1
|
Redon L, Constant T, Smith S, Habold C, Giroud S. Understanding seasonal telomere length dynamics in hibernating species. J Therm Biol 2024; 123:103913. [PMID: 39002254 DOI: 10.1016/j.jtherbio.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Oxidative stress is thought to be one of the main causes of ageing as it progressively damages cell components throughout life, eventually causing cellular failure and apoptosis. In many organisms, telomeres shorten throughout life under the effect of, amongst other factors, oxidative stress, and are therefore commonly used as marker of biological ageing. However, hibernators, which are regularly exposed to acute oxidative stress when rewarming from torpor, are unexpectedly long-lived. In this review, we explore the causes of oxidative stress associated with hibernation and its impact on telomere dynamics in different taxa, focussing on hibernating rodents. We then speculate on the adaptive mechanisms of hibernators to compensate for the effects of oxidative stress, which may explain their increased longevity. Because winter hibernation appears to be associated with high oxidative stress, hibernators, particularly rodents, may periodically invest in repair mechanisms and antioxidant defences, resulting in seasonal variations in telomere lengths. This research shows how species with a slow life-history strategy deal with large changes in oxidative stress, unifying evolutionary and physiological theories of ageing. Because of the marked seasonal variation in telomere length, we also draw attention when using telomeres as markers for biological aging in seasonal heterotherms and possibly in other highly seasonal species.
Collapse
Affiliation(s)
- Lilian Redon
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Austria.
| | - Théo Constant
- Department of Ecology Physiology Ethology, Pluridisciplinary Institute Hubert Curien, UMR 7179 CNRS/UdS, Strasbourg, France
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Austria
| | - Caroline Habold
- Department of Ecology Physiology Ethology, Pluridisciplinary Institute Hubert Curien, UMR 7179 CNRS/UdS, Strasbourg, France
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
2
|
Romero-Haro AÁ, Mulder E, Haussmann MF, Tschirren B. The association between age and telomere length is age-dependent: Evidence for a threshold model of telomere length maintenance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:338-344. [PMID: 38258326 DOI: 10.1002/jez.2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
Telomere length and dynamics are commonly used biomarkers of somatic state, yet the role of telomeres underlying the aging process is still debated. Indeed, to date, empirical evidence for an association between age and telomere length is mixed. Here, we test if the age-dependency of the association between age and telomere length can provide a potential explanation for the reported inconsistencies across studies. To this end, we quantified telomere length by telomere restriction fragment analysis in two groups of Japanese quail (Coturnix japonica) that differed in their age distribution. One group consisted of young adults only, whereas the second group consisted of adults across a wide range of ages. In the young adults group, there was a highly significant negative association between telomere length and age, whereas no association between age and telomere length was found in the all-ages adults group. This difference between groups was not due to telomere length-dependent selective disappearance. Our results shows that the association between telomere length and age is age-dependent and suggest that the costs and benefits associated with telomere maintenance are dynamic across an individual's life course.
Collapse
Affiliation(s)
- Ana Á Romero-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Barbara Tschirren
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ciudad Real, Spain
| |
Collapse
|
3
|
Blanco MB, Smith DL, Greene LK, Yoder AD, Ehmke EE, Lin J, Klopfer PH. Telomere dynamics during hibernation in a tropical primate. J Comp Physiol B 2024; 194:213-219. [PMID: 38466418 DOI: 10.1007/s00360-024-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Hibernation is a widespread metabolic strategy among mammals for surviving periods of food scarcity. During hibernation, animals naturally alternate between metabolically depressed torpor bouts and energetically expensive arousals without ill effects. As a result, hibernators are promising models for investigating mechanisms that buffer against cellular stress, including telomere protection and restoration. In non-hibernators, telomeres, the protective structural ends of chromosomes, shorten with age and metabolic stress. In temperate hibernators, however, telomere shortening and elongation can occur in response to changing environmental conditions and associated metabolic state. We investigate telomere dynamics in a tropical hibernating primate, the fat-tailed dwarf lemur (Cheirogaleus medius). In captivity, these lemurs can hibernate when maintained under cold temperatures (11-15 °C) with limited food provisioning. We study telomere dynamics in eight fat-tailed dwarf lemurs at the Duke Lemur Center, USA, from samples collected before, during, and after the hibernation season and assayed via qPCR. Contrary to our predictions, we found that telomeres were maintained or even lengthened during hibernation, but shortened immediately thereafter. During hibernation, telomere lengthening was negatively correlated with time in euthermia. Although preliminary in scope, our findings suggest that there may be a preemptive, compensatory mechanism to maintain telomere integrity in dwarf lemurs during hibernation. Nevertheless, telomere shortening immediately afterward may broadly result in similar outcomes across seasons. Future studies could profitably investigate the mechanisms that offset telomere shortening within and outside of the hibernation season and whether those mechanisms are modulated by energy surplus or crises.
Collapse
Affiliation(s)
- M B Blanco
- Duke Lemur Center, Durham, NC, 27705, USA.
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - D L Smith
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - L K Greene
- Duke Lemur Center, Durham, NC, 27705, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - A D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - E E Ehmke
- Duke Lemur Center, Durham, NC, 27705, USA
| | - J Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94143, USA
| | - P H Klopfer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Hansson A, Wapstra E, While GM, Olsson M. Sex and early-life conditions shape telomere dynamics in an ectotherm. J Exp Biol 2024; 227:jeb246512. [PMID: 38230426 PMCID: PMC10912812 DOI: 10.1242/jeb.246512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Telomeres, the repetitive DNA regions that protect the ends of chromosomes, and their shortening have been linked to key life history trade-offs among growth, reproduction and lifespan. In contrast to most endotherms, many ectotherms can compensate for telomere shortening throughout life by upregulation of telomerase in somatic tissues. However, during development, marked by rapid growth and an increased sensitivity to extrinsic factors, the upregulation of telomerase may be overwhelmed, resulting in long-term impacts on telomere dynamics. In ectotherms, one extrinsic factor that may play a particularly important role in development is temperature. Here, we investigated the influence of developmental temperature and sex on early-life telomere dynamics in an oviparous ectotherm, Lacerta agilis. While there was no effect of developmental temperature on telomere length at hatching, there were subsequent effects on telomere maintenance capacity, with individuals incubated at warm temperatures exhibiting less telomere maintenance compared with cool-incubated individuals. Telomere dynamics were also sexually dimorphic, with females having longer telomeres and greater telomere maintenance compared with males. We suggest that selection drives this sexual dimorphism in telomere maintenance, in which females maximise their lifetime reproductive success by investing in traits promoting longevity such as maintenance, while males invest in short-term reproductive gains through a polygynous mating behaviour. These early-life effects, therefore, have the potential to mediate life-long changes to life histories.
Collapse
Affiliation(s)
- Alexander Hansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Gothenburg, Sweden
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
7
|
Galindo-Lalana C, Hoelzl F, Zahn S, Habold C, Cornils JS, Giroud S, Smith S. Seasonal variation in telomerase activity and telomere dynamics in a hibernating rodent, the garden dormouse ( Eliomys quercinus). Front Physiol 2023; 14:1298505. [PMID: 38074328 PMCID: PMC10698472 DOI: 10.3389/fphys.2023.1298505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 07/04/2024] Open
Abstract
Telomere dynamics in hibernating species are known to reflect seasonal changes in somatic maintenance. Throughout hibernation, the periodic states of rewarming, known as inter-bout euthermia or arousals, are associated with high metabolic costs including shortening of telomeres. In the active season, if high energetic resources are available, telomere length can be restored in preparation for the upcoming winter. The mechanism for telomere elongation has not been clearly demonstrated, although the action of the ribonucleoprotein complex, telomerase, has been implicated in many species. Here we tested for levels of telomerase activity in the garden dormouse (Eliomys quercinus) at different seasonal time points throughout the year and across ages from liver tissues of male juveniles to adults. We found that telomerase is active at high levels across seasons (during torpor and inter-bout euthermia, plus in the active season) but that there was a substantial decrease in activity in the month prior to hibernation. Telomerase levels were consistent across age groups and were independent of feeding regime and time of birth (early or late born). The changes in activity levels that we detected were broadly associated with changes in telomere lengths measured in the same tissues. We hypothesise that i) telomerase is the mechanism used by garden dormice for maintenance of telomeres and that ii) activity is kept at high levels throughout the year until pre-hibernation when resources are diverted to increasing fat reserves for overwintering. We found no evidence for a decrease in telomerase activity with age or a final increase in telomere length which has been detected in other hibernating rodents.
