needed to clarify the effects of different antipsychotics in multiple conditions and to identify imaging or other biomarkers that may predict antipsychotic treatment response. With such progress, it may help choose effective pharmacological interventional strategies for individuals experiencing recent-onset schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Tang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Naici Liu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyuan Xu
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Sun
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Cao
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Wenjing Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Psychoradiology Research Unit, Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Koyama MS, Molfese PJ, Milham MP, Mencl WE, Pugh KR. Thalamus is a common locus of reading, arithmetic, and IQ: Analysis of local intrinsic functional properties. BRAIN AND LANGUAGE 2020; 209:104835. [PMID: 32738503 PMCID: PMC8087146 DOI: 10.1016/j.bandl.2020.104835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
Neuroimaging studies of basic achievement skills - reading and arithmetic - often control for the effect of IQ to identify unique neural correlates of each skill. This may underestimate possible effects of common factors between achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement (reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic difficulties, which could co-occur with weakness in general intellectual abilities.
Collapse
Affiliation(s)
- Maki S Koyama
- Haskins Laboratories, New Haven, CT, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imagingand Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT, USA; University of Connecticut, Department of Psychology, Storrs, CT, USA.
| |
Collapse
|
16
|
Zhou J, Ma X, Li C, Liao A, Yang Z, Ren H, Tang J, Li J, Li Z, He Y, Chen X. Frequency-Specific Changes in the Fractional Amplitude of the Low-Frequency Fluctuations in the Default Mode Network in Medication-Free Patients With Bipolar II Depression: A Longitudinal Functional MRI Study. Front Psychiatry 2020; 11:574819. [PMID: 33488415 PMCID: PMC7819893 DOI: 10.3389/fpsyt.2020.574819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Objective: This study aimed to examine the treatment-related changes of the fractional amplitude of low-frequency fluctuations (fALFF) in the default mode network (DMN) across different bands after the medication-free patients with bipolar II depression received a 16-week treatment of escitalopram and lithium. Methods: A total of 23 medication-free patients with bipolar II depression and 29 healthy controls (HCs) were recruited. We evaluated the fALFF values of slow 4 (0.027-0.073 Hz) band and slow 5 (0.01-0.027 Hz) band of the patients and compared the results with those of the 29 HCs at baseline. After 16-week treatment of escitalopram with lithium, the slow 4 and slow 5 fALFF values of the patients were assessed and compared with the baselines of patients and HCs. The depressive symptoms of bipolar II depression in patients were assessed with a 17-item Hamilton Depression Rating Scale (HDRS) before and after treatment. Results: Treatment-related effects showed increased slow 5 fALFF in cluster D (bilateral medial superior frontal gyrus, bilateral superior frontal gyrus, right middle frontal gyrus, and bilateral anterior cingulate), cluster E (bilateral precuneus/posterior cingulate, left cuneus), and cluster F (left angular, left middle temporal gyrus, left superior temporal gyrus, and left supramarginal gyrus) in comparison with the baseline of the patients. Moreover, a positive association was found between the increase in slow 5 fALFF values (follow-up value minus the baseline values) in cluster D and the decrease in HDRS scores (baseline HDRS scores minus follow-up HDRS scores) at follow-up, and the same association between the increase in slow 5 fALFF values and the decrease in HDRS scores was found in cluster E. Conclusions: The study reveals that the hypoactivity of slow 5 fALFF in the DMN is related to depression symptoms and might be corrected by the administration of escitalopram with lithium, implying that slow 5 fALFF of the DMN plays a key role in bipolar depression.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Aijun Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jinguang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
17
|
Zong X, Hu M, Pantazatos SP, Mann JJ, Wang G, Liao Y, Liu ZC, Liao W, Yao T, Li Z, He Y, Lv L, Sang D, Tang J, Chen H, Zheng J, Chen X. A Dissociation in Effects of Risperidone Monotherapy on Functional and Anatomical Connectivity Within the Default Mode Network. Schizophr Bull 2019; 45:1309-1318. [PMID: 30508134 PMCID: PMC6811838 DOI: 10.1093/schbul/sby175] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Respective changes in functional and anatomical connectivities of default mode network (DMN) after antipsychotic treatment have been reported. However, alterations in structure-function coupling after treatment remain unknown. We performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging in 42 drug-naive first-episode schizophrenia patients (FESP) both at baseline and after 8-weeks risperidone monotherapy, and in 38 healthy volunteers. Independent component analysis was used to assess voxel-wise DMN synchrony. A 3-step procedure was used to trace fiber paths between DMN components. Structure-function couplings were assessed by Pearson's correlations between mean fractional anisotropy and temporal correlation coefficients in major tracts of DMN. Pretreatment, FESP showed impaired functional connectivity in posterior cingulate cortex/precuneus (PCC/PCUN) and medial prefrontal cortex (mPFC), but no abnormalities in fibers connecting DMN components. After treatment, there were significant increases in functional connectivities of PCC/PCUN. Increases in functional connectivity between PCC/PCUN and mPFC correlated with improvement in positive symptoms. The structure-function coupling in tracts connecting PCC/PCUN and bilateral medial temporal lobes decreased after treatment. No alterations in DMN fiber integrity were detected. This combination of functional and anatomical findings in FESP contributes novel evidence related to neurobehavioral treatment effects. Increased functional connectivities between PCC/PCUN and mPFC may be treatment response biomarkers for positive symptoms. Increases in functional connectivities, no alterations in fiber integrity, combined with decreases in structural-functional coupling, suggest that DMN connectivities may be dissociated by modality after 8-week treatment. Major limitations of this study, however, include lack of repeat scans in healthy volunteers and control group of patients taking placebo or comparator antipsychotics.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Maolin Hu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Spiro P Pantazatos
