1
|
Basilotta R, Casili G, Mannino D, Filippone A, Lanza M, Capra AP, Giosa D, Forte S, Colarossi L, Sciacca D, Esposito E, Paterniti I. Benzyl isothiocyanate suppresses development of thyroid carcinoma by regulating both autophagy and apoptosis pathway. iScience 2024; 27:110796. [PMID: 39398237 PMCID: PMC11471196 DOI: 10.1016/j.isci.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer, characterized by rapid growth and invasion and poor prognosis. Due to its rarity and aggressive nature, ATC is a difficult condition to treat, thus knowledge of the mechanisms underlying its progression represents important research challenges. Benzyl isothiocyanate (BITC) is a natural compound that has shown promising anticancer properties. The aim of this study was to evaluate the antitumor effect of BITC in ATC, highlighting signaling pathways involved in BITC mechanism of action. This work included in vitro and in vivo studies. Results obtained indicate that BITC, both in vitro and in vivo, has the potential to slow the progression of ATC through interactions with autophagy, reduction in epithelial-mesenchymal transition (EMT) and attenuation of inflammation. In conclusion, this study identifies BITC as a compound worth further investigation for the development of new treatment strategies for this aggressive form of thyroid cancer.
Collapse
Affiliation(s)
- Rossella Basilotta
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Casili
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Deborah Mannino
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessia Filippone
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Lanza
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D' Alcontres 31, 98166 Messina, ME, Italy
| | - Domenico Giosa
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Dorotea Sciacca
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Emanuela Esposito
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Irene Paterniti
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Shoaib S, Khan FB, Alsharif MA, Malik MS, Ahmed SA, Jamous YF, Uddin S, Tan CS, Ardianto C, Tufail S, Ming LC, Yusuf N, Islam N. Reviewing the Prospective Pharmacological Potential of Isothiocyanates in Fight against Female-Specific Cancers. Cancers (Basel) 2023; 15:cancers15082390. [PMID: 37190316 DOI: 10.3390/cancers15082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences, Assiut University, Assiut 71515, Egypt
| | - Yahya F Jamous
- Vaccines and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Saba Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Vrca I, Ramić D, Fredotović Ž, Smole Možina S, Blažević I, Bilušić T. Chemical Composition and Biological Activity of Essential Oil and Extract from the Seeds of Tropaeolum majus L. var. altum. Food Technol Biotechnol 2022; 60:533-542. [PMID: 36816870 PMCID: PMC9901342 DOI: 10.17113/ftb.60.04.22.7667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022] Open
Abstract
Research background Plant Tropaeolum majus L. (garden nasturtium) belongs to the family Tropaeolaceae and contains benzyl glucosinolate. The breakdown product of benzyl glucosinolate, benzyl isothiocyanate (BITC), exhibits various biological activities such as antiproliferative, antibacterial and antiinflammatory. In order to optimize the content of biologically active volatile compounds in plant extract and essential oil, the use of appropriate extraction technique has a crucial role. Experimental approach The current study investigates the effect of two modern extraction methods, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG), on the chemical composition of volatile components present in the essential oil and extract of garden nasturtium (T. majus L. var. altum) seeds. Investigation of the biological activity of samples (essential oil, extract and pure compounds) was focused on the antiproliferative effect against different cancer cell lines: cervical cancer cell line (HeLa), human colon cancer cell line (HCT116) and human osteosarcoma cell line (U2OS), and the antibacterial activity which was evaluated against the growth and adhesion of Staphylococcus aureus and Escherichia coli to polystyrene surface. Results and conclusions Essential oil and extract of garden nasturtium (T. majus) seeds were isolated by two extraction techniques: MAD and MHG. BITC and benzyl cyanide (BCN) present in the extract were identified by gas chromatography-mass spectrometry. Essential oil of T. majus showed higher antiproliferative activity (IC50<5 µg/mL) than T. majus extract (IC50<27 µg/mL) against three cancer cell lines: HeLa, HCT116 and U2OS. BITC showed much higher inhibitory effect on all tested cells than BCN. The essential oil and extract of T. majus showed strong antimicrobial activity against S. aureus and E. coli. Novelty and scientific contribution This work represents the first comparative report on the antiproliferative activity of the essential oil and extract of T. majus seeds, BITC and BCN against HeLa, HCT116 and U2OS cells as well as their antimicrobial activity against S. aureus and E. coli. This study demonstrates that the essential oil of T. majus seeds exhibits stronger antiproliferative and antimicrobial activity than the plant extract.
