1
|
Nevo S, Frenkel N, Kadouri N, Gome T, Rosenthal N, Givony T, Avin A, Peligero Cruz C, Kedmi M, Lindzen M, Ben Dor S, Damari G, Porat Z, Haffner-Krausz R, Keren-Shaul H, Yarden Y, Munitz A, Leshkowitz D, Goldfarb Y, Abramson J. Tuft cells and fibroblasts promote thymus regeneration through ILC2-mediated type 2 immune response. Sci Immunol 2024; 9:eabq6930. [PMID: 38215193 DOI: 10.1126/sciimmunol.abq6930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.
Collapse
Affiliation(s)
- Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Frenkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Rosenthal
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Avin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Peligero Cruz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Merav Kedmi
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben Dor
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Munitz
- Department of Microbiology and Clinical Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
George DC, Bertrand FE, Sigounas G. Notch-3 affects chemoresistance in colorectal cancer via DNA base excision repair enzymes. Adv Biol Regul 2024; 91:101013. [PMID: 38290285 DOI: 10.1016/j.jbior.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Colon cancer is the second leading cause of cancer death. With over 153,000 new CRC cases predicted, it is the third most commonly diagnosed cancer. Early detection can lead to curative surgical intervention, but recurrent and late metastatic disease is frequently treated with chemotherapeutic options based on induction of DNA damage. Understanding mechanism(s) that regulate DNA damage repair within colon tumor cells is essential to developing effective therapeutic strategies. The Notch signaling pathway is known to participate in normal colon development and we have recently described a pathway by which Notch-1, Notch-3 and Smad may regulated EMT and stem-like properties in colon tumor cells, promoting tumorigenesis. Little is known about how Notch may regulate drug resistance. In this study, we used shRNA to generate colon tumor cells with loss of Notch-3 expression. These cells exhibited reduced expression of the base-excision repair proteins PARP1 and APE1, along with increased sensitivity to ara-c and cisplatin. These data point to a pathway in which Notch-3 signaling can regulate DNA repair within colon tumor cells and suggests that targeting Notch-3 may be an effective approach to rendering colon tumors sensitive to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Dennis C George
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fred E Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - George Sigounas
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
3
|
Ye L, Liu B, Huang J, Zhao X, Wang Y, Xu Y, Wang S. DCLK1 and its oncogenic functions: A promising therapeutic target for cancers. Life Sci 2024; 336:122294. [PMID: 38007147 DOI: 10.1016/j.lfs.2023.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and β-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Liu Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Anoushirvani AA, Jafarian Yazdi A, Amirabadi S, Asouri SA, Shafabakhsh R, Sheida A, Hosseini Khabr MS, Jafari A, Tamehri Zadeh SS, Hamblin MR, Kalantari L, Talaei Zavareh SA, Mirzaei H. Role of non-coding RNAs in neuroblastoma. Cancer Gene Ther 2023; 30:1190-1208. [PMID: 37217790 DOI: 10.1038/s41417-023-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/25/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Neuroblastoma is known as the most prevalent extracranial malignancy in childhood with a neural crest origin. It has been widely accepted that non-coding RNAs (ncRNAs) play important roles in many types of cancer, including glioma and gastrointestinal cancers. They may regulate the cancer gene network. According to recent sequencing and profiling studies, ncRNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation. Disturbances in the expression of ncRNAs may act either as oncogenes or as anti-tumor suppressor genes, and can lead to the induction of cancer hallmarks. ncRNAs can be secreted from tumor cells inside exosomes, where they can be transferred to other cells to affect their function. However, these topics still need more study to clarify their exact roles, so the present review addresses different roles and functions of ncRNAs in neuroblastoma.
Collapse
Affiliation(s)
- Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sanaz Amirabadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University, Kashan, Iran.
| |
Collapse
|
5
|
Kwiatkowski E, Suman S, Kallakury BVS, Datta K, Fornace AJ, Kumar S. Expression of Stem Cell Markers in High-LET Space Radiation-Induced Intestinal Tumors in Apc1638N/+ Mouse Intestine. Cancers (Basel) 2023; 15:4240. [PMID: 37686516 PMCID: PMC10486545 DOI: 10.3390/cancers15174240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Estimation of cancer risk among astronauts planning to undertake future deep-space missions requires understanding the quantitative and qualitative differences in radiogenic cancers after low- and high-LET radiation exposures. Previously, we reported a multifold higher RBE for high-LET radiation-induced gastrointestinal (GI) tumorigenesis in Apc1638N/+ mice. Using the same model system, i.e., Apc1638N/+ mice, here, we report qualitative differences in the cellular phenotype of low- and high-LET radiation-induced GI tumors. Stem cell (SC) phenotypes were identified using BMI1, ALDH1, CD133, DCLK1, MSI1, and LGR5 markers in low (γ-rays)- and high (56Fe)-LET radiation-induced and spontaneous tumors. We also assessed the expression of these markers in the adjacent normal mucosa. All six of these putative SC markers were shown to be overexpressed in tumors compared to the adjacent normal intestinal tissue. A differential SC phenotype for spontaneous and radiogenic intestinal tumors in Apc1638N/+ mice was observed, where the ALDH1, BMI1, CD133, MSI1, and DCLK1 expressing cells were increased, while LGR5 expressing cells were decreased in 56Fe-induced tumors compared to γ-ray-induced and spontaneous tumors. Furthermore, higher β-catenin activation (marked by nuclear localization) was observed in 56Fe-induced tumors compared to γ and spontaneous tumors. Since differential tumor cell phenotype along with activated β-catenin may very well affect malignant progression, our findings are relevant to understanding the higher carcinogenic risk of high-LET radiation. This study has implications for the assessment of GI-cancer risk among astronauts, as well as for the estimation of secondary cancer risk among patients receiving hadron therapy, considering that our results indicate increased stemness properties after radiation.