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York, NY
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY,Department of Psychiatry, Columbia University, New York, NY
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanhui Liao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Chun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liao
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tao Yao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders (Xiangya), National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Huafu Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Junjie Zheng
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders (Xiangya), National Technology Institute on Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,To whom correspondence should be addressed; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; tel: +86-731-85531571, fax: +86-731-85531571, e-mail:
| |
Collapse
|
18
|
Abnormalities of regional homogeneity and its correlation with clinical symptoms in Naïve patients with first-episode schizophrenia. Brain Imaging Behav 2019; 13:503-513. [PMID: 29736883 DOI: 10.1007/s11682-018-9882-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several resting-state neuroimaging studies have indicated abnormal regional homogeneity (ReHo) in chronic schizophrenia; however, little work has been conducted to investigate naïve patients with first-episode schizophrenia (FES). Even less investigated is the association between ReHo measures and clinical symptom severity in naïve patients with FES. The current study evaluated ReHo alterations in whole brain, and assessed the correlations between ReHo measures and clinical variables in naïve patients with FES. Forty-four naïve patients with FES and 26 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Group-level analysis was utilized to analyze the ReHo differences between FES and HC in a voxel-by-voxel manner. Severity of symptoms was evaluated using a five-factor model of the Positive and Negative Syndrome Scale (PANSS). The correlation between the severity of symptoms and ReHo map was examined in patients using voxel-wise correlation analyses within brain areas that showed a significant ReHo alteration in patients compared with controls. Compared with the healthy control group, the FES group showed a significant decrease in ReHo values in the left medial frontal gyrus (MFG), right precentral gyrus, left superior temporal gyrus (STG), left left middle temporal gyrus (MTG), left thalamus, and significant increase in ReHo values in the left MFG, left inferior parietal lobule (IPL), left precuneus, and right lentiform nucleus (LN). In addition, the correlation analysis showed the PANSS total score negatively correlated with ReHo in the right precentral gyrus and positively correlated with ReHo in the left thalamus, the positive factor positively correlated with ReHo in the right thalamus, the disorganized/concrete factor positively correlated with ReHo in left posterior cingulate gyrus (PCG), the excited factor positively correlated with ReHo in the left precuneus, and the depressed factor negatively correlated with ReHo in the right postcentral gyrus and positively correlated with ReHo in the right thalamus. Our results indicate that widespread ReHo abnormalities occurred in an early stage of schizophrenic onset, suggesting a potential neural basis for the pathogenesis and symptomatology of schizophrenia.
Collapse
|
19
|
Sambataro F, Thomann PA, Nolte HM, Hasenkamp JH, Hirjak D, Kubera KM, Hofer S, Seidl U, Depping MS, Stieltjes B, Maier-Hein K, Wolf RC. Transdiagnostic modulation of brain networks by electroconvulsive therapy in schizophrenia and major depression. Eur Neuropsychopharmacol 2019; 29:925-935. [PMID: 31279591 DOI: 10.1016/j.euroneuro.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/14/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) and schizophrenia (SCZ) share neurobiological and clinical commonalities. Altered functional connectivity of large-scale brain networks has been associated with both disorders. Electroconvulsive therapy (ECT) has proven to be an effective treatment in severe forms of MDD and SCZ. However, the role of ECT on the modulation of the dynamics of brain networks is still unknown. In this study, we used resting state functional magnetic resonance imaging (rs-fMRI) to investigate functional connectivity in 16 pharmacoresistant patients with SCZ or MDD and a matched group of normal controls. Patients were scanned before and after right-sided unilateral ECT. Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate the effects of ECT treatment on intrinsic components (INs). Functional network connectivity (FNC) was calculated between pairs of INs. Patients had reduced connectivity within a striato-thalamic network in the thalamus as well as increased low frequency oscillations in a striatal network. ECT reduced low frequency oscillations (LFOs) on a striatal network along with increasing functional connectivity in the medial prefrontal cortex within the DMN. Following ECT treatment, the FNC of the executive network was reduced with the DMN and increased with the salience network, respectively. Our findings suggest transnosological effects of ECT on the connectivity of large-scale networks as well as at the level of their interplay. Furthermore, they support a transnosological approach for the investigation not only of the neural correlates of the disease but also of the brain mechanism of treatment of mental disorders.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy.