Collapse
Affiliation(s)
- Carlos Galindo-Lalana
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Franz Hoelzl
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Sandrine Zahn
- University of Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Jessica S. Cornils
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Energetics Lab, Department of Biology, Northern Michigan University, Marquette, MI, United States
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
8
|
Morbiato E, Cattelan S, Pilastro A, Grapputo A. Sperm production is negatively associated with muscle and sperm telomere length in a species subjected to strong sperm competition. Mol Ecol 2023; 32:5812-5822. [PMID: 37792396 DOI: 10.1111/mec.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
Life-history theory suggests that ageing is one of the costs of reproduction. Accordingly, a higher reproductive allocation is expected to increase the deterioration of both the somatic and the germinal lines through enhanced telomere attrition. In most species, males' reproductive allocation mainly regards traits that increase mating and fertilization success, that is sexually selected traits. In this study, we tested the hypothesis that a higher investment in sexually selected traits is associated with a reduced relative telomere length (RTL) in the guppy (Poecilia reticulata), an ectotherm species characterized by strong pre- and postcopulatory sexual selection. We first measured telomere length in both the soma and the sperm over guppies' lifespan to see whether there was any variation in telomere length associated with age. Second, we investigated whether a greater investment in pre- and postcopulatory sexually selected traits is linked to shorter telomere length in both the somatic and the sperm germinal lines, and in young and old males. We found that telomeres lengthened with age in the somatic tissue, but there was no age-dependent variation in telomere length in the sperm cells. Telomere length in guppies was significantly and negatively correlated with sperm production in both tissues and life stages considered in this study. Our findings indicate that telomere length in male guppies is strongly associated with their reproductive investment (sperm production), suggesting that a trade-off between reproduction and maintenance is occurring at each stage of males' life in this species.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Biology, University of Padova, Padova, Italy
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, Italy
- Fritz Lipmann Institute - Leibniz Institute on Aging, Jena, Germany
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessandro Grapputo
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
9
|
Power ML, Ransome RD, Riquier S, Romaine L, Jones G, Teeling EC. Hibernation telomere dynamics in a shifting climate: insights from wild greater horseshoe bats. Proc Biol Sci 2023; 290:20231589. [PMID: 37817598 PMCID: PMC10565397 DOI: 10.1098/rspb.2023.1589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/10/2023] [Indexed: 10/12/2023] Open
Abstract
Hibernation is linked with various hypotheses to explain the extended lifespan of hibernating mammals compared with their non-hibernating counterparts. Studies on telomeres, markers of ageing and somatic maintenance, suggest telomere shortening slows during hibernation, and lengthening may reflect self-maintenance with favourable conditions. Bats in temperate zones adjust body temperatures during winter torpor to conserve energy and exploit mild conditions for foraging. Climate change may impact the hibernation cycle of bats, but more research is needed regarding the role of telomeres in understanding their response to a changing climate. Here, relative telomere length (rTL) was measured in the long-lived greater horseshoe bat Rhinolophus ferrumequinum (n = 223 individuals) over three winters, considering climatic conditions. Cross-sectional analyses revealed between-individual variation in rTL with a strong year effect, likely linked to varying weather conditions and foraging success. Additionally, within-individual increases of rTL occurred in 51% of consecutive measurements, with evidence of increasing telomerase expression during hibernation in this species. These findings highlight the beneficial effects of hibernation on telomeres and potential consequences of changing climatic conditions for long-lived temperate bats. Understanding the interplay between hibernation, telomeres, and climate can provide insights into the adaptive capacity and survival of bat populations facing environmental challenges.
Collapse
Affiliation(s)
- Megan L Power
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Sébastien Riquier
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Luke Romaine
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
10
|
Pepke ML, Ringsby TH, Eisenberg DTA. The evolution of early-life telomere length, pace-of-life and telomere-chromosome length dynamics in birds. Mol Ecol 2023; 32:2898-2912. [PMID: 36847070 DOI: 10.1111/mec.16907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Telomeres, the short DNA sequences that protect chromosome ends, are an ancient molecular structure, which is highly conserved across most eukaryotes. Species differ in their telomere lengths, but the causes of this variation are not well understood. Here, we demonstrate that mean early-life telomere length is an evolutionary labile trait across 57 bird species (representing 35 families in 12 orders) with the greatest trait diversity found among passerines. Among these species, telomeres are significantly shorter in fast-lived than in slow-lived species, suggesting that telomere length may have evolved to mediate trade-offs between physiological requirements underlying the diversity of pace-of-life strategies in birds. This association was attenuated when excluding studies that may include interstitial telomeres in the estimation of mean telomere length. Curiously, within some species, larger individual chromosome size predicts longer telomere lengths on that chromosome, leading to the hypothesis that telomere length also covaries with chromosome length across species. We show that longer mean chromosome length or genome size tends to be associated with longer mean early-life telomere length (measured across all chromosomes) within a phylogenetic framework constituting up to 31 bird species. These associations were strengthened when excluding highly influential outliers. However, sensitivity analyses suggested that they were susceptible to sample size effects and not robust to the exclusion of studies that may include interstitial telomeres. Combined, our analyses generalize patterns previously found within a few species and provide potential adaptive explanations for the 10-fold variation in telomere lengths observed among birds.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Dan T A Eisenberg
- Department of Anthropology, University of Washington, Seattle, Washington, USA
- Centre for Studies in Demography and Ecology, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Giroud S, Ragger MT, Baille A, Hoelzl F, Smith S, Nowack J, Ruf T. Food availability positively affects the survival and somatic maintenance of hibernating garden dormice (Eliomys quercinus). Front Zool 2023; 20:19. [PMID: 37226260 PMCID: PMC10207780 DOI: 10.1186/s12983-023-00498-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Torpor is an energy saving strategy achieved by substantial reductions of metabolic rate and body temperature that enables animals to survive periods of low resource availability. During hibernation (multiday torpor), the frequency of periodic rewarming-characterised by high levels of oxidative stress-is associated with shortening of telomeres, a marker of somatic maintenance. OBJECTIVES In this study, we determined the impact of ambient temperature on feeding behaviour and telomere dynamics in hibernating garden dormice (Eliomys quercinus) over winter. This obligate hibernator prepares for hibernation by accumulating fat stores but can also feed during hibernation. METHODOLOGY Food intake, torpor pattern, changes in telomere length, and body mass change were assessed in animals housed at experimentally controlled temperatures of either 14 °C (i.e., a mild winter) or 3 °C (i.e., a cold winter) over 6 months. RESULTS When hibernating at 14 °C, dormice experienced 1.7-fold more frequent and 2.4-fold longer inter-bout euthermia, and spent significantly less time torpid, compared to animals hibernating at 3 °C. Higher food intake enabled individuals to compensate for increased energetic costs when hibernating at milder temperatures (14 °C vs. 3 °C), to buffer body mass loss and thus increase winter survival. Interestingly, we observed a significant increase of telomere length over the entire hibernation period, irrespective of temperature treatment. CONCLUSION We conclude that higher temperatures during winter, if associated with sufficient food availability, can have a positive effect on the individual's energy balance and somatic maintenance. These results suggest that winter food availability might be a crucial determinant for the survival of the garden dormouse in the context of ever-increasing environmental temperatures.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria.
| | - Marie-Therese Ragger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Amélie Baille
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Franz Hoelzl
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Julia Nowack
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|
12
|
Voituron Y, Guillaume O, Dumet A, Zahn S, Criscuolo F. Temperature-independent telomere lengthening with age in the long-lived human fish ( Proteus anguinus). Proc Biol Sci 2023; 290:20230503. [PMID: 37132239 PMCID: PMC10154926 DOI: 10.1098/rspb.2023.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023] Open
Abstract
Despite a number of studies showing a negative relationship between age and telomere length, the universality of this pattern has been recently challenged, mainly in ectothermic animals exhibiting diverse effects of age on telomere shortening. However, data on ectotherms may be strongly affected by the thermal history of the individuals. We thus investigated the age-related changes in relative telomere length in the skin of a small but long-lived amphibian living naturally in a stable thermal environment over its entire life, allowing comparison with other homeothermic animals like birds and mammals. The present data showed a positive relation between telomere length and individual age, independent of sex and body size. A segmented analysis highlighted a breakpoint in the telomere length-age relationship, suggesting that telomere length reached a plateau at the age of 25 years. Further studies focusing on the biology of animals that live much longer than expected based on body mass will contribute to our better understanding of how ageing processes evolved and may also bring innovation for extending human health span.