Collapse
Affiliation(s)
- Elaina Kwiatkowski
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Wei W, Zhang W, Wu S, Duan W, Wang Z. Advances in tuft cells, a chemosensory cell in sequential diseases of the pancreas. Biochim Biophys Acta Rev Cancer 2023; 1878:188911. [PMID: 37182665 DOI: 10.1016/j.bbcan.2023.188911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Tuft cells are solitary chemosensory cells distributed mainly in hollow organs and detected in human and mouse pancreas precursor lesions of pancreatic cancer. Induced by inflammation and KRAS mutation, pancreatic acinar cell-derived tuft cells play a protective role in epithelium injury. The tumour suppression of tuft cells has been indicated in some studies. However, the function of tuft cells in pancreatic cancer remains unclear. In this review, we first introduce the definition of tuft cells and then review the relationship between tuft cells and pancreatic inflammation. In addition, we emphasized the role of tuft cells in the genesis and development of pancreatic cancers, especially the part of markers for tuft cell's doublecortin-like kinase 1 (DCLK1). Finally, we turn to the microscopic perspective and review the interactions between tuft cells and the microbiome in the pancreatic microenvironment. Overall, we describe the role of tuft cells in response to tissue damage and tumour progression in the pancreas. Nevertheless, the specific formation principle and the more detailed mechanism of action of tuft cells in the pancreas remain to be further explored.
Collapse
Affiliation(s)
- Wanzhen Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Shuai Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
7
|
Du Y, Gao H, He C, Xin S, Wang B, Zhang S, Gong F, Yu X, Pan L, Sun F, Wang W, Xu J. An update on the biological characteristics and functions of tuft cells in the gut. Front Cell Dev Biol 2023; 10:1102978. [PMID: 36704202 PMCID: PMC9872863 DOI: 10.3389/fcell.2022.1102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The intestine is a powerful digestive system and one of the most sophisticated immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial cell with distinct morphological characteristics, play a significant role in various physiological processes. TCs can be broadly categorized into different subtypes depending on different molecular criteria. In this review, we discuss its biological properties and role in maintaining homeostasis in the gastrointestinal tract. We also emphasize its relevance to the immune system and highlight its powerful influence on intestinal diseases, including inflammations and tumors. In addition, we provide fresh insights into future clinical diagnostic and therapeutic strategies related to TCs.
Collapse
Affiliation(s)
- Yixuan Du
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fanglin Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,*Correspondence: Jingdong Xu,
| |
Collapse
|
8
|
Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability. PLoS Genet 2022; 18:e1010495. [DOI: 10.1371/journal.pgen.1010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.
Collapse
|
9
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
10
|
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022; 21:e13700. [PMID: 36000805 PMCID: PMC9470900 DOI: 10.1111/acel.13700] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age-associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age-associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age-associated alterations in microbiota composition and immune homeostasis.
Collapse
Affiliation(s)
- Leah S. Hohman
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lisa C. Osborne
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
11
|
Tavares dos Santos H, Nam K, Maslow FM, Small T, Galloway TL, Dooley LM, Tassone PT, Zitsch RP, Weisman GA, Baker OJ. Tuft Cells Are Present in Submandibular Glands Across Species. J Histochem Cytochem 2022; 70:659-667. [PMID: 35993302 PMCID: PMC9527474 DOI: 10.1369/00221554221120301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Tuft cells are bottle-shaped, microvilli-projecting chemosensory cells located in the lining of a variety of epithelial tissues and, following their identification approximately 60 years ago, have been linked to immune system function in a variety of epithelia. Until recently, Tuft cells had not been convincingly demonstrated to be present in salivary glands with their detection by transmission electron microscopy only shown in a handful of earlier studies using rat salivary glands, and no follow-up work has been conducted to verify their presence in salivary glands of other species. Here, we demonstrate that Tuft cells are present in the submandibular glands of various species (i.e., mouse, pig and human) using transmission electron microscopy and confocal immunofluorescent analysis for the POU class 2 homeobox 3 (POU2F3), which is considered to be a master regulator of Tuft cell identity.
Collapse
Affiliation(s)
- Harim Tavares dos Santos
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
- Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, Missouri
| | - Kihoon Nam
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
- Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, Missouri
| | - Frank M. Maslow
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
- Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, Missouri
| | - Travis Small
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
- Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, Missouri
| | - Tabitha L.I. Galloway
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
| | - Laura M. Dooley
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
| | - Patrick T. Tassone
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
| | - Robert P. Zitsch
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
| | - Gary A. Weisman
- Department of Biochemistry, University of
Missouri, Columbia, Missouri
- Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, Missouri
| | - Olga J. Baker
- Department of Otolaryngology-Head and Neck
Surgery, University of Missouri, Columbia, Missouri
- Department of Biochemistry, University of
Missouri, Columbia, Missouri
- Christopher S. Bond Life Sciences Center,
University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Orzechowska-Licari EJ, LaComb JF, Giarrizzo M, Yang VW, Bialkowska AB. Intestinal Epithelial Regeneration in Response to Ionizing Irradiation. J Vis Exp 2022:10.3791/64028. [PMID: 35969101 PMCID: PMC9631267 DOI: 10.3791/64028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The intestinal epithelium consists of a single layer of cells yet contains multiple types of terminally differentiated cells, which are generated by the active proliferation of intestinal stem cells located at the bottom of intestinal crypts. However, during events of acute intestinal injury, these active intestinal stem cells undergo cell death. Gamma irradiation is a widely used colorectal cancer treatment, which, while therapeutically efficacious, has the side effect of depleting the active stem cell pool. Indeed, patients frequently experience gastrointestinal radiation syndrome while undergoing radiotherapy, in part due to active stem cell depletion. The loss of active intestinal stem cells in intestinal crypts activates a pool of typically quiescent reserve intestinal stem cells and induces dedifferentiation of secretory and enterocyte precursor cells. If not for these cells, the intestinal epithelium would lack the ability to recover from radiotherapy and other such major tissue insults. New advances in lineage-tracing technologies allow tracking of the activation, differentiation, and migration of cells during regeneration and have been successfully employed for studying this in the gut. This study aims to depict a method for the analysis of cells within the mouse intestinal epithelium following radiation injury.