Collapse
Affiliation(s)
- Ivana Vrca
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Dina Ramić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Tea Bilušić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
4
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:cancers14225482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Correspondence: ; Tel.: +1-325-696-0464; Fax: +1-325-676-3875
| |
Collapse
|
5
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021; 9:775507. [PMID: 34869377 PMCID: PMC8638743 DOI: 10.3389/fcell.2021.775507] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 is activated upon multiple cellular stresses, including DNA damage, oncogene activation, ribosomal stress, and hypoxia, to induce cell cycle arrest, apoptosis, and senescence. Mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, serves as a central regulator of cell growth, proliferation, and survival by coordinating nutrients, energy, growth factors, and oxygen levels. p53 dysfunction and mTOR pathway hyperactivation are hallmarks of human cancer. The balance between response to stresses or commitment to cell proliferation and survival is governed by various regulatory loops between the p53 and mTOR pathways. In this review, we first briefly introduce the tumor suppressor p53 and then describe the upstream regulators and downstream effectors of the mTOR pathway. Next, we discuss the role of p53 in regulating the mTOR pathway through its transcriptional and non-transcriptional effects. We further describe the complicated role of the mTOR pathway in modulating p53 activity. Finally, we discuss the current knowledge and future perspectives on the coordinated regulation of the p53 and mTOR pathways.
Collapse
Affiliation(s)
- Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ruirui Qu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Ban F, Hu L, Zhou X, Zhao Y, Mo H, Li H, Zhou W. Inverse molecular docking reveals a novel function of thymol: Inhibition of fat deposition induced by high-dose glucose in Caenorhabditis elegans. Food Sci Nutr 2021; 9:4243-4253. [PMID: 34401075 PMCID: PMC8358335 DOI: 10.1002/fsn3.2392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
As a natural product isolated from thyme oil in thyme, thymol (2-isopropyl-5-methylphenol) harbors antiviral, antioxidant, and other properties, and thus could be potentially used for the treatment of various diseases. However, the function of thymol has not been comprehensively studied. Here, we applied an inverse molecular docking approach to identify unappreciated functions of thymol. Potential targets of thymol in humans were identified by the server of DRAR-CPI, and targets of interest were then assessed by GO and KEGG pathway analysis. Subsequently, homologous proteins of these targets in Caenorhabditis elegans were identified by Blast tool, and their three-dimensional structures were achieved using Swiss-Model workspace. Interaction between thymol and the targeted proteins in worms was verified using AutoDock 4.0. Analyses of the targets revealed that thymol could be potentially involved in the glycolysis/gluconeogenesis and fatty acid degradation pathways. To verify the activity of thymol on lipid deposition in vivo, the C. elegans model was established. The lipid content of nematodes induced by high-dose glucose was determined by Oil Red O and Nile Red staining, and gene expression was assessed by qRT-PCR. The results showed that thymol might lead to the acceleration of β-oxidation by upregulating cpt-1, aco, fabp, and tph-1, causing the descent of lipid content in nematodes. Our findings indicated that thymol could be potentially used for the treatment of chronic metabolic diseases associated with increased fatty acid deposition.