Collapse
Affiliation(s)
- Yann Voituron
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622, Villeurbanne, France
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321 Centre National de la Recherche Scientifique (CNRS), Moulis, France
| | - Adeline Dumet
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622, Villeurbanne, France
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | |
Collapse
|
13
|
Longitudinal telomere dynamics within natural lifespans of a wild bird. Sci Rep 2023; 13:4272. [PMID: 36922555 PMCID: PMC10017829 DOI: 10.1038/s41598-023-31435-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Telomeres, the nucleotide sequences that protect the ends of eukaryotic chromosomes, shorten with each cell division and telomere loss may be influenced by environmental factors. Telomere length (TL) decreases with age in several species, but little is known about the sources of genetic and environmental variation in the change in TL (∆TL) in wild animals. In this study, we tracked changes in TL throughout the natural lifespan (from a few months to almost 9 years) of free-living house sparrows (Passer domesticus) in two different island populations. TL was measured in nestlings and subsequently up to four times during their lifetime. TL generally decreased with age (senescence), but we also observed instances of telomere lengthening within individuals. We found some evidence for selective disappearance of individuals with shorter telomeres through life. Early-life TL positively predicted later-life TL, but the within-individual repeatability in TL was low (9.2%). Using genetic pedigrees, we found a moderate heritability of ∆TL (h2 = 0.21), which was higher than the heritabilities of early-life TL (h2 = 0.14) and later-life TL measurements (h2 = 0.15). Cohort effects explained considerable proportions of variation in early-life TL (60%), later-life TL (53%), and ∆TL (37%), which suggests persistent impacts of the early-life environment on lifelong telomere dynamics. Individual changes in TL were independent of early-life TL. Finally, there was weak evidence for population differences in ∆TL that may be linked to ecological differences in habitat types. Combined, our results show that individual telomere biology is highly dynamic and influenced by both genetic and environmental variation in natural conditions.
Collapse
|
14
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
15
|
Sepp T, Meitern R, Heidinger B, Noreikiene K, Rattiste K, Hõrak P, Saks L, Kittilson J, Urvik J, Giraudeau M. Parental age does not influence offspring telomeres during early life in common gulls (Larus canus). Mol Ecol 2022; 31:6197-6207. [PMID: 33772917 DOI: 10.1111/mec.15905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 01/31/2023]
Abstract
Parental age can affect offspring telomere length through heritable and epigenetic-like effects, but at what stage during development these effects are established is not well known. To address this, we conducted a cross-fostering experiment in common gulls (Larus canus) that enabled us distinguish between pre- and post-natal parental age effects on offspring telomere length. Whole clutches were exchanged after clutch completion within and between parental age classes (young and old) and blood samples were collected from chicks at hatching and during the fastest growth phase (11 days later) to measure telomeres. Neither the ages of the natal nor the foster parents predicted the telomere length or the change in telomere lengths of their chicks. Telomere length (TL) was repeatable within chicks, but increased across development (repeatability = 0.55, intraclass correlation coefficient within sampling events 0.934). Telomere length and the change in telomere length were not predicted by post-natal growth rate. Taken together, these findings suggest that in common gulls, telomere length during early life is not influenced by parental age or growth rate, which may indicate that protective mechanisms buffer telomeres from external conditions during development in this relatively long-lived species.
Collapse
Affiliation(s)
- Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Britt Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Kristina Noreikiene
- Institute of Veterinary Medicine, Estonian University of Life Sciences, Tartu, Estonia
| | - Kalev Rattiste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Peeter Hõrak
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Lauri Saks
- Estonian Marine Institute, University of Tartu, Tartu, Estonia
| | - Jeffrey Kittilson
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Janek Urvik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mathieu Giraudeau
- CREEC, Montpellier Cedex 5, France.,MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier Cedex 5, France
| |
Collapse
|
16
|
Tobler M, Gómez-Blanco D, Hegemann A, Lapa M, Neto JM, Tarka M, Xiong Y, Hasselquist D. Telomeres in ecology and evolution: A review and classification of hypotheses. Mol Ecol 2022; 31:5946-5965. [PMID: 34865259 DOI: 10.1111/mec.16308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Research on telomeres in the fields of ecology and evolution has been rapidly expanding over the last two decades. This has resulted in the formulation of a multitude of, often name-given, hypotheses related to the associations between telomeres and life-history traits or fitness-facilitating processes (and the mechanisms underlying them). However, the differences (or similarities) between the various hypotheses, which can originate from different research fields, are often not obvious. Our aim here is therefore to give an overview of the hypotheses that are of interest in ecology and evolution and to provide two frameworks that help discriminate among them. We group the hypotheses (i) based on their association with different research questions, and (ii) using a hierarchical approach that builds on the assumptions they make, such as about causality of telomere length/shortening and/or the proposed functional consequences of telomere shortening on organism performance. Both our frameworks show that there exist parallel lines of thoughts in different research fields. Moreover, they also clearly illustrate that there are in many cases competing hypotheses within clusters, and that some of these even have contradictory assumptions and/or predictions. We also touch upon two topics in telomere research that would benefit from further conceptualization. This review should help researchers, both those familiar with and those new to the subject, to identify future avenues of research.
Collapse
Affiliation(s)
| | | | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | - Mariana Lapa
- Department of Biology, Lund University, Lund, Sweden
| | - Júlio M Neto
- Department of Biology, Lund University, Lund, Sweden
| | - Maja Tarka
- Department of Biology, Lund University, Lund, Sweden
| | - Ye Xiong
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
17
|
Kauzálová T, Tomášek O, Mulder E, Verhulst S, Albrecht T. Telomere length is highly repeatable and shorter in individuals with more elaborate sexual ornamentation in a short-lived passerine. Mol Ecol 2022; 31:6172-6183. [PMID: 35150467 DOI: 10.1111/mec.16397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
Quantifying an individual's state as a fitness proxy has proven challenging, but accumulating evidence suggests that telomere length and attrition may indicate individual somatic state and success at self-maintenance, respectively. Sexual ornamentation is also thought to signal phenotypic quality, but links between telomeres and sexual ornamentation have been little explored. To address this issue, we examined whether telomere length and dynamics are predicted by the expression of a sexually selected ornament, the length of the outermost tail feathers (streamers), using longitudinal data from a population of European barn swallows (Hirundo rustica). In 139 adult individuals, each measured twice, we further assessed associations of telomere length with age, sex, breeding status and survival. Telomere length showed high individual repeatability (R = .97) across years while shortening with age in both sexes. Telomere length and dynamics were not significantly associated with survival to the next year, remaining lifespan or reproduction status (comparing breeding and nonbreeding yearlings). Tail streamer length, a sexually selected trait in barn swallows, was negatively associated with telomere length, independent of sex. Thus, telomere length may reflect the costs of carrying an elaborated sexual ornament, although ornament size did not significantly predict telomere shortening. In conclusion, telomere length in adult barn swallows is a highly consistent trait that shows a negative relationship with sexual ornamentation, suggesting a trade-off between sexual ornamentation and telomere length.
Collapse
Affiliation(s)
- Tereza Kauzálová
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Praha, Czech Republic
| |
Collapse
|
18
|
Sheldon EL, Eastwood JR, Teunissen N, Roast MJ, Aranzamendi NH, Fan M, Louise Hall M, Kingma SA, Verhulst S, Peters A. Telomere dynamics in the first year of life, but not later in life, predict lifespan in a wild bird. Mol Ecol 2022; 31:6008-6017. [PMID: 34850488 DOI: 10.1111/mec.16296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 02/02/2023]
Abstract
Telomeres are protective, nucleoprotein structures at the end of chromosomes that have been associated with lifespan across taxa. However, the extent to which these associations can be attributed to absolute length vs. the rate of telomere shortening prior to sampling remains unresolved. In a longitudinal study, we examined the relationship between lifespan, telomere length and the rate of telomere shortening in wild, purple-crowned fairy-wrens (Malurus coronatus coronatus). To this end, we measured telomere length using quantitative polymerase chain reaction in the blood of 59 individuals sampled as nestlings and 4-14 months thereafter, and in 141 known-age individuals sampled on average three times across adulthood. We applied within-subject centring analyses to simultaneously test for associations between lifespan and average telomere length and telomere shortening. We reveal that the rate of telomere shortening and to a lesser extent telomere length in the first year of life independently predicted lifespan, with individuals with faster shortening rates and/or shorter telomeres living less long. In contrast, in adulthood neither telomere shortening nor telomere length predicted lifespan, despite a considerably larger data set. Our results suggest that telomere length measured very early in life (during development) and longitudinal assessments of telomere shortening during the first year of life constitute more useful biomarkers of total life expectancy than either telomere length measured after development, or telomere shortening later in adulthood.