Collapse
Affiliation(s)
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University; Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook University
| | | |
Collapse
|
13
|
Irradiation Induces Tuft Cell Hyperplasia and Myenteric Neuronal Loss in the Absence of Dietary Fiber in a Mouse Model of Pelvic Radiotherapy. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pelvic radiotherapy is associated with chronic intestinal dysfunction. Dietary approaches, such as fiber enrichment during and after pelvic radiotherapy, have been suggested to prevent or reduce dysfunctions. In the present paper, we aimed to investigate whether a diet rich in fermentable fiber could have a positive effect on radiation-induced intestinal damage, especially focusing on tuft cells and enteric neurons. Male C57BL/6 mice were fed either a purified non-fiber diet or the same purified diet with 5% or 15% oat fiber added, starting two weeks prior to sham-irradiation or irradiation with four fractions of 8 Gray. The animals continued on the diets for 1, 6 or 18 weeks, after which the gross morphology of the colorectum was assessed together with the numbers of enteric neurons, tuft cells and crypt-surface units. The results showed that dietary fiber significantly affected the intestinal morphometrics, both in the short and long-term. The presence of dietary fiber stimulated the re-emergence of crypt-surface unit structures after irradiation. At 18 weeks, the animals fed with the non-fiber diet displayed more myenteric neurons than the animals fed with the dietary fibers, but irradiation resulted in a loss of neurons in the non-fiber fed animals. Irradiation, but not diet, affected the tuft cell numbers, and a significant increase in tuft cells was found 6 and 18 weeks after irradiation. In conclusion, dietary fiber intake has the potential to modify neuronal pathogenesis in the colorectum after irradiation. The long-lasting increase in tuft cells induced by irradiation may reflect an as yet unknown role in the mucosal pathophysiology after pelvic irradiation.
Collapse
|
14
|
Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proc Natl Acad Sci U S A 2021; 118:e2112814118. [PMID: 34732579 PMCID: PMC8609316 DOI: 10.1073/pnas.2112814118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intestinal epithelial damage is associated with most digestive diseases and results in detrimental effects on nutrient absorption and production of hormones and antimicrobial defense molecules. Thus, understanding epithelial repair and regeneration following damage is essential in developing therapeutics that assist in rapid healing and restoration of normal intestinal function. Here we used a well-characterized enteric virus (rotavirus) that damages the epithelium at the villus tip but does not directly damage the intestinal stem cell, to explore the regenerative transcriptional response of the intestinal epithelium at the single-cell level. We found that there are specific Lgr5+ cell subsets that exhibit increased cycling frequency associated with significant expansion of the epithelial crypt. This was accompanied by an increase in the number of immature enterocytes. Unexpectedly, we found rotavirus infects tuft cells. Transcriptional profiling indicates tuft cells respond to viral infection through interferon-related pathways. Together these data provide insights as to how the intestinal epithelium responds to insults by providing evidence of stimulation of a repair program driven by stem cells with involvement of tuft cells that results in the production of immature enterocytes that repair the damaged epithelium.
Collapse
Affiliation(s)
- Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Matthew Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
15
|
Vijai M, Baba M, Ramalingam S, Thiyagaraj A. DCLK1 and its interaction partners: An effective therapeutic target for colorectal cancer. Oncol Lett 2021; 22:850. [PMID: 34733368 PMCID: PMC8561619 DOI: 10.3892/ol.2021.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Doublecortin-like kinase protein 1 (DCLK1) is a microtubule-associated protein with a C-terminal serine/threonine kinase domain. Its expression was first reported in radial glial cells, where it serves an essential role in early neurogenesis, and since then, other functions of the DCLK1 protein have also been identified. Initially considered to be a marker of quiescent gastrointestinal and pancreatic stem cells, DCLK1 has recently been identified in the gastrointestinal tract as a marker of tuft cells. It has also been implicated in different types of cancer, where it regulates several vital pathways, such as Kras signaling. However, its underlying molecular mechanisms remain unclear. The present review discusses the different roles of DCLK1 and its interactions with other proteins that are homologically similar to DCLK1 to develop a novel therapeutic strategy to target cancer cells more accurately.