Collapse
Affiliation(s)
- Fangfang Ban
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Liangbin Hu
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Department of Food and BioengineeringShaanxi University of Science & TechnologyShaanxiChina
| | - Xiao‐Hui Zhou
- Department of Pathobiology & Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yanyan Zhao
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| | - Haizhen Mo
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Department of Food and BioengineeringShaanxi University of Science & TechnologyShaanxiChina
| | - Hongbo Li
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
- Department of Food and BioengineeringShaanxi University of Science & TechnologyShaanxiChina
| | - Wei Zhou
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangChina
| |
Collapse
|
8
|
Gandhi N, Oturkar CC, Das GM. Estrogen Receptor-Alpha and p53 Status as Regulators of AMPK and mTOR in Luminal Breast Cancer. Cancers (Basel) 2021; 13:3612. [PMID: 34298826 PMCID: PMC8306694 DOI: 10.3390/cancers13143612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Luminal breast cancer (LBC) driven by dysregulated estrogen receptor-alpha (ERα) signaling accounts for 70% of the breast cancer cases diagnosed. Although endocrine therapy (ET) is effective against LBC, about one-third of these patients fail to respond to therapy owing to acquired or inherent resistance mechanisms. Aberrant signaling via ERα, oncogenes, growth factor receptors, and mutations in tumor suppressors such as p53 impinge on downstream regulators such as AMPK and mTOR. While both AMPK and mTOR have been reported to play important roles in determining sensitivity of LBC to ET, how the ERα-p53 crosstalk impinges on regulation of AMPK and mTOR, thereby influencing therapeutic efficacy remains unknown. Here, we have addressed this important issue using isogenic breast cancer cell lines, siRNA-mediated RNA knockdown, and different modes of drug treatments. Interaction of p53 with ERα and AMPK was determined by in situ proximity ligation assay (PLA), and endogenous gene transcripts were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Further, the effect of concurrent and sequential administration of Fulvestrant-Everolimus combination on colony formation was determined. The studies showed that in cells expressing wild type p53, as well as in cells devoid of p53, ERα represses AMPK, whereas in cells harboring mutant p53, repression of AMPK is sustained even in the absence of ERα. AMPK is a major negative regulator of mTOR, and to our knowledge, this is the first study on the contribution of AMPK-dependent regulation of mTOR by ERα. Furthermore, the studies revealed that independent of the p53 mutation status, combination of Fulvestrant and Everolimus may be a viable first line therapeutic strategy for potentially delaying resistance of ERα+/HER2- LBC to ET.
Collapse
Affiliation(s)
| | | | - Gokul M. Das
- Center for Genetics & Pharmacology, Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.G.); (C.C.O.)
| |
Collapse
|
9
|
Xie B, Li L, Zhang Z, Zhao L, Cheng J, Zhou C, Cheng J, Yan J, Chen J, Yi J, Wang B, Jin S, Wei H. MicroRNA-1246 by Targeting AXIN2 and GSK-3β Overcomes Drug Resistance and Induces Apoptosis in Chemo-resistant Leukemia Cells. J Cancer 2021; 12:4196-4208. [PMID: 34093820 PMCID: PMC8176421 DOI: 10.7150/jca.58522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background and objective: Chemotherapy plays an important role in the treatment of leukemia. Multidrug resistance (MDR) induced by chemotherapy always leads to treatment failure and disease recurrence. MicroRNAs (miRNAs) have been verified as crucial components in carcinogenesis, including chemo-resistance of tumor cells, which has not been fully understood. In this study, we aimed to identify the potential candidate miRNA, miR-1246, and reveal its regulatory role in chemo-resistance of leukemia cells. Methods: Candidate miRNAs were selected by microarray analysis, screened by bioinformatics tools and verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Chemo-resistant phenotypes, including cell viability, apoptosis, adriamycin (ADM) efflux and in vivo oncogenicity of leukemia cells following transfected with miR-1246 mimics or inhibitor were checked with or without ADM treatment to make clear the relationship between miR-1246 and chemo-resistance. RT-qPCR, western blot and dual luciferase reporter assay were performed to measure the expression of related genes and address the potential regulatory mechanism of miR-1246 in chemo-resistance. Results: The expression of miR-1246 was significantly higher in chemo-resistant leukemia K562/ADM cells, HL-60/RS cells and recurrent primary leukemia cells. Loss of miR-1246 inhibited proliferation, induced apoptosis, altered cell cycle distribution, inhibited ADM efflux in chemo-resistant leukemia cells, while overexpression of miR-1246 showed the opposite role in chemo-sensitive leukemia cells. Both bioinformatics prediction and luciferase assay indicated that AXIN2 and glycogen synthase kinase 3 beta (GSK-3β) were the direct targets of miR-1246 in leukemia cells. Inhibition of miR-1246 could up-regulate AXIN2 and GSK-3β and inactivate Wnt/β-catenin pathway, accompanied with inhibiting the expression of β-catenin and further influencing the expression of P-glycoprotein (P-gp) in the chemo-resistant leukemia cells. Conclusions: Chemo-resistant ability of MDR leukemia cells is attenuated by loss of miR-1246 via negatively regulating AXIN2 and GSK-3β to inactivate Wnt/β-catenin pathway and suppress P-gp expression, these mean that targeting miR-1246-AXIN2/GSK-3β-Wnt/β-catenin axis may be beneficial to overcome the chemo-resistance in relapse and refractory leukemia patients.