| | - Philipp Arthur Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Erbach, Germany
| | - Henrike Maria Nolte
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany
| | - J H Hasenkamp
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany
| | - Stefan Hofer
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany; Department of Anaesthesiology, Westpfalz-Klinikum GmbH, 67655 Kaiserslautern, Germany
| | - Ulrich Seidl
- Department of Anaesthesiology, Westpfalz-Klinikum GmbH, 67655 Kaiserslautern, Germany
| | - Malte Sebastian Depping
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany
| | - Bram Stieltjes
- Department of Radiology, Section Quantitative Imaging Based Disease Characterization, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Klaus Maier-Hein
- Medical Image Computing Group, Division of Medical and Biological Informatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, 69115 Heidelberg, Germany.
| |
Collapse
|
20
|
Longitudinal studies of functional magnetic resonance imaging in first-episode psychosis: A systematic review. Eur Psychiatry 2019; 59:60-69. [PMID: 31075523 DOI: 10.1016/j.eurpsy.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Little is known about changes in brain functioning after first-episode psychosis (FEP). Such knowledge is important for predicting the course of disease and adapting interventions. Functional magnetic resonance imaging has become a promising tool for exploring brain function at the time of symptom onset and at follow-up. METHOD A systematic review of longitudinal fMRI studies with FEP patients according to PRISMA guidelines. Resting-state and task-activated studies were considered together. RESULTS Eleven studies were included. These reported on a total of 236 FEP patients were evaluated by two fMRI scans and clinical assessments. Five studies found hypoactivation at baseline in prefrontal cortex areas, two studies found hypoactivation in the amygdala and hippocampus, and three others found hypoactivation in the basal ganglia. Other hypoactivated areas were the anterior cingulate cortex, thalamus and posterior cingulate cortex. Ten out of eleven studies reported (partial) normalization by increased activation after antipsychotic treatment. A minority of studies observed hyperactivation at baseline. CONCLUSIONS This review of longitudinal FEP samples studies reveals a pattern of predominantly hypoactivation in several brain areas at baseline that may normalize to a certain extent after treatment. The results should be interpreted with caution given the small number of studies and their methodological and clinical heterogeneity.
Collapse
|
21
|
Haaf M, Leicht G, Curic S, Mulert C. Glutamatergic Deficits in Schizophrenia - Biomarkers and Pharmacological Interventions within the Ketamine Model. Curr Pharm Biotechnol 2018; 19:293-307. [PMID: 29929462 PMCID: PMC6142413 DOI: 10.2174/1389201019666180620112528] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/12/2018] [Accepted: 05/26/2018] [Indexed: 11/30/2022]
Abstract
Background: The observation that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists such as ketamine transiently induce schizophrenia-like positive, negative and cognitive symptoms has led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. NMDAR hypofunction can explain many schizophrenia symptoms directly due to excitatory-to-inhibitory (E/I) imbalance, but also dopaminergic dysfunction itself. However, so far no new drug targeting the NMDAR has been successfully approved. In the search for possible biomarkers it is interesting that ketamine-induced psychopathological changes in healthy participants were accompanied by altered electro-(EEG), magnetoencephalographic (MEG) and functional magnetic resonance imaging (fMRI) signals. Methods: We systematically searched PubMed/Medline and Web of Knowledge databases (January 2006 to July 2017) to identify EEG/MEG and fMRI studies of the ketamine model of schizophrenia with human subjects. The search strategy identified 209 citations of which 46 articles met specified eligibility criteria. Results: In EEG/MEG studies, ketamine induced changes of event-related potentials, such as the P300 potential and the mismatch negativity, similar to alterations observed in schizophrenia patients. In fMRI studies, alterations of activation were observed in different brain regions, most prominently within the anterior cingulate cortex and limbic structures as well as task-relevant brain regions. These alterations were accompanied by changes in functional connectivity, indicating a balance shift of the underlying brain networks. Pharmacological treatments did alter ketamine-induced changes in EEG/MEG and fMRI studies to different extents. Conclusion: This review highlights the potential applicability of the ketamine model for schizophrenia drug development by offering the possibility to assess the effect of pharmacological agents on schizophrenia-like symptoms and to find relevant neurophysiological and neuroimaging biomarkers.
Collapse
Affiliation(s)
- Moritz Haaf
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stjepan Curic
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, UKGM, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Kim JH, Cumming P, Son YD, Kim HK, Joo YH, Kim JH. Altered connectivity between striatal and extrastriatal regions in patients with schizophrenia on maintenance antipsychotics: an [18
F]fallypride PET and functional MRI study. Synapse 2018; 72:e22064. [DOI: 10.1002/syn.22064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Jeong-Hee Kim
- Research Institute for Advanced Industrial Technology; Korea University; Sejong Republic of Korea
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
| | - Paul Cumming
- School of Psychology and Counselling and IHBI; Queensland University of Technology, and QIMR Berghofer Institute; Brisbane Queensland Australia
| | - Young-Don Son
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Biomedical Engineering; College of Health Science, Gachon University; Incheon Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Biomedical Engineering; College of Health Science, Gachon University; Incheon Republic of Korea
| | - Yo-Han Joo
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Psychiatry, Gil Medical Center; Gachon University College of Medicine, Gachon University; Incheon Republic of Korea
| |
Collapse
|