Collapse
Affiliation(s)
- Muthu Vijai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Mursaleen Baba
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
16
|
Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, Agrawal N, Ozerov IV, Zhavoronkov A, Rooper L, Kotlov N, Shen L, Pearson AT, Rosenberg AJ, Savage PA, Mishra V, Chatterjee A, Sidransky D, Izumchenko E. Doublecortin-Like Kinase 1 (DCLK1) Is a Novel NOTCH Pathway Signaling Regulator in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:677051. [PMID: 34336664 PMCID: PMC8323482 DOI: 10.3389/fonc.2021.677051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Despite recent advancements, the 5 year survival of head and neck squamous cell carcinoma (HNSCC) hovers at 60%. DCLK1 has been shown to regulate epithelial-to-mesenchymal transition as well as serving as a cancer stem cell marker in colon, pancreatic and renal cancer. Although it was reported that DCLK1 is associated with poor prognosis in oropharyngeal cancers, very little is known about the molecular characterization of DCLK1 in HNSCC. In this study, we performed a comprehensive transcriptome-based computational analysis on hundreds of HNSCC patients from TCGA and GEO databases, and found that DCLK1 expression positively correlates with NOTCH signaling pathway activation. Since NOTCH signaling has a recognized role in HNSCC tumorigenesis, we next performed a series of in vitro experiments in a collection of HNSCC cell lines to investigate the role of DCLK1 in NOTCH pathway regulation. Our analyses revealed that DCLK1 inhibition, using either a pharmacological inhibitor or siRNA, resulted in substantially decreased proliferation, invasion, migration, and colony formation. Furthermore, these effects paralleled downregulation of active NOTCH1, and its downstream effectors, HEY1, HES1 and HES5, whereas overexpression of DCLK1 in normal keratinocytes, lead to an upregulation of NOTCH signaling associated with increased proliferation. Analysis of 233 primary and 40 recurrent HNSCC cancer biopsies revealed that high DCLK1 expression was associated with poor prognosis and showed a trend towards higher active NOTCH1 expression in tumors with elevated DCLK1. Our results demonstrate the novel role of DCLK1 as a regulator of NOTCH signaling network and suggest its potential as a therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Esther C. Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Jonathan A. Trujillo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | | | | | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, United States
| | - Ivan V. Ozerov
- InSilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
| | | | - Lisa Rooper
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Nikita Kotlov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Le Shen
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Peter A. Savage
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Aditi Chatterjee
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Mohammadi C, Mahdavinezhad A, Saidijam M, Bahreini F, Sedighi Pashaki A, Gholami MH, Najafi R. DCLK1 Inhibition Sensitizes Colorectal Cancer Cells to Radiation Treatment. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:23-33. [PMID: 34268251 PMCID: PMC8256833 DOI: 10.22088/ijmcm.bums.10.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial-mesenchymal transition (EMT) related genes (vimentin, N-cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β-catenin signaling pathway (β-catenin) were evaluated. DCLK1 siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P <0.01). Colony formation assay showed a significantly reduced cell survival in the DCLK1 siRNA transfected group in comparison with the control group following exposure to 4 and 6 Gy doses of irradiation (P <0.01). Moreover, the expression of cancer stem cells markers (P <0.01), EMT related genes (P <0.01), and DNA repair proteins including pATM (P <0.01) and γH2AX (P <0.001) were significantly decreased in the transfected cells in comparison with the nontransfected group after radiation. Finally, the cell apoptosis rate (P <0.01) and the number of cells in the G0/G1 phase in the silencing DCLK1 group was increased (P <0.01). These findings suggest that DCLK1 can be considered a promising therapeutic target for the treatment of radioresistant human CRC.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fatemeh Bahreini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Tuft and Cancer Stem Cell Marker DCLK1: A New Target to Enhance Anti-Tumor Immunity in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12123801. [PMID: 33348546 PMCID: PMC7766931 DOI: 10.3390/cancers12123801] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Doublecortin-like kinase 1 (DCLK1) is a tumor stem cell marker in colon, pancreatic, and potentially other cancers that has received wide attention recently. Aside from its role as a tuft cell marker in normal tissue and as a tumor stem cell marker in cancer, previous studies have demonstrated that silencing DCLK1 functionally reduces stemness, epithelial mesenchymal transition (EMT), and tumorigenesis in cancers. More recently, DCLK1′s role in regulating the inflammatory, pre-cancer, and tumor microenvironment including its ability to modulate immune cell mechanisms has started to come into focus. Importantly, clinically viable therapeutic means of targeting DCLK1 have finally become available in the form of kinase inhibitors, monoclonal antibodies, and chimeric antigen receptor T cells (CAR-T). Herein, we comprehensively review the mechanistic role of DCLK1 in the tumor microenvironment, assess the potential for targeting DCLK1 in colon, pancreatic and renal cancer. Abstract Microtubule-associated doublecortin-like kinase 1 (DCLK1) is an accepted marker of tuft cells (TCs) and several kinds of cancer stem cells (CSCs), and emerging evidence suggests that DCLK1-positive TCs participate in the initiation and formation of inflammation-associated cancer. DCLK1-expressing CSCs regulate multiple biological processes in cancer, promote resistance to therapy, and are associated with metastasis. In solid tumor cancers, tumor epithelia, immune cells, cancer-associated fibroblasts, endothelial cells and blood vessels, extracellular matrix, and hypoxia all support a CSC phenotype characterized by drug resistance, recurrence, and metastasis. Recently, studies have shown that DCLK1-positive CSCs are associated with epithelial-mesenchymal transition, angiogenesis, and immune checkpoint. Emerging data concerning targeting DCLK1 with small molecular inhibitors, monoclonal antibodies, and chimeric antigen receptor T-cells shows promising effects on inhibiting tumor growth and regulating the tumor immune microenvironment. Overall, DCLK1 is reaching maturity as an anti-cancer target and therapies directed against it may have potential against CSCs directly, in remodeling the tumor microenvironment, and as immunotherapies.
Collapse
|
20
|
Lapiere A, Geiger M, Robert V, Demarquay C, Auger S, Chadi S, Benadjaoud M, Fernandes G, Milliat F, Langella P, Benderitter M, Chatel JM, Sémont A. Prophylactic Faecalibacterium prausnitzii treatment prevents the acute breakdown of colonic epithelial barrier in a preclinical model of pelvic radiation disease. Gut Microbes 2020; 12:1-15. [PMID: 32985332 PMCID: PMC7524396 DOI: 10.1080/19490976.2020.1812867] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Every year, millions of people around the world benefit from radiation therapy to treat cancers localized in the pelvic area. Damage to healthy tissue in the radiation field can cause undesirable toxic effects leading to gastrointestinal complications called pelvic radiation disease. A change in the composition and/or function of the microbiota could contribute to radiation-induced gastrointestinal toxicity. In this study, we tested the prophylactic effect of a new generation of probiotic like Faecalibacterium prausnitzii (F. prausnitzii) on acute radiation-induced colonic lesions. Experiments were carried out in a preclinical model of pelvic radiation disease. Rats were locally irradiated at 29 Gray in the colon resulting in colonic epithelial barrier rupture. Three days before the irradiation and up to 3 d after the irradiation, the F. prausnitzii A2-165 strain was administered daily (intragastrically) to test its putative protective effects. Results showed that prophylactic F. prausnitzii treatment limits radiation-induced para-cellular hyperpermeability, as well as the infiltration of neutrophils (MPO+ cells) in the colonic mucosa. Moreover, F. prausnitzii treatment reduced the severity of the morphological change of crypts, but also preserved the pool of Sox-9+ stem/progenitor cells, the proliferating epithelial PCNA+ crypt cells and the Dclk1+/IL-25+ differentiated epithelial tuft cells. The benefit of F. prausnitzii was associated with increased production of IL-18 by colonic crypt epithelial cells. Thus, F. prausnitzii treatment protected the epithelial colonic barrier from colorectal irradiation. New-generation probiotics may be promising prophylactic treatments to reduce acute side effects in patients treated with radiation therapy and may improve their quality of life.