Collapse
Affiliation(s)
| | | | - Niki Teunissen
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | | | | | - Marie Fan
- School of Biological Sciences, Monash University, Clayton, Vic, Australia
| | - Michelle Louise Hall
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany.,Bush Heritage Australia, Melbourne, Vic, Australia.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Sjouke Anne Kingma
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, Vic, Australia.,Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Radolfzell, Germany
| |
Collapse
|
19
|
Ravindran S, Froy H, Underwood SL, Dorrens J, Seeker LA, Watt K, Wilbourn RV, Pilkington JG, Harrington L, Pemberton JM, Nussey DH. The association between female reproductive performance and leukocyte telomere length in wild Soay sheep. Mol Ecol 2022; 31:6184-6196. [PMID: 34514660 DOI: 10.1111/mec.16175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/03/2021] [Indexed: 01/31/2023]
Abstract
Telomere length (TL), typically measured across a sample of blood cells, has emerged as an exciting potential marker of physiological state and of the costs of investment in growth and reproduction within evolutionary ecology. While there is mounting evidence from studies of wild vertebrates that short TL predicts raised subsequent mortality risk, the relationship between reproductive investment and TL is less clear cut, and previous studies report both negative and positive associations. In this study, we examined the relationship between TL and different aspects of maternal reproductive performance in a free-living population of Soay sheep. We find evidence for shorter TL in females that bred, and thus paid any costs of gestation, compared to females that did not breed. However, we found no evidence for any association between TL and litter size. Furthermore, females that invested in gestation and lactation actually had longer TL than females who only invested in gestation because their offspring died shortly after birth. We used multivariate models to decompose these associations into among- and within-individual effects, and discovered that within-individual effects were driving both the negative association between TL and gestation, and the positive association between TL and lactation. This suggests that telomere dynamics may reflect recent physiologically costly investment or variation in physiological condition, depending on the aspect of reproduction being investigated. Our results highlight the physiological complexity of vertebrate reproduction, and the need to better understand how and why different aspects of physiological variation underpinning life histories impact blood cell TL.
Collapse
Affiliation(s)
- Sanjana Ravindran
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Institute for Biology, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer Dorrens
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Luise A Seeker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Wolf SE, Sanders TL, Beltran SE, Rosvall KA. The telomere regulatory gene POT1 responds to stress and predicts performance in nature: Implications for telomeres and life history evolution. Mol Ecol 2022; 31:6155-6171. [PMID: 34674335 DOI: 10.1111/mec.16237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023]
Abstract
Telomeres are emerging as correlates of fitness-related traits and may be important mediators of ecologically relevant variation in life history strategies. Growing evidence suggests that telomere dynamics can be more predictive of performance than length itself, but very little work considers how telomere regulatory mechanisms respond to environmental challenges or influence performance in nature. Here, we combine observational and experimental data sets from free-living tree swallows (Tachycineta bicolor) to assess how performance is predicted by the telomere regulatory gene POT1, which encodes a shelterin protein that sterically blocks telomerase from repairing the telomere. First, we show that lower POT1 gene expression in the blood was associated with higher female quality, that is, earlier breeding and heavier body mass. We next challenged mothers with an immune stressor (lipopolysaccharide injection) that led to "sickness" in mothers and 24 h of food restriction in their offspring. While POT1 did not respond to maternal injection, females with lower constitutive POT1 gene expression were better able to maintain feeding rates following treatment. Maternal injection also generated a 1-day stressor for chicks, which responded with lower POT1 gene expression and elongated telomeres. Other putatively stress-responsive mechanisms (i.e., glucocorticoids, antioxidants) showed marginal responses in stress-exposed chicks. Model comparisons indicated that POT1 mRNA abundance was a largely better predictor of performance than telomere dynamics, indicating that telomere regulators may be powerful modulators of variation in life history strategies.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Tiana L Sanders
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Sol E Beltran
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
21
|
Wood EM, Capilla-Lasheras P, Cram DL, Walker LA, York JE, Lange A, Hamilton PB, Tyler CR, Young AJ. Social dominance and rainfall predict telomere dynamics in a cooperative arid-zone bird. Mol Ecol 2022; 31:6141-6154. [PMID: 33657651 DOI: 10.1111/mec.15868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
In many vertebrate societies dominant individuals breed at substantially higher rates than subordinates, but whether this hastens ageing remains poorly understood. While frequent reproduction may trade off against somatic maintenance, the extraordinary fecundity and longevity of some social insect queens highlight that breeders need not always suffer more rapid somatic deterioration than their nonbreeding subordinates. Here, we used extensive longitudinal assessments of telomere dynamics to investigate the impact of dominance status on within-individual age-related changes in somatic integrity in a wild social bird, the white-browed sparrow-weaver (Plocepasser mahali). Dominant birds, who monopolise reproduction, had neither shorter telomeres nor faster telomere attrition rates over the long-term (1-5 years) than their subordinates. However, over shorter (half-year) time intervals dominants with shorter telomeres showed lower rates of telomere attrition (and evidence suggestive of telomere lengthening), while the same was not true among subordinates. Dominants may therefore invest more heavily in telomere length regulation (and/or somatic maintenance more broadly); a strategy that could mitigate the long-term costs of reproductive effort, leaving their long-term telomere dynamics comparable to those of subordinates. Consistent with the expectation that reproduction entails short-term costs to somatic integrity, telomere attrition rates were most severe for all birds during the breeding seasons of wetter years (rainfall is the key driver of reproductive activity in this arid-zone species). Our findings suggest that, even in vertebrate societies in which dominants monopolise reproduction, dominants may experience long-term somatic integrity trajectories indistinguishable from those of their nonreproductive subordinates.
Collapse
Affiliation(s)
- Emma M Wood
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| | - Pablo Capilla-Lasheras
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dominic L Cram
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lindsay A Walker
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jenny E York
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Anke Lange
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick B Hamilton
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Charles R Tyler
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrew J Young
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
22
|
Remot F, Ronget V, Froy H, Rey B, Gaillard JM, Nussey DH, Lemaitre JF. Decline in telomere length with increasing age across nonhuman vertebrates: A meta-analysis. Mol Ecol 2022; 31:5917-5932. [PMID: 34437736 DOI: 10.1111/mec.16145] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The prediction that telomere length (TL) shortens with increasing age is a major element in considering the role of telomeres as a key player in evolution. While telomere attrition is found in humans both in vitro and in vivo, the increasing number of studies reporting diverse age-specific patterns of TL challenges the hypothesis of a universal decline of TL with increasing age. Here, we performed a meta-analysis to estimate the relationship between TL and age across 175 estimates encompassing 98 species of vertebrates. We found that, on average, TL does decline with increasing age during adulthood. However, this decline was weak and variable across vertebrate classes, and we also found evidence for a publication bias that might weaken our current evidence of decreasing TL with increasing age. We found no evidence for a faster decline in TL with increasing age when considering the juvenile stage (from birth to age at first reproduction) compared to the adult stage. Heterogeneity in TL ageing rates was explained by the method used to measure telomeres: detectable TL declines with increasing age were found only among studies using TRF with in-gel hybridisation and qFISH methods, but not in studies using qPCR and Southern blot-based TRF methods. While we confirmed that TL declines with increasing age in most adult vertebrates, our results identify an influence of telomere measurement methodology, which highlights the need to examine more thoroughly the effect of the method of measurement on TL estimates.