Collapse
Affiliation(s)
- Bei Xie
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Linjing Li
- The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Zhewen Zhang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Lei Zhao
- Shaanxi Meili Omni‑Honesty Animal Health Co., Ltd., Xi'an, Shaanxi, 710000
| | - Juan Cheng
- The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Cunmin Zhou
- The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Jie Cheng
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Jing Yan
- The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Jing Chen
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Juan Yi
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Bei Wang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Suya Jin
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Hulai Wei
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| |
Collapse
|
10
|
Anticancer activities of dietary benzyl isothiocyanate: A comprehensive review. Pharmacol Res 2021; 169:105666. [PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
Collapse
|
11
|
p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol Res 2020; 162:105245. [PMID: 33069756 DOI: 10.1016/j.phrs.2020.105245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.
Collapse
|
12
|
López-Cortés A, Paz-Y-Miño C, Guerrero S, Cabrera-Andrade A, Barigye SJ, Munteanu CR, González-Díaz H, Pazos A, Pérez-Castillo Y, Tejera E. OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine. Sci Rep 2020; 10:5285. [PMID: 32210335 PMCID: PMC7093549 DOI: 10.1038/s41598-020-62279-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined. To fill this gap, we established an OncoOmics strategy that consists of analyzing genomic alterations, signaling pathways, protein-protein interactome network, protein expression, dependency maps in cell lines and patient-derived xenografts in 230 previously prioritized genes to reveal essential genes in breast cancer. As results, the OncoOmics BC essential genes were rationally filtered to 140. mRNA up-regulation was the most prevalent genomic alteration. The most altered signaling pathways were associated with basal-like and Her2-enriched molecular subtypes. RAC1, AKT1, CCND1, PIK3CA, ERBB2, CDH1, MAPK14, TP53, MAPK1, SRC, RAC3, BCL2, CTNNB1, EGFR, CDK2, GRB2, MED1 and GATA3 were essential genes in at least three OncoOmics approaches. Drugs with the highest amount of clinical trials in phases 3 and 4 were paclitaxel, docetaxel, trastuzumab, tamoxifen and doxorubicin. Lastly, we collected ~3,500 somatic and germline oncogenic variants associated with 50 essential genes, which in turn had therapeutic connectivity with 73 drugs. In conclusion, the OncoOmics strategy reveals essential genes capable of accelerating the development of targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador.
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain.
- Red Latinoamericana de Implementación y Validación de Guías Clínicas Farmacogenómicas (RELIVAF-CYTED), Quito, Ecuador.
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador
| | - Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito, 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Stephen J Barigye
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruna, 15006, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n, A Coruna, 15071, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, Leioa, 48940, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Biscay, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruna, 15071, Spain
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruna, 15006, Spain
- Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n, A Coruna, 15071, Spain
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de Las Américas, Avenue de los Granados, Quito, 170125, Ecuador.
| |
Collapse
|
13
|
Yu TT, Chang MY, Hsieh YJ, Chang CJ. Suppression of multiple processes relevant to cancer progression by benzyl isothiocyanate may result from the inhibition of Aurora A kinase activity. Food Funct 2020; 11:9010-9019. [DOI: 10.1039/d0fo01565b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anti-cancer properties of BITC may result from the inhibition of Aurora A kinase activity.