Collapse
Affiliation(s)
- Alexia Lapiere
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (Lrmed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Mallia Geiger
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (Lrmed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Véronique Robert
- INRAE, AgroParisTech, Micalis Institute, Paris-Saclay University, Jouy-en-Josas, France
| | - Christelle Demarquay
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (Lrmed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Sandrine Auger
- INRAE, AgroParisTech, Micalis Institute, Paris-Saclay University, Jouy-en-Josas, France
| | - Sead Chadi
- INRAE, AgroParisTech, Micalis Institute, Paris-Saclay University, Jouy-en-Josas, France
| | - Mohamedamine Benadjaoud
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Gabriel Fernandes
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, MG, Brazil
| | - Fabien Milliat
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (Lrmed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Philippe Langella
- INRAE, AgroParisTech, Micalis Institute, Paris-Saclay University, Jouy-en-Josas, France
| | - Marc Benderitter
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Jean-Marc Chatel
- INRAE, AgroParisTech, Micalis Institute, Paris-Saclay University, Jouy-en-Josas, France
| | - Alexandra Sémont
- Department of RAdiobiology and Regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (Lrmed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France,CONTACT : Alexandra Sémont, Department of RAdiobiology and Regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (Lrmed), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses92260, France
| |
Collapse
|
21
|
Panneerselvam J, Mohandoss P, Patel R, Gillan H, Li M, Kumar K, Nguyen D, Weygant N, Qu D, Pitts K, Lightfoot S, Rao C, Houchen C, Bronze M, Chandrakesan P. DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-small Cell Lung Cancer via ABCD-Member-4. Mol Ther Oncolytics 2020; 18:24-36. [PMID: 32637578 PMCID: PMC7321820 DOI: 10.1016/j.omto.2020.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Chemoresistance cells have features similar to cancer stem cells. Elimination of these cells is an effective therapeutic strategy to clinically combat chemoresistance non-small cell lung cancer (NSCLC). Here, we demonstrate that Doublecortin-like kinase1 (DCLK1) is the key to developing chemoresistance and associated stemness in NSCLC. DCLK1 is highly expressed in human lung adenocarcinoma and strongly correlated with stemness. Silencing DCLK1 inhibits NSCLC cell primary and secondary spheroid formation, which is the prerequisite feature of tumor stem cells. DCLK1 inhibition reduced NSCLC cell migration/invasion in vitro and induced tumor growth inhibition in vivo. NSCLC cells responded differently to cisplatin treatment; indeed, the clonogenic ability of all NSCLC cells was reduced. We found that the cisplatin-resistant NSCLC cells gain the expression of DCLK1 compared with their parental control. However, DCLK1 inhibition in cisplatin-resistance NSCLC cells reverses the tumor cell resistance to cisplatin and reduced tumor self-renewal ability. Specifically, we found that DCLK1-mediated cisplatin resistance in NSCLC is via an ABC subfamily member 4 (ABCD4)-dependent mechanism. Our data demonstrate that increased expression of DCLK1 is associated with chemoresistance and enhanced cancer stem cell-like features in NSCLC. Targeting DCLK1 using gene knockdown/knockout strategies alone or in combination with cisplatin may represent a novel therapeutic strategy to treat NSCLC.
Collapse
Affiliation(s)
- Janani Panneerselvam
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Ravi Patel
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hamza Gillan
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Li
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kirtana Kumar
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - DangHuy Nguyen
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Weygant
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kamille Pitts
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stanley Lightfoot
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally Rao
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Courtney Houchen
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael Bronze
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Coakley G, Harris NL. The Intestinal Epithelium at the Forefront of Host-Helminth Interactions. Trends Parasitol 2020; 36:761-772. [PMID: 32713764 DOI: 10.1016/j.pt.2020.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal helminth infection still constitutes a major public health issue, particularly in the developing world. As these parasites can undergo a large part of their lifecycle within the intestinal tract the host has developed various structural and cellular specializations at the epithelial barrier to contend with infection. Detailed characterization of these cells will provide important insights about their contributions to the protective responses mediated against helminths. Here, we discuss how key components of the intestinal epithelium may function to limit the initial establishment of helminths, and how these cells are altered during an active response to infection.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria, Australia.
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Mouse intestinal tuft cells express advillin but not villin. Sci Rep 2020; 10:8877. [PMID: 32483224 PMCID: PMC7264147 DOI: 10.1038/s41598-020-65469-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/06/2020] [Indexed: 12/26/2022] Open
Abstract
Tuft (or brush) cells are solitary chemosensory cells scattered throughout the epithelia of the respiratory and alimentary tract. The actin-binding protein villin (Vil1) is used as a marker of tuft cells and the villin promoter is frequently used to drive expression of the Cre recombinase in tuft cells. While there is widespread agreement about the expression of villin in tuft cells there are several disagreements related to tuft cell lineage commitment and function. We now show that many of these inconsistencies could be resolved by our surprising finding that intestinal tuft cells, in fact, do not express villin protein. Furthermore, we show that a related actin-binding protein, advillin which shares 75% homology with villin, has a tuft cell restricted expression in the gastrointestinal epithelium. Our study identifies advillin as a marker of tuft cells and provides a mechanism for driving gene expression in tuft cells but not in other epithelial cells of the gastrointestinal tract. Our findings fundamentally change the way we identify and study intestinal tuft cells.