Collapse
Affiliation(s)
- Florentin Remot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jean-François Lemaitre
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
23
|
Sheldon EL, Ton R, Boner W, Monaghan P, Raveh S, Schrey AW, Griffith SC. Associations between DNA methylation and telomere length during early life: Insight from wild zebra finches (Taeniopygia guttata). Mol Ecol 2022; 31:6261-6272. [PMID: 34551154 DOI: 10.1111/mec.16187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023]
Abstract
Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere length dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between DNA based biomarkers of ageing, and of physiological reactions to environmental change.
Collapse
Affiliation(s)
- Elizabeth L Sheldon
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Riccardo Ton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Smith S, Hoelzl F, Zahn S, Criscuolo F. Telomerase activity in ecological studies: What are its consequences for individual physiology and is there evidence for effects and trade-offs in wild populations. Mol Ecol 2022; 31:6239-6251. [PMID: 34664335 PMCID: PMC9788021 DOI: 10.1111/mec.16233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 02/02/2023]
Abstract
Increasing evidence at the cellular level is helping to provide proximate explanations for the balance between investment in growth, reproduction and somatic maintenance in wild populations. Studies of telomere dynamics have informed researchers about the loss and gain of telomere length both on a seasonal scale and across the lifespan of individuals. In addition, telomere length and telomere rate of loss seems to have evolved differently among taxonomic groups, and relate differently to organismal diversity of lifespan. So far, the mechanisms behind telomere maintenance remain elusive, although many studies have inferred a role for telomerase, an enzyme/RNA complex known to induce telomere elongation from laboratory studies. Exciting further work is also emerging that suggests telomerase (and/or its individual component parts) has a role in fitness that goes beyond the maintenance of telomere length. Here, we review the literature on telomerase biology and examine the evidence from ecological studies for the timing and extent of telomerase activation in relation to life history events associated with telomere maintenance. We suggest that the underlying mechanism is more complicated than originally anticipated, possibly involves several complimentary pathways, and is probably associated with high energetic costs. Potential pathways for future research are numerous and we outline what we see as the most promising prospects to expand our understanding of individual differences in immunity or reproduction efficiency.
Collapse
Affiliation(s)
- Steve Smith
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Franz Hoelzl
- Konrad Lorenz Institute of EthologyUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Sandrine Zahn
- Department of Physiology, Evolution and BehaviourInstitut Pluridisciplinaire Hubert CurienCNRSUniversity of StrasbourgStrasbourgFrance
| | - François Criscuolo
- Department of Physiology, Evolution and BehaviourInstitut Pluridisciplinaire Hubert CurienCNRSUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
25
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
26
|
Large mammal telomere length variation across ecoregions. BMC Ecol Evol 2022; 22:105. [PMID: 36038827 PMCID: PMC9426267 DOI: 10.1186/s12862-022-02050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Telomere length provides a physiological proxy for accumulated stress in animals. While there is a growing consensus over how telomere dynamics and their patterns are linked to life history variation and individual experience, knowledge on the impact of exposure to different stressors at a large spatial scale on telomere length is still lacking. How exposure to different stressors at a regional scale interacts with individual differences in life history is also poorly understood. To better understand large-scale regional influences, we investigated telomere length variation in moose (Alces alces) distributed across three ecoregions. We analyzed 153 samples of 106 moose representing moose of both sexes and range of ages to measure relative telomere lengths (RTL) in white blood cells. Results We found that average RTL was significantly shorter in a northern (montane) and southern (sarmatic) ecoregion where moose experience chronic stress related to severe summer and winter temperatures as well as high anthropogenic land-use compared to the boreal region. Our study suggests that animals in the northern boreal forests, with relatively homogenous land use, are less disturbed by environmental and anthropogenic stressors. In contrast, animals in areas experiencing a higher rate of anthropogenic and environmental change experience increased stress. Conclusion Although animals can often adapt to predictable stressors, our data suggest that some environmental conditions, even though predictable and ubiquitous, can generate population level differences of long-term stress. By measuring RTL in moose for the first time, we provide valuable insights towards our current understanding of telomere biology in free-ranging wildlife in human-modified ecosystems. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02050-5.
Collapse
|
27
|
Bennett S, Girndt A, Sánchez-Tójar A, Burke T, Simons M, Schroeder J. Evidence of Paternal Effects on Telomere Length Increases in Early Life. Front Genet 2022; 13:880455. [PMID: 35656320 PMCID: PMC9152208 DOI: 10.3389/fgene.2022.880455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Offspring of older parents in many species have decreased longevity, a faster ageing rate and lower fecundity than offspring born to younger parents. Biomarkers of ageing, such as telomeres, that tend to shorten as individuals age, may provide insight into the mechanisms of such parental age effects. Parental age may be associated with offspring telomere length either directly through inheritance of shortened telomeres or indirectly, for example, through changes in parental care in older parents affecting offspring telomere length. Across the literature there is considerable variation in estimates of the heritability of telomere length, and in the direction and extent of parental age effects on telomere length. To address this, we experimentally tested how parental age is associated with the early-life telomere dynamics of chicks at two time points in a captive population of house sparrows Passer domesticus. We experimentally separated parental age from sex effects, and removed effects of age-assortative mating, by allowing the parent birds to only mate with young, or old partners. The effect of parental age was dependent on the sex of the parent and the chicks, and was found in the father-daughter relationship only; older fathers produced daughters with longer telomere lengths post-fledging. Overall we found that chick telomere length increased between the age of 0.5 and 3 months at the population and individual level. This finding is unusual in birds with such increases more commonly associated with non-avian taxa. Our results suggest parental age effects on telomere length are sex-specific either through indirect or direct inheritance. The study of similar patterns in different species and taxa will help us further understand variation in telomere length and its evolution.
Collapse
Affiliation(s)
- Sophie Bennett
- Division of Biology, Imperial College London, London, United Kingdom.,UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| | - Antje Girndt
- Division of Biology, Imperial College London, London, United Kingdom.,Department of Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Alfredo Sánchez-Tójar
- Division of Biology, Imperial College London, London, United Kingdom.,Department of Evolutionary Biology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Terry Burke
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
| | - Mirre Simons
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, United Kingdom
| | - Julia Schroeder
- Division of Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Viblanc VA, Criscuolo F, Sosa S, Schull Q, Boonstra R, Saraux C, Lejeune M, Roth JD, Uhlrich P, Zahn S, Dobson FS. Telomere dynamics in female Columbian ground squirrels: recovery after emergence and loss after reproduction. Oecologia 2022; 199:301-312. [PMID: 35713713 DOI: 10.1007/s00442-022-05194-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Telomeres are specialized non-coding DNA sequences located at the end of chromosomes and that protect genetic information. Telomere loss over lifespan is generally viewed as a phenomenon associated with aging in animals. Recently, telomere elongation after hibernation has been described in several mammals. Whether this pattern is an adaptation to repair DNA damage caused during rewarming from torpor or if it coevolved as a mechanism to promote somatic maintenance in preparation for the upcoming reproductive effort remains unclear. In a longitudinal study measuring telomere length using buccal swabs, we tested if telomere elongation was related to reproductive success in wild adult female Columbian ground squirrels (Urocitellus columbianus) that were monitored from emergence from hibernation to the end of the reproductive season. We found three key results. First, female telomere length increased at the start of the breeding season, both in breeding and non-breeding individuals. Second, post-emergence telomere lengthening was unrelated to female future reproductive output. Third, telomere length decreased in breeding females during lactation, but remained stable in non-breeding females over a similar period. Within breeders, telomeres shortened more in females producing larger and heavier litters. We concluded that telomere lengthening after hibernation did not constrain immediate female reproductive capacities. It was more likely to be part of the body recovery process that takes place after hibernation. Telomere erosion that occurs after birth may constitute a physiological cost of female reproduction.