Collapse
Affiliation(s)
- Tzu-Tung Yu
- Department of Molecular biology and Human genetics
- Tzu Chi University
- Hualien
- Taiwan
| | - Meng-Ya Chang
- Institute of Medical Science
- Tzu Chi University
- Hualien
- Taiwan
| | - Yi-Jen Hsieh
- Division of Nephrology
- Buddhist Tzu Chi General Hospital
- Hualien
- Taiwan
| | - Chih-Jui Chang
- Department of Molecular biology and Human genetics
- Tzu Chi University
- Hualien
- Taiwan
| |
Collapse
|
14
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
15
|
Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers (Basel) 2019; 11:cancers11101563. [PMID: 31618928 PMCID: PMC6826729 DOI: 10.3390/cancers11101563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Each cell in our body is designed with a self-destructive trigger, and if damaged, can happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called “programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review discusses various bioactive compounds with known anticancer potential, underlying mechanisms by which they induce cell death and their preclinical/clinical development. Most bioactive compounds can concurrently target multiple signaling pathways that are important for cancer cell survival while sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and metastatic progression.
Collapse
|
16
|
Role of Phytochemicals in Cancer Prevention. Int J Mol Sci 2019; 20:ijms20204981. [PMID: 31600949 PMCID: PMC6834187 DOI: 10.3390/ijms20204981] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
The use of synthetic, natural, or biological agents to minimize the occurrence of cancer in healthy individuals is defined as cancer chemoprevention. Chemopreventive agents inhibit the development of cancer either by impeding DNA damage, which leads to malignancy or by reversing or blocking the division of premalignant cells with DNA damage. The benefit of this approach has been demonstrated in clinical trials of breast, prostate, and colon cancer. The continuous increase in cancer cases, failure of conventional chemotherapies to control cancer, and excessive toxicity of chemotherapies clearly demand an alternative approach. The first trial to show benefit of chemoprevention was undertaken in breast cancer patients with the use of tamoxifen, which demonstrated a significant decrease in invasive breast cancer. The success of using chemopreventive agents for protecting the high risk populations from cancer indicates that the strategy is rational and promising. Dietary components such as capsaicin, cucurbitacin B, isoflavones, catechins, lycopenes, benzyl isothiocyanate, phenethyl isothiocyanate, and piperlongumine have demonstrated inhibitory effects on cancer cells indicating that they may serve as chemopreventive agents. In this review, we have addressed the mechanism of chemopreventive and anticancer effects of several natural agents.
Collapse
|
17
|
Xie B, Zhao L, Guo L, Liu H, Fu S, Fan W, Lin L, Chen J, Wang B, Fan L, Wei H. Benzyl isothiocyanate suppresses development and metastasis of murine mammary carcinoma by regulating the Wnt/β‑catenin pathway. Mol Med Rep 2019; 20:1808-1818. [PMID: 31257529 PMCID: PMC6625404 DOI: 10.3892/mmr.2019.10390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Benzyl isothiocyanate (BITC) has been reported to exhibit antitumor properties in various cancer types; however, the underlying mechanisms of its action remain unclear. In the present study, the efficacy of BITC on murine mammary carcinoma cells was evaluated in vitro and in vivo, revealing a potential mechanism for its action. In vivo bioluminescence imaging indicated dynamic inhibition of murine mammary carcinoma cell growth and metastasis by BITC. A terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated that BITC also induced apoptosis. BITC further exhibited antitumorigenic activity in 4T1-Luc cells in vitro via the inhibition of cell proliferation, induction of apoptosis and cell cycle arrest, and inhibition of cell migration and invasion. Furthermore, the activity of key molecules of the adenomatous polyposis coli (APC)/β-catenin complex was altered following treatment with BITC, which suggested a potential role