Collapse
|
24
|
Chandrakesan P, Panneerselvam J, May R, Weygant N, Qu D, Berry WR, Pitts K, Stanger BZ, Rao CV, Bronze MS, Houchen CW. DCLK1-Isoform2 Alternative Splice Variant Promotes Pancreatic Tumor Immunosuppressive M2-Macrophage Polarization. Mol Cancer Ther 2020; 19:1539-1549. [PMID: 32371580 DOI: 10.1158/1535-7163.mct-19-0776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Tumor-associated M2-macrophages are one of the most abundant immunosuppressive cell types in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME). However, the molecular mechanisms responsible for the generation of M2-macrophages are unclear. Here, we demonstrated that overexpression of DCLK1-isoform2 in AsPC1 and MIA PaCa2 cells resulted in the polarization of M1-macrophages toward an M2 phenotype via secreted chemokines/cytokines. These M2-macrophages enhanced parental PDAC cell migration, invasion, and self-renewal, and this was associated with increased expression of Snail and Slug. We observed distinct expression of Dclk-isoform2, marked infiltration of M2-macrophages, and a marginal increase of CD8+ T cells in 20-week-old KPCY mice pancreas compared with 5 weeks old. Utilizing an autochthonous mouse model of pancreatic adenocarcinoma, we observed distinct immunoreactive Dclk1 and arginase1 in tissues where CD8+ T-cell infiltration was low and observed a paucity of DCLK1 and arginase1 staining where CD8+ T-cell infiltration was high. Finally, we found that DCLK1-isoform2 tumor-educated M2-macrophages inhibit CD8+ T-cell proliferation and granzyme-B activation. Inhibition of DCLK1 in an organoid coculture system enhanced CD8+ T-cell activation and associated organoid death. We conclude that DCLK1-isoform2 is a novel initiator of alternate macrophage activation that contributes to the immunosuppression observed in the PDAC TME. These data suggest that tumor DCLK1-isoform2 may be an attractive target for PDAC therapy, either alone or in conjunction with immunotherapeutic strategies.
Collapse
Affiliation(s)
- Parthasarathy Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Janani Panneerselvam
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - William R Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kamille Pitts
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chinthalapally V Rao
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael S Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Courtney W Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
25
|
Ting HA, von Moltke J. The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. THE JOURNAL OF IMMUNOLOGY 2019; 202:1321-1329. [PMID: 30782851 DOI: 10.4049/jimmunol.1801069] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Tuft cells were first discovered in epithelial barriers decades ago, but their function remained unclear until recently. In the last 2 years, a series of studies has provided important advances that link tuft cells to infectious diseases and the host immune responses. Broadly, a model has emerged in which tuft cells use chemosensing to monitor their surroundings and translate environmental signals into effector functions that regulate immune responses in the underlying tissue. In this article, we review the current understanding of tuft cell immune function in the intestines, airways, and thymus. In particular, we discuss the role of tuft cells in type 2 immunity, norovirus infection, and thymocyte development. Despite recent advances, many fundamental questions about the function of tuft cells in immunity remain to be answered.
Collapse
Affiliation(s)
- Hung-An Ting
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| |
Collapse
|
26
|
Li L, Mei H, Commey ANA. Application of RNA-sequencing to identify transcriptome modification by DCLK1 in colorectal cancer cells. Cancer Gene Ther 2019; 27:691-701. [PMID: 31636360 PMCID: PMC7170768 DOI: 10.1038/s41417-019-0144-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/02/2022]
Abstract
Doublecortin like kinase 1 (DCLK1) is a cancer stem cell marker for the colorectal cancer (CRC). It plays critical roles in the oncogenesis, progression and metastasis of CRC. DCLK1 can be an intriguing therapeutic target for CRC treatment. However, the molecular mechanism of how DCLK1 functions is unclear currently. In our research, we aim to apply RNA-Sequencing (RNA Seq) technology, a high throughput massively Next Generation Sequencing approach, to monitor transcriptome changes due to DCLK1 over-expression in the CRC cells. In order to achieve our goal, RNA from quadruplicate samples from two clones of isogenic DCLK1 stable over-expression cells and the parental wild type HCT116 cells was sent for RNA Seq on the Illumina NextSeq500 platform. Differentially expressed (DE) genes were evaluated by t-test (P <0.05 and fold-change ±1.5 or greater) using two methods: (1) FWER; and (2) Benjamani and Hochberg FDR (false discovery rate) which corrects for multiple comparisons. Gene networks and functional analysis were evaluated using Ingenuity Pathways Analysis (IPA). We identified 1463 DE genes common for both DCLK1 overexpression clone A and clone B cells. IPA results indicated that 72 canonical pathways were significantly modified by DCLK1 over-expression (P<0.05), among which 9 out of the top 10 pathways are involved in the cell cycle regulation, indicating that DCLK1 might play its tumorigenesis role via activation of pathways facilitating cell proliferation, repression of pathways inhibiting cells proliferation and function against pathways facilitating cell apoptosis. Cell cycle analysis results confirmed the IPA findings, which demonstrated that DCLK1 over-expression cells had much less G0/G1 cells but much more S and G2/M cells (P<0.05). In conclusion, DCLK1 over-expression significantly modified transcriptome profile of CRC cancer cells. Control of the cell cycle regulation might be one of the critical mechanism for DCLK1 function. Our findings provide more direct evidence for the development of DCLK1 as a therapeutic target for CRC treatment, and will be of great benefit for the discovery of novel therapeutic target within the DCLK1 molecular network for the treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Lianna Li