Collapse
Affiliation(s)
- Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France.
| | - Sebastian Sosa
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Quentin Schull
- MARBEC, University of Montpellier, IFREMER, IRD, CNRS, Avenue Jean Monnet CS 30171, 34203, Sète, France
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto, Scarborough, ON, M1C 1A4, Canada
| | - Claire Saraux
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Mathilde Lejeune
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Jeffrey D Roth
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Pierre Uhlrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
29
|
Tissier ML, Bergeron P, Garant D, Zahn S, Criscuolo F, Réale D. Telomere length positively correlates with pace-of-life in a sex- and cohort-specific way and elongates with age in a wild mammal. Mol Ecol 2022; 31:3812-3826. [PMID: 35575903 DOI: 10.1111/mec.16533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
Understanding ageing and the diversity of life histories is a cornerstone in biology. Telomeres, the protecting caps of chromosomes, are thought to be involved in ageing, cancer risks and life-history strategies. They shorten with cell division and age in somatic tissues of most species, possibly limiting lifespan. The resource allocation trade-off hypothesis predicts that short telomeres have thus co-evolved with early reproduction, proactive behaviour and reduced lifespan, i.e. a fast Pace-of-Life Syndrome (POLS). Conversely, since short telomeres may also reduce the risks of cancer, the anti-cancer hypothesis advances that they should be associated with slow POLS. Conclusion on which hypothesis best supports the role of telomeres as mediators of life-history strategies is hampered by a lack of study on wild short-lived vertebrates, apart from birds. Using seven years of data on wild Eastern chipmunks Tamias striatus, we highlighted that telomeres elongate with age (n = 204 and n = 20) and do not limit lifespan in this species (n = 51). Furthermore, short telomeres correlated with a slow POLS in a sex-specific way (n = 37). Females with short telomeres had a delayed age at first breeding and a lower fecundity rate than females with long telomeres, while we found no differences in males. Our findings support most predictions adapted from the anti-cancer hypothesis, but none of those from the resource allocation trade-off hypothesis. Results are in line with an increasing body of evidence suggesting that other evolutionary forces than resource allocation trade-offs shape the diversity of telomere length in adult somatic cells and the relationships between telomere length and life-histories.
Collapse
Affiliation(s)
- Mathilde L Tissier
- Biological Sciences, Bishop's University, 2600 Rue College, Québec, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Patrick Bergeron
- Biological Sciences, Bishop's University, 2600 Rue College, Québec, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | | | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
30
|
Hibernation slows epigenetic ageing in yellow-bellied marmots. Nat Ecol Evol 2022; 6:418-426. [PMID: 35256811 PMCID: PMC8986532 DOI: 10.1038/s41559-022-01679-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators. Species that hibernate generally have longer lifespans than expected based on their body size. The authors show epigenetic ageing patterns from a natural population of hibernating yellow-bellied marmots consistent with the hypothesis that ageing is suspended during hibernation.
Collapse
|
31
|
Keeling LJ, Winckler C, Hintze S, Forkman B. Towards a Positive Welfare Protocol for Cattle: A Critical Review of Indicators and Suggestion of How We Might Proceed. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.753080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current animal welfare protocols focus on demonstrating the absence (or at least low levels) of indicators of poor welfare, potentially creating a mismatch between what is expected by society (an assurance of good animal welfare) and what is actually being delivered (an assurance of the absence of welfare problems). This paper explores how far we have come, and what work still needs to be done, if we are to develop a protocol for use on commercial dairy farms where the aim is to demonstrate the presence of positive welfare. Following conceptual considerations around a perceived “ideal” protocol, we propose that a future protocol should be constructed (i) of animal-based measures, (ii) of indicators of affective state, and (iii) be structured according to indicators of short-term emotion, medium-term moods and long-term cumulative assessment of negative and positive experiences of an animal's life until now (in contrast to the current focus on indicators that represent different domains/criteria of welfare). These three conditions imposed the overall structure within which we selected our indicators. The paper includes a critical review of the literature on potential indicators of positive affective states in cattle. Based on evidence about the validity and reliability of the different indicators, we select ear position, play, allogrooming, brush use and QBA as candidate indicators that we suggest could form a prototype positive welfare protocol. We emphasise that this prototype protocol has not been tested in practice and so it is perhaps not the protocol itself that is the main outcome of this paper, but the process of trying to develop it. In a final section of this paper, we reflect on some of the lessons learnt from this exercise and speculate on future perspectives. For example, while we consider we have moved towards a prototype positive welfare protocol for short-term affective states, future research energy should be directed towards valid indicators for the medium and long-term.
Collapse
|
32
|
Criscuolo F, Torres R, Zahn S, Williams TD. Telomere dynamics from hatching to sexual maturity and maternal effects in the 'multivariate egg'. J Exp Biol 2020; 223:jeb232496. [PMID: 33139395 DOI: 10.1242/jeb.232496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Avian eggs contain a large number of molecules deposited by the mother that provide the embryo with energy but also potentially influence its development via the effects of maternally derived hormones and antibodies: the avian egg is thus 'multivariate'. Multivariate effects on offspring phenotype were evaluated in a study on captive zebra finches, by simultaneously manipulating maternally derived antibodies (MAb) by lipopolysaccharide (LPS) treatment of mothers and injection of testosterone into the egg yolk. LPS treatment had a positive effect on body mass growth at 30 days after hatching and immune response at sexual maturity, while egg testosterone treatment positively influenced immune response at fledging and courtship behaviour in sexually mature male offspring. Maternal effects are known to modulate offspring telomere length (TL). However, the multivariate effects of egg-derived maternal components on offspring telomere dynamics from hatching to sexual maturity are undefined. Here, we tested: (1) the effects of LPS and testosterone treatments on TL from hatching to sexual maturity (day 82); (2) how LPS treatment modulated TL over reproduction in adult females; and (3) the relationship between maternal and offspring TL. We predicted that TL would be shorter in LPS fledglings (as a cost of faster growth) and that TL would be longer in sexually mature adults after yolk testosterone treatment (as a proxy of individual quality). In adult females, there was an overall negative relationship between laying and rearing investments and TL, this relationship was weaker in LPS-treated females. In chicks, there was an overall negative effect of LPS treatment on TL measured at fledging and sexual maturity (day 25-82). In addition, at fledging, there was a Sex×LPS×Testosterone interaction, suggesting the existence of antagonistic effects of our treatments. Our data partially support the hypothesis that telomeres are proxies of individual quality and that individual differences in TL are established very early in life.
Collapse
Affiliation(s)
- Francois Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67000 Strasbourg, France
| | - Roxanna Torres
- Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, A.P. 70-275, Mexico D.F. 04510, Mexico
| | - Sandrine Zahn
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67000 Strasbourg, France
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| |
Collapse
|
33
|
Criscuolo F, Pillay N, Zahn S, Schradin C. Seasonal variation in telomere dynamics in African striped mice. Oecologia 2020; 194:609-620. [DOI: 10.1007/s00442-020-04801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
|
34
|
Lemaître JF, Carbillet J, Rey B, Palme R, Froy H, Wilbourn RV, Underwood SL, Cheynel L, Gaillard JM, Hewison AJM, Verheyden H, Débias F, Duhayer J, Régis C, Pardonnet S, Pellerin M, Nussey DH, Gilot-Fromont E. Short-term telomere dynamics is associated with glucocorticoid levels in wild populations of roe deer. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110836. [PMID: 33144154 DOI: 10.1016/j.cbpa.2020.110836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
While evidence that telomere length is associated with health and mortality in humans and birds is accumulating, a large body of research is currently seeking to identify factors that modulate telomere dynamics. We tested the hypothesis that high levels of glucocorticoids in individuals under environmental stress should accelerate telomere shortening in two wild populations of roe deer (Capreolus capreolus) living in different ecological contexts. From two consecutive annual sampling sessions, we found that individuals with faster rates of telomere shortening had higher concentrations of fecal glucocorticoid metabolites, suggesting a functional link between glucocorticoid levels and telomere attrition rate. This relationship was consistent for both sexes and populations. This finding paves the way for further studies of the fitness consequences of exposure to environmental stressors in wild vertebrates.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France.
| | - Jeffrey Carbillet
- Université de Toulouse, INRAE, CEFS, F-31326 Castanet Tolosan, France; Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah L Underwood
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Louise Cheynel
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, UK
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - A J Mark Hewison
- Université de Toulouse, INRAE, CEFS, F-31326 Castanet Tolosan, France
| | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, F-31326 Castanet Tolosan, France
| | - François Débias
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - Jeanne Duhayer
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - Corinne Régis
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | - Sylvia Pardonnet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France
| | | | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, Marcy-l'Etoile, France
| |
Collapse
|
35
|
Sánchez-Montes G, Martínez-Solano Í, Díaz-Paniagua C, Vilches A, Ariño AH, Gomez-Mestre I. Telomere attrition with age in a wild amphibian population. Biol Lett 2020; 16:20200168. [PMID: 32673551 PMCID: PMC7423040 DOI: 10.1098/rsbl.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomere shortening with age has been documented in many organisms, but few studies have reported telomere length measurements in amphibians, and no information is available for growth after metamorphosis, nor in wild populations. We provide both cross-sectional and longitudinal evidence of net telomere attrition with age in a wild amphibian population of natterjack toads (Epidalea calamita). Based on age-estimation by skeletochronology and qPCR telomere length measurements in the framework of an individual-based monitoring programme, we confirmed telomere attrition in recaptured males. Our results support that toads experience telomere attrition throughout their ontogeny, and that most attrition occurs during the first 1-2 years. We did not find associations between telomere length and inbreeding or body condition. Our results on telomere length dynamics under natural conditions confirm telomere shortening with age in amphibians and provide quantification of wide telomere length variation within and among age-classes in a wild breeding population.