for the APC/β-catenin complex in the BITC-mediated induction of apoptosis and inhibition of metastasis in murine mammary carcinoma. BITC upregulated the activity of glycogen synthase kinase-3β and APC proteins, whereas it downregulated β-catenin expression. The inhibition of metastasis was accompanied with the downregulation of vimentin and upregulation of E-cadherin. Conversely, BITC did not exhibit toxicity or side effects in the normal mammary epithelial cell line MCF-10A. The present study indicated that BITC exhibited anticancer properties due to the induction of breast cancer cell apoptosis and inhibition of breast cancer cell metastasis mediated by the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lei Zhao
- Shaanxi Meili Omni‑Honesty Animal Health Co., Ltd., Xi'an, Shaanxi 710000, P.R. China
| | - Lanlan Guo
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hang Liu
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Siyu Fu
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenjuan Fan
- Students of Clinical Medicine, School of Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Linlan Fan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
18
|
Soundararajan P, Kim JS. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018; 23:E2983. [PMID: 30445746 PMCID: PMC6278308 DOI: 10.3390/molecules23112983] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
| |
Collapse
|
19
|
López-Cortés A, Paz-Y-Miño C, Cabrera-Andrade A, Barigye SJ, Munteanu CR, González-Díaz H, Pazos A, Pérez-Castillo Y, Tejera E. Gene prioritization, communality analysis, networking and metabolic integrated pathway to better understand breast cancer pathogenesis. Sci Rep 2018; 8:16679. [PMID: 30420728 PMCID: PMC6232116 DOI: 10.1038/s41598-018-35149-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Consensus strategy was proved to be highly efficient in the recognition of gene-disease association. Therefore, the main objective of this study was to apply theoretical approaches to explore genes and communities directly involved in breast cancer (BC) pathogenesis. We evaluated the consensus between 8 prioritization strategies for the early recognition of pathogenic genes. A communality analysis in the protein-protein interaction (PPi) network of previously selected genes was enriched with gene ontology, metabolic pathways, as well as oncogenomics validation with the OncoPPi and DRIVE projects. The consensus genes were rationally filtered to 1842 genes. The communality analysis showed an enrichment of 14 communities specially connected with ERBB, PI3K-AKT, mTOR, FOXO, p53, HIF-1, VEGF, MAPK and prolactin signaling pathways. Genes with highest ranking were TP53, ESR1, BRCA2, BRCA1 and ERBB2. Genes with highest connectivity degree were TP53, AKT1, SRC, CREBBP and EP300. The connectivity degree allowed to establish a significant correlation between the OncoPPi network and our BC integrated network conformed by 51 genes and 62 PPi. In addition, CCND1, RAD51, CDC42, YAP1 and RPA1 were functional genes with significant sensitivity score in BC cell lines. In conclusion, the consensus strategy identifies both well-known pathogenic genes and prioritized genes that need to be further explored.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, 170129, Quito, Ecuador.
- RNASA-IMEDIR, Computer Sciences Faculty, University of Coruna, 15071, Coruna, Spain.
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, 170129, Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
| | - Stephen J Barigye
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Sciences Faculty, University of Coruna, 15071, Coruna, Spain
- INIBIC, Institute of Biomedical Research, CHUAC, UDC, 15006, Coruna, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940, Leioa, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Biscay, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Sciences Faculty, University of Coruna, 15071, Coruna, Spain
- INIBIC, Institute of Biomedical Research, CHUAC, UDC, 15006, Coruna, Spain
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
- Escuela de Ciencias Físicas y Matemáticas, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador.