- Biology Department, Tougaloo College, 500 West County Line Road, Tougaloo, MS, 39174, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | | |
Collapse
|
27
|
Yi J, Bergstrom K, Fu J, Shan X, McDaniel JM, McGee S, Qu D, Houchen CW, Liu X, Xia L. Dclk1 in tuft cells promotes inflammation-driven epithelial restitution and mitigates chronic colitis. Cell Death Differ 2019; 26:1656-1669. [PMID: 30478383 PMCID: PMC6748088 DOI: 10.1038/s41418-018-0237-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by defective intestinal barrier integrity toward the microbiota and epithelial damage. Double cortin-like kinase 1 (Dclk1), a marker of intestinal tuft cells, can regulate tissue regenerative responses, but its role in epithelial repair during bacterial-dependent chronic colitis is unclear. We addressed this question using our recently developed mouse model of spontaneous microbiota-dependent colitis induced by mucin-type O-glycan deficiency (DKO), which recapitulates most features of human UC. We generated DKO mice lacking intestinal epithelial Dclk1 (DKO;Dclk1ΔIEC) and analyzed colitis onset and severity using clinical and histologic indices, immune responses by qPCR and immunostaining, and epithelial responses using proliferation markers and organoid culture. We found 3-4-week-old DKO;Dclk1ΔIEC mice developed worsened spontaneous colitis characterized by reduced body weight, loose stool, severe colon thickening, epithelial lesions, and inflammatory cell infiltrates compared with DKO mice. The primary defect was an impaired epithelial proliferative response during inflammation. Dclk1 deficiency also reduced inflammation-induced proliferation and growth of colon organoids ex vivo. Mechanistically, Dclk1 expression was important for inflammation-induced Cox2 expression and prostaglandin E2 (PGE2) production in vivo, and PGE2 rescued proliferative defects in Dclk1-deficient colonic organoids. Although tuft cells were expanded in both DKO and DKO;Dclk1ΔIEC relative to WT mice, loss of Dclk1 was associated with reduced tuft cell activation (i.e., proliferation) during inflammation. Similar results were found in DKO vs. DKO;Dclk1ΔIEC mice at 3-6 months of age. Our results support that tuft cells, via Dclk1, are important responders to bacterial-induced colitis by enhancing epithelial repair responses, which in turn limits bacterial infiltration into the mucosa.
Collapse
Affiliation(s)
- Jun Yi
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kirk Bergstrom
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Dongfeng Qu
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Courtney W Houchen
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
28
|
Mohammadi C, Najafi R. DCLK1 as a Promising Marker for Radioresistance in Colorectal Cancer. J Gastrointest Cancer 2019; 51:714-715. [PMID: 31422542 DOI: 10.1007/s12029-019-00292-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
29
|
Nevo S, Kadouri N, Abramson J. Tuft cells: From the mucosa to the thymus. Immunol Lett 2019; 210:1-9. [PMID: 30904566 DOI: 10.1016/j.imlet.2019.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
Tuft cells are epithelial chemosensory cells with unique morphological and molecular characteristics, the most noticeable of which is a tuft of long and thick microvilli on their apical side, as well as expression of a very distinct set of genes, including genes encoding various members of the taste transduction machinery and pro-inflammatory cyclooxygenases. Initially discovered in rat trachea, tuft cells were gradually identified in various mucosal tissues, and later also in non-mucosal tissues, most recent of which is the thymus. Although tuft cells were discovered more than 60 years ago, their functions in the various tissues remained a mystery until recent years. Today, tuft cells are thought to function as sensors of various types of chemical signals, to which they respond by secretion of diverse biological mediators such as IL25 or acetylcholine. Intestinal tuft cells were also shown to mediate type 2 immunity against parasites. Here, we review the current knowledge on tuft cell characteristics, development and heterogeneity, discuss their potential functions and explore the possible implications and significance of their discovery in the thymus.
Collapse
Affiliation(s)
- Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
30
|
Lu Y, Maruyama J, Kuwata K, Fukuda H, Iwasa H, Arimoto-Matsuzaki K, Sugimura H, Hata Y. Doublecortin-like kinase 1 compromises DNA repair and induces chromosomal instability. Biochem Biophys Rep 2018; 16:130-137. [PMID: 30417131 PMCID: PMC6216093 DOI: 10.1016/j.bbrep.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a serine/threonine-kinase with two doublecortin (DCX) domains. DCLK1 is associated with microtubules via DCX domains and regulates microtubule polymerization. DCLK1 is known to be expressed in cancer stem cells and provides cancer cells with tumor-initiating capacity. Accumulating clinical evidence supports that DCLK1 is associated with tumor aggressiveness and is an important prognostic marker in various human cancers. However, the mechanism, by which DCLK1 causes oncogenesis, is not yet elucidated. In this study, we showed that DCLK1 empowers human mammary epithelial MCF10A cells to form spheres under floating condition in serum-free medium, which are reminiscent of mammospheres formed by mammary epithelial stem cells. We demonstrated that DCLK1 causes chromatin instability in MCF10A cells. DCLK1 impairs DNA repairs in human colon cancer HCT116 and lung cancer H1299 cells. The kinase-negative DCLK1 mutant and the mutant that is not associated with microtubules compromise DNA repair. In conclusion, DCLK1 interferes with DNA repair and induces tumorigenesis through genomic instability and this function is independent of the kinase activity and the regulation of microtubules. Doublecortin-like kinase 1 (DCLK1) confers stemness to cancer cells. Mammary epithelial cells expressing DCLK1 form spheres under floating condition. DCLK1 causes robust chromosomal abnormalities in mammary epithelial cells. DCLK1 impairs DNA repair in cancer cells. The kinase-negative DCLK1 shows similar effects.