Collapse
Affiliation(s)
- Gregorio Sánchez-Montes
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Íñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Carmen Díaz-Paniagua
- Ecology, Evolution, and Development Group, Doñana Biological Station, CSIC, c/ Américo Vespucio 26, 41092 Seville, Spain
| | - Antonio Vilches
- Department of Environmental Biology, University of Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain
| | - Arturo H. Ariño
- Department of Environmental Biology, University of Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station, CSIC, c/ Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
36
|
Ineson KM, O’Shea TJ, Kilpatrick CW, Parise KL, Foster JT. Ambiguities in using telomere length for age determination in two North American bat species. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThe age of an animal, determined by time (chronological age) as well as genetic and environmental factors (biological age), influences the likelihood of mortality and reproduction and thus the animal’s contribution to population growth. For many long-lived species, such as bats, a lack of external and morphological indicators has made determining age a challenge, leading researchers to examine genetic markers of age for application to demographic studies. One widely studied biomarker of age is telomere length, which has been related both to chronological and biological age across taxa, but only recently has begun to be studied in bats. We assessed telomere length from the DNA of known-age and minimum known-age individuals of two bat species using a quantitative PCR assay. We determined that telomere length was quadratically related to chronological age in big brown bats (Eptesicus fuscus), although it had little predictive power for accurate age determination of unknown-age individuals. The relationship was different in little brown bats (Myotis lucifugus), where telomere length instead was correlated with biological age, apparently due to infection and wing damage associated with white-nose syndrome. Furthermore, we showed that wing biopsies currently are a better tissue source for studying telomere length in bats than guano and buccal swabs; the results from the latter group were more variable and potentially influenced by storage time. Refinement of collection and assessment methods for different non-lethally collected tissues will be important for longitudinal sampling to better understand telomere dynamics in these long-lived species. Although further work is needed to develop a biomarker capable of determining chronological age in bats, our results suggest that biological age, as reflected in telomere length, may be influenced by extrinsic stressors such as disease.
Collapse
Affiliation(s)
- Katherine M Ineson
- Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Thomas J O’Shea
- United States Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | | | - Katy L Parise
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jeffrey T Foster
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
37
|
Ruf T, Bieber C. Physiological, Behavioral, and Life-History Adaptations to Environmental Fluctuations in the Edible Dormouse. Front Physiol 2020; 11:423. [PMID: 32431626 PMCID: PMC7214925 DOI: 10.3389/fphys.2020.00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/22/2022] Open
Abstract
The edible dormouse (Glis glis, formerly Myoxus glis) is a small arboreal mammal inhabiting deciduous forests in Europe. This rodent shows behavioral and physiological adaptations to three types of environmental fluctuations: (i) predictable seasonal variation in climate and food resources (ii) unpredictable year-to-year fluctuation in seed-production by trees and (iii) day-to-day variation in ambient temperature and precipitation. They cope with seasonally fluctuating conditions by seasonal fattening and hibernation. Dormice have adjusted to tree-mast fluctuations, i.e., pulsed resources, by sensing future seed availability in spring, and restricting reproduction to years with at least some seed production by beech and oak trees, which are a crucial food-resource for fast-growing juveniles in fall. Finally, dormice respond to short-term drops in ambient temperature by increased use of daily torpor as well as by huddling in groups of up to 24 conspecifics. These responses to environmental fluctuations strongly interact with each other: Dormice are much more prone to using daily torpor and huddling in non-reproductive years, because active gonads can counteract torpor and energy requirements for reproduction may prevent the sharing of food resources associated with huddling. Accordingly, foraging activity in fall is much more intense in reproductive mast years. Also, depending on their energy reserves, dormice may retreat to underground burrows in the summers of non-reproductive years, causing an extension of the hibernation season to up to 11.4 months. In addition to these interactions, responses to environmental fluctuations are modulated by the progression of life-history stages. With increasing age and diminishing chances of future reproduction, females reproduce with increasing frequency even under suboptimal environmental conditions. Simultaneously, older dormice shorten the hibernation season and phase-advance the emergence from hibernation in spring, apparently to occupy good breeding territories early, despite increased predation risk above ground. All of the above adaptions, i.e., huddling, torpor, hibernation, and reproduction skipping do not merely optimize energy-budgets but also help to balance individual predation risk against reproductive success, which adds another layer of complexity to the ability to make flexible adjustments in this species.
Collapse
Affiliation(s)
- Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
38
|
Al-Attar R, Storey KB. Suspended in time: Molecular responses to hibernation also promote longevity. Exp Gerontol 2020; 134:110889. [PMID: 32114078 DOI: 10.1016/j.exger.2020.110889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Aging in most animals is an inevitable process that causes or is a result of physiological, biochemical, and molecular changes in the body, and has a strong influence on an organism's lifespan. Although advancement in medicine has allowed humans to live longer, the prevalence of age-associated medical complications is continuously burdening older adults worldwide. Current animal models used in research to study aging have provided novel information that has helped investigators understand the aging process; however, these models are limiting. Aging is a complex process that is regulated at multiple biological levels, and while a single manipulation in these models can provide information on a process, it is not enough to understand the global regulation of aging. Some mammalian hibernators live up to 9.8-times higher than their expected average lifespan, and new research attributes this increase to their ability to hibernate. A common theme amongst these mammalian hibernators is their ability to greatly reduce their metabolic rate to a fraction of their normal rate and initiate cytoprotective responses that enable their survival. Metabolic rate depression is strictly regulated at different biological levels in order to enable the animal to not only survive, but to also do so by relying mainly on their limited internal fuels. As such, understanding both the global and specific regulatory mechanisms used to promote survival during hibernation could, in theory, allow investigators to have a better understanding of the aging process. This can also allow pharmaceutical industries to find therapeutics that could delay or reverse age-associated medical complications and promote healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
39
|
Bichet C, Bouwhuis S, Bauch C, Verhulst S, Becker PH, Vedder O. Telomere length is repeatable, shortens with age and reproductive success, and predicts remaining lifespan in a long‐lived seabird. Mol Ecol 2020; 29:429-441. [DOI: 10.1111/mec.15331] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | | | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
40
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
41
|
Nowack J, Tarmann I, Hoelzl F, Smith S, Giroud S, Ruf T. Always a price to pay: hibernation at low temperatures comes with a trade-off between energy savings and telomere damage. Biol Lett 2019; 15:20190466. [PMID: 31573426 PMCID: PMC6832184 DOI: 10.1098/rsbl.2019.0466] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
We experimentally tested the costs of deep torpor at low temperatures by comparing telomere dynamics in two species of rodents hibernating at either 3 or 14°C. Our data show that hibernators kept at the warmer temperature had higher arousal frequencies, but maintained longer telomeres than individuals hibernating at the colder temperature. We suggest that the high-energy demand of frequent arousals is counteracted by a lower temperature differential between torpid and euthermic body temperature and that telomere length is restored during arousals when the body temperature is returned to normothermic values. Taken together, our study shows that hibernation at low body temperatures comes with costs on a cellular level and that hibernators need to actively counterbalance the shortening of telomeres.