| |
Collapse
|
20
|
Lee CF, Chiang NN, Lu YH, Huang YS, Yang JS, Tsai SC, Lu CC, Chen FA. Benzyl isothiocyanate (BITC) triggers mitochondria-mediated apoptotic machinery in human cisplatin-resistant oral cancer CAR cells. Biomedicine (Taipei) 2018; 8:15. [PMID: 30141402 PMCID: PMC6108226 DOI: 10.1051/bmdcn/2018080315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
Benzyl isothiocyanate (BITC), a component of dietary food, possesses a powerful anticancer activity. Previous studies have shown that BITC produces a large number of intracellular reactive oxygen species (ROS) and increases intracellular Ca2+ release from endoplasmic reticulum (ER), leading to the activation of the apoptotic mechanism in tumor cells. However, there is not much known regarding the inhibitory effect of BITC on cisplatin-resistant oral cancer cells. The purpose of this study was to examine the anticancer effect and molecular mechanism of BITC on human cisplatin-resistant oral cancer CAR cells. Our results demonstrated that BITC significantly reduced cell viability of CAR cells in a concentration- and time-dependent manner. BITC was found to cause apoptotic cell shrinkage and DNA fragmentation by morphologic observation and TUNEL/DAPI staining. Pretreatment of cells with a specific inhibitor of pan-caspase significantly reduced cell death caused by BITC. Colorimetric assay analyses also showed that the activities of caspase-3 and caspase-9 were elevated in BITC-treated CAR cells. An increase in ROS production and loss of mitochondria membrane potential (ΔΨm) occurred due to BITC exposure and was observed via flow cytometric analysis. Western blotting analyses demonstrated that the protein levels of Bax, Bad, cytochrome c, and cleaved caspase-3 were up-regulated, while those of Bcl-2, Bcl-xL and pro-caspase-9 were down-regulated in CAR cells after BITC challenge. In sum, the mitochondria-dependent pathway might contribute to BITC-induced apoptosis in human cisplatin-resistant oral cancer CAR cells.
Collapse
Affiliation(s)
- Chiu-Fang Lee
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Ni-Na Chiang
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Yao-Hua Lu
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Yu-Syuan Huang
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan - Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| |
Collapse
|
21
|
Younas M, Hano C, Giglioli-Guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018; 8:29714-29744. [PMID: 35547279 PMCID: PMC9085387 DOI: 10.1039/c8ra04879g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3'-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours Tours France
| |
Collapse
|
22
|
Anderson RH, Lensing CJ, Forred BJ, Amolins MW, Aegerter CL, Vitiello PF, Mays JR. Differentiating Antiproliferative and Chemopreventive Modes of Activity for Electron-Deficient Aryl Isothiocyanates against Human MCF-7 Cells. ChemMedChem 2018; 13:1695-1710. [PMID: 29924910 PMCID: PMC6105534 DOI: 10.1002/cmdc.201800348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
The consumption of Brassica vegetables provides beneficial effects through organic isothiocyanates (ITCs), products of the enzymatic hydrolysis of glucosinolate secondary metabolites. The ITC l-sulforaphane (l-SFN) is the principle agent in broccoli that demonstrates several modes of anticancer action. While the anticancer properties of ITCs like l-SFN have been extensively studied and l-SFN has been the subject of multiple human clinical trials, the scope of this work has largely been limited to those derivatives found in nature. Previous studies have demonstrated that structural changes in an ITC can lead to marked differences in a compound's potency to 1) inhibit the growth of cancer cells, and 2) alter cellular transcriptional profiles. This study describes the preparation of a library of non-natural aryl ITCs and the development of a bifurcated screening approach to evaluate the dose- and time-dependence on antiproliferative and chemopreventive properties against human MCF-7 breast cancer cells. Antiproliferative effects were evaluated using a commercial MTS cell viability assay. Chemopreventive properties were evaluated using an antioxidant response element (ARE)-promoted luciferase reporter assay. The results of this study have led to the identification of 1) several key structure-activity relationships and 2) lead ITCs for continued development.
Collapse
Affiliation(s)
- Ruthellen H. Anderson
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| | - Cody J. Lensing
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| | - Benjamin J. Forred
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Michael W. Amolins
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Cassandra L. Aegerter
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Peter F. Vitiello
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Jared R. Mays
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| |
Collapse
|
23
|
Yano S, Wu S, Sakao K, Hou DX. Wasabi 6-(methylsulfinyl)hexyl isothiocyanate induces apoptosis in human colorectal cancer cells through p53-independent mitochondrial dysfunction pathway. Biofactors 2018; 44:361-368. [PMID: 29756671 DOI: 10.1002/biof.1431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022]
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Wasabi [Wasabia japonica (Miq.) Matsum.], has revealed the inhibitory effect on colon carcinogenesis in rat cancer model although the underlying mechanism is unclear. In this study, we used two types of human colorectal cancer cells (HCT116 p53+/+ and HCT116 p53-/- ) to investigate the anticancer activity and molecular mechanisms of 6-MSITC. Interestingly, 6-MSITC inhibited the cell proliferation in both types of cells with similar IC50 value although a light increase in the phosphorylation and accumulation of P53 protein was observed in HCT116 p53+/+ cells at 24 h after treatment. In addition, 6-MSITC increased the ratio of proapoptotic cells in both types of cells with the same fashion in a p53-independent manner. The data from mitochondrial analysis revealed that 6-MSITC enhanced the ratio of proapoptotic B-cell lymphoma-2-associated X protein/antiapoptotic myeloid cell leukemia 1, and sequentially caused mitochondrial membrane potential (ΔΨm ) loss, cytochrome c release, and caspase-3 activation in both types of cells. Taken together, Wasabi 6-MSITC induced apoptosis of human colorectal cancer cells in p53-independent mitochondrial dysfunction pathway. These findings suggest that 6-MSITC might be a potential agent for colon cancer chemoprevention although with p53 mutation. © 2018 BioFactors, 2018.