Collapse
Affiliation(s)
- Yuxiong Lu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Fukuda
- Agilent Technologies Research Alliance Laboratory, Graduate School of Science, Osaka University, Osaka 565-0871, Japan.,Agilent Technologies Japan, Ltd., Hachioji-shi, Tokyo 192-8510, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3152, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
31
|
Takiyama A, Tanaka T, Kazama S, Nagata H, Kawai K, Hata K, Otani K, Nishikawa T, Sasaki K, Kaneko M, Emoto S, Murono K, Takiyama H, Nozawa H. DCLK1 Expression in Colorectal Polyps Increases with the Severity of Dysplasia. ACTA ACUST UNITED AC 2018; 32:365-371. [PMID: 29475922 DOI: 10.21873/invivo.11247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The expression of doublecortin-like kinase 1 (DCLK1) has been investigated in cancer; however not in precancerous adenomatous polyps. MATERIALS AND METHODS Immunohistological expression of DCLK1 was evaluated in various grades of adenomas, cancerous polyps, and hyperplastic polyps in resected human tissue specimens. RESULTS Ninety-two specimens were positive for DCLK1 and 134 were negative. Cancerous polyps showed a high DCLK1 positivity rate compared to adenomas (68.4% vs. 36.8%; p<0.01). The rate of DCLK1 positivity was not significantly different among the three grades of adenomas (mild, moderate, and severe). DCLK1 was highly positive in advanced adenomas than low risk adenomas (49.6% vs. 29.3%; p<0.01). CONCLUSION The expression of DCLK1 was found in low-grade adenomas and increased with worsening severity of dysplasia. DCLK1 expression was highly observed in advanced adenomas, which had a clinically higher malignant potential.
Collapse
Affiliation(s)
- Aki Takiyama
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Tanaka
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Kazama
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - Hiroshi Nagata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kensuke Otani
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nishikawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Manabu Kaneko
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS. Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 2018; 128:1711-1719. [PMID: 29714721 DOI: 10.1172/jci120330] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intestinal tuft cells are a morphologically unique cell type, best characterized by striking microvilli that form an apical tuft. These cells represent approximately 0.5% of gut epithelial cells depending on location. While they are known to express chemosensory receptors, their function has remained unclear. Recently, numerous groups have revealed startling insights into intestinal tuft cell biology. Here, we review the latest developments in understanding this peculiar cell type's structure and function. Recent advances in volumetric microscopy have begun to elucidate tuft cell ultrastructure with respect to its cellular neighbors. Moreover, single-cell approaches have revealed greater diversity in the tuft cell population than previously appreciated and uncovered novel markers to characterize this heterogeneity. Finally, advanced model systems have revealed tuft cells' roles in mucosal healing and orchestrating type 2 immunity against eukaryotic infection. While much remains unknown about intestinal tuft cells, these critical advances have illuminated the physiological importance of these previously understudied cells and provided experimentally tractable tools to interrogate this rare cell population. Tuft cells act as luminal sensors, linking the luminal microbiome to the host immune system, which may make them a potent clinical target for modulating host response to a variety of acute or chronic immune-driven conditions.
Collapse
Affiliation(s)
- Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Kim CK, Yang VW, Bialkowska AB. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. CURRENT STEM CELL REPORTS 2017; 3:320-332. [PMID: 29497599 PMCID: PMC5818549 DOI: 10.1007/s40778-017-0103-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Intestinal epithelial cells show remarkable plasticity in regenerating the epithelium following radiation injury. In this review, we explore the regenerative capacity and mechanisms of various populations of intestinal stem cells (ISCs) in response to ionizing radiation. Recent Findings Ionizing radiation targets mitotic cells that include “active” ISCs and progenitor cells. Lineage-tracing experiments showed that several different cell types identified by a single or combination of markers are capable of regenerating the epithelium, confirming that ISCs exhibit a high degree of plasticity. However, the identities of the contributing cells marked by various markers require further validation. Summary Following radiation injury, quiescent and/or radioresistant cells become active stem cells to regenerate the epithelium. Looking forward, understanding the mechanisms by which ISCs govern tissue regeneration is crucial to determine therapeutic approaches to promote intestinal epithelial regeneration following injury.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| | - Vincent W Yang
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA.,2Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794 USA
| | - Agnieszka B Bialkowska
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| |
Collapse
|
34
|
McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MJ, Roland JT, Santamaria-Pang A, Ohland CL, Jobin C, Franklin JL, Lau KS, Gerdes MJ, Coffey RJ. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight 2017; 2:93487. [PMID: 28570279 DOI: 10.1172/jci.insight.93487] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Intestinal tuft cells are a rare, poorly understood cell type recently shown to be a critical mediator of type 2 immune response to helminth infection. Here, we present advances in segmentation algorithms and analytical tools for multiplex immunofluorescence (MxIF), a platform that enables iterative staining of over 60 antibodies on a single tissue section. These refinements have enabled a comprehensive analysis of tuft cell number, distribution, and protein expression profiles as a function of anatomical location and physiological perturbations. Based solely on DCLK1 immunoreactivity, tuft cell numbers were similar throughout the mouse small intestine and colon. However, multiple subsets of tuft cells were uncovered when protein coexpression signatures were examined, including two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068. Furthermore, we identified dynamic changes in tuft cell number, composition, and protein expression associated with fasting and refeeding and after introduction of microbiota to germ-free mice. These studies provide a foundational framework for future studies of intestinal tuft cell regulation and demonstrate the utility of our improved MxIF computational methods and workflow for understanding cellular heterogeneity in complex tissues in normal and disease states.
Collapse
Affiliation(s)
- Eliot T McKinley
- Epithelial Biology Center and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yunxia Sui
- General Electric Global Research Center, Niskayuna, New York, USA
| | - Yousef Al-Kofahi
- General Electric Global Research Center, Niskayuna, New York, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology.,Cell Imaging Shared Resource, and
| | - Matthew J Tyska
- Epithelial Biology Center and.,Department of Cell and Developmental Biology
| | - Joseph T Roland
- Epithelial Biology Center and.,Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Christian Jobin
- Department of Medicine.,Department of Infectious Diseases and Pathology, and.,Department of Anatomy and Cell Physiology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey L Franklin
- Epithelial Biology Center and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology.,Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Ken S Lau
- Epithelial Biology Center and.,Department of Cell and Developmental Biology
| | - Michael J Gerdes
- General Electric Global Research Center, Niskayuna, New York, USA
| | - Robert J Coffey
- Epithelial Biology Center and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology.,Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|