Collapse
Affiliation(s)
- Julia Nowack
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iris Tarmann
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Franz Hoelzl
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Steve Smith
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
42
|
Fitzpatrick LJ, Olsson M, Parsley LM, Pauliny A, Pinfold TL, Pirtle T, While GM, Wapstra E. Temperature and telomeres: thermal treatment influences telomere dynamics through a complex interplay of cellular processes in a cold-climate skink. Oecologia 2019; 191:767-776. [PMID: 31620874 DOI: 10.1007/s00442-019-04530-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
Abstract
Telomere dynamics vary fundamentally between endothermic populations and species as a result of differences in life history, yet we know little about these patterns in ectotherms. In ectotherms, the relationships between climate, metabolism and life history suggest that telomere attrition should be higher at relatively high environmental temperatures compared to relatively low environmental temperatures, but these effects may vary between populations due to local adaptation. To address this hypothesis, we sampled reactive oxygen species (ROS) and telomere length of lizards from warm lowland and cool highland populations of a climatically widespread lizard species that we exposed to hot or cold basking treatments. The hot treatment increased relative telomere length compared to the cold treatment independent of climatic origin or ROS levels. Lizards from the cool highland region had lower ROS levels than those from the warm lowland region. Within the highland lizards, ROS increased more in the cold basking treatment than the hot basking treatment. These results are in the opposite direction to those predicted, suggesting that the relationships between temperature, metabolism, ROS and telomere dynamics are not straightforward. Future work incorporating detailed understanding of the thermal reaction norms of these and other linked traits is needed to fully understand these processes.
Collapse
Affiliation(s)
- L J Fitzpatrick
- School of Natural Sciences, University of Tasmania, Hobart, Australia.
| | - M Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - L M Parsley
- School of Natural Sciences, University of Tasmania, Hobart, Australia.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - A Pauliny
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - T L Pinfold
- School of Medicine, University of Tasmania, Hobart, Australia
| | - T Pirtle
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - G M While
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - E Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
43
|
Sudyka J. Does Reproduction Shorten Telomeres? Towards Integrating Individual Quality with Life‐History Strategies in Telomere Biology. Bioessays 2019; 41:e1900095. [DOI: 10.1002/bies.201900095] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Joanna Sudyka
- Wild Urban Evolution and Ecology LabCentre of New Technologies (CeNT)University of Warsaw 02‐097 Warsaw Poland
| |
Collapse
|
44
|
Wilbur SM, Barnes BM, Kitaysky AS, Williams CT. Tissue-specific telomere dynamics in hibernating arctic ground squirrels ( Urocitellus parryii). ACTA ACUST UNITED AC 2019; 222:jeb.204925. [PMID: 31515236 DOI: 10.1242/jeb.204925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/03/2019] [Indexed: 01/25/2023]
Abstract
Hibernation is used by a variety of mammals to survive seasonal periods of resource scarcity. Reactive oxygen species (ROS) released during periodic rewarming throughout hibernation, however, may induce oxidative damage in some tissues. Telomeres, which are the terminal sequences of linear chromosomes, may shorten in the presence of ROS, and thus the telomere length of an individual reflects the degree of accrued oxidative damage. This study quantified telomere length dynamics throughout hibernation in arctic ground squirrels (Urocitellus parryii). We hypothesized that telomere dynamics are tissue specific and predicted that telomere shortening would be most pronounced in brown adipose tissue (BAT), the organ that directly supports non-shivering thermogenesis during arousals. We used qPCR to determine relative telomere length (RTL) in DNA extracted from liver, heart, skeletal muscle (SM) and BAT of 45 juvenile and adult animals sampled either at mid- or late hibernation. Age did not have a significant effect on RTL in any tissue. At mid-hibernation, RTL of juvenile females was longer in BAT and SM than in liver and heart. In juvenile females, RTL in BAT and SM, but not in liver and heart, was shorter at late hibernation than at mid-hibernation. At late hibernation, juvenile males had longer RTL in BAT than did juvenile females, perhaps due to the naturally shorter hibernation duration of male arctic ground squirrels. Finally, BAT RTL at late hibernation negatively correlated with arousal frequency. Overall, our results suggest that, in a hibernating mammal, telomere shortening is tissue specific and that metabolically active tissues might incur higher levels of molecular damage.
Collapse
Affiliation(s)
- Sara M Wilbur
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Alexander S Kitaysky
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
45
|
Lieshout SHJ, Bretman A, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Individual variation in early‐life telomere length and survival in a wild mammal. Mol Ecol 2019; 28:4152-4165. [DOI: 10.1111/mec.15212] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sil H. J. Lieshout
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Amanda Bretman
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Christina D. Buesching
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Hannah L. Dugdale
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
46
|
Sudyka J, Podmokła E, Drobniak SM, Dubiec A, Arct A, Gustafsson L, Cichoń M. Sex-specific effects of parasites on telomere dynamics in a short-lived passerine-the blue tit. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2019; 106:6. [PMID: 30701351 PMCID: PMC6353807 DOI: 10.1007/s00114-019-1601-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Parasitic infections potentially drive host's life-histories since they can have detrimental effects on host's fitness. Telomere dynamics is a candidate mechanism to underlie life-history trade-offs and as such may correlate with observed fitness reduction in infected animals. We examined the relationship of chronic infection with two genera of haemosporidians causing avian malaria and malaria-like disease with host's telomere length (TL) in a longitudinal study of free-ranging blue tits. The observed overall infection prevalence was 80% and increased with age, constituting a potentially serious selective pressure in our population. We found longer telomeres in individuals infected with a parasite causing lesser blood pathologies i.e. Haemoproteus compared to Plasmodium genus, but this only held true among males. Female TL was independent of the infection type. Our results indicate that parasitic infections could bring about other types of costs to females than to males with respect to TL. Additionally, we detected linear telomere loss with age, however a random regression analysis did not confirm significant heterogeneity in TL of first breeders and telomere shortening rates in further life.
Collapse
Affiliation(s)
- Joanna Sudyka
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warszawa, Poland.
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Edyta Podmokła
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon M Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679, Warszawa, Poland
| | - Aneta Arct
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Lars Gustafsson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
47
|
Criscuolo F, Smith S, Zahn S, Heidinger BJ, Haussmann MF. Experimental manipulation of telomere length: does it reveal a corner-stone role for telomerase in the natural variability of individual fitness? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0440. [PMID: 29335364 DOI: 10.1098/rstb.2016.0440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Telomeres, the non-coding ends of linear chromosomes, are thought to be an important mechanism of individual variability in performance. Research suggests that longer telomeres are indicative of better health and increased fitness; however, many of these data are correlational and whether these effects are causal are poorly understood. Experimental tests are emerging in medical and laboratory-based studies, but these types of experiments are rare in natural populations, which precludes conclusions at an evolutionary level. At the crossroads between telomere length and fitness is telomerase, an enzyme that can lengthen telomeres. Experimental modulation of telomerase activity is a powerful tool to manipulate telomere length, and to look at the covariation of telomerase, telomeres and individual life-history traits. Here, we review studies that manipulate telomerase activity in laboratory conditions and emphasize the associated physiological and fitness consequences. We then discuss how telomerase's impact on ageing may go beyond telomere maintenance. Based on this overview, we then propose several research avenues for future studies to explore how individual variability in health, reproduction and survival may have coevolved with different patterns of telomerase activity and expression. Such knowledge is of prime importance to fully understand the role that telomere dynamics play in the evolution of animal ageing.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- F Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - S Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - S Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - B J Heidinger
- Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - M F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
48
|
Telomeres in Plants and Humans: Not So Different, Not So Similar. Cells 2019; 8:cells8010058. [PMID: 30654521 PMCID: PMC6356271 DOI: 10.3390/cells8010058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the “telomere clock” in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
Collapse
|
49
|
|
50
|
Bieber C, Turbill C, Ruf T. Effects of aging on timing of hibernation and reproduction. Sci Rep 2018; 8:13881. [PMID: 30224823 PMCID: PMC6141465 DOI: 10.1038/s41598-018-32311-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
Small hibernators are long-lived for their size because seasonal dormancy greatly reduces predation risk. Thus, within a year, hibernators switch between states of contrasting mortality risk (active season versus hibernation), making them interesting species for testing the predictions of life-history theory. Accordingly, we hypothesized that, with advancing age and hence diminishing reproductive potential, hibernators should increasingly accept the higher predation risk associated with activity to increase the likelihood of current reproductive success. For edible dormice (Glis glis) we show that age strongly affects hibernation/activity patterns, and that this occurs via two pathways: (i) with increasing age, dormice are more likely to reproduce, which delays the onset of hibernation, and (ii) age directly advances emergence from hibernation in spring. We conclude that hibernation has to be viewed not merely as an energy saving strategy under harsh climatic conditions, but as an age-affected life-history trait that is flexibly used to maximize fitness.
Collapse
Affiliation(s)
- Claudia Bieber
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Christopher Turbill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|