Collapse
Affiliation(s)
- Satoshi Yano
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shusong Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Kozue Sakao
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - De-Xing Hou
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
24
|
Kuppusamy P, Nagalingam A, Muniraj N, Saxena NK, Sharma D. Concomitant activation of ETS-like transcription factor-1 and Death Receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice. Sci Rep 2017; 7:17943. [PMID: 29263422 PMCID: PMC5738353 DOI: 10.1038/s41598-017-18190-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has the second lowest 5-year survival rate (~16%) of all tumor types partly owing to the lack of effective therapeutic agents. Withaferin A (WA) is a bioactive molecule derived from Withania somnifera and the present study is designed to systemically investigate the anti-HCC efficacy of WA. WA inhibited growth, migration and invasion of HCC cells. Using a phospho-kinase screening array, we discovered that WA increased phosphorylation of ERK and p38 in HCC. Further analyses revealed a key role of ERK leading to increased phosphorylation of p90-ribosomal S6 kinase (RSK) and a concomitant activation of ETS-like transcription factor-1(ELK1) and Death Receptor protein-5 (DR5) in HCC. Importantly, oral administration of WA effectively inhibited HepG2-xenografts and DEN-induced-HCC in C57BL/6 mice. Analyses of WA-treated HepG2-xenografts and DEN-induced-HCC tumors showed elevated levels of ERK, RSK, ELK1 and DR5 along with decreased expression of Ki67. In silico analyses of HCC, utilizing published profiling studies showed an inverse correlation between DR5 and Ki67. These data showed the efficacy of WA as an effective agent for HCC inhibition and provided first in vitro and in vivo evidence supporting the key role of a novel crosstalk between WA, ERK/RSK, ELK1, and DR5 in HCC inhibition.
Collapse
Affiliation(s)
- Panjamurthy Kuppusamy
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arumugam Nagalingam
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Neeraj K Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Early Detection Research Group, National Cancer Institute, Rockville, MD, USA.
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA.
| |
Collapse
|
25
|
Lv D, Guo L, Zhang T, Huang L. PRAS40 signaling in tumor. Oncotarget 2017; 8:69076-69085. [PMID: 28978182 PMCID: PMC5620322 DOI: 10.18632/oncotarget.17299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
The proline-rich Akt substrate of 40 kDa (PRAS40) is a substrate of Akt and a component of the mammalian target of rapamycin complex 1 (mTORC1). Locating at the crossroad of the PI3K/Akt pathway and the mTOR pathway, PRAS40 is phosphorylated by growth factors or other stimuli, and regulates the activation of these signaling pathways in turn. PRAS40 plays an important role in metabolic disorders and multiple cancers, and the phosphorylation of PRAS40 is often associated with the tumor progression of melanoma, prostate cancer, etc. PRAS40 promotes tumorigenesis by deregulating cellular proliferation, apoptosis, senescence, metastasis, etc. Herein, we provide an overview on current understandings of PRAS40 signaling in the tumor formation and progression, which suggests that PRAS40 or phospho-PRAS40 could become a novel biomarker and therapeutic target in tumor.
Collapse
Affiliation(s)
- Dan Lv
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ting Zhang
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lin Huang
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|