1
|
Li Y, Li W, Zhu X, Xu N, Meng Q, Jiang W, Zhang L, Yang M, Xu F, Li Y. VEGFB ameliorates insulin resistance in NAFLD via the PI3K/AKT signal pathway. J Transl Med 2024; 22:976. [PMID: 39468621 PMCID: PMC11520811 DOI: 10.1186/s12967-024-05621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most universal liver diseases with complicated pathogenesis throughout the world. Insulin resistance is a leading risk factor that contributes to the development of NAFLD. Vascular endothelial growth factor B (VEGFB) was described by researchers as contributing to regulating lipid metabolic disorders. Here, we investigated VEGFB as a main target to regulate insulin resistance and metabolic syndrome. METHODS In this study, bioinformatics, transcriptomics, morphological experiments, and molecular biology were used to explore the role of VEGFB in regulating insulin resistance in NAFLD and its molecular mechanism based on human samples, animal models, and cell models. RNA-seq was performed to analyze the signal pathways associated with VEGFB and NAFLD; Palmitic acid and High-fat diet were used to induce insulin-resistant HepG2 cells model and NAFLD animal model. Intracellular glucolipid contents, glucose uptake, hepatic and serum glucose and lipid levels were examined by Microassay and Elisa. Hematoxylin-eosin staining, Oil Red O staining, and Periodic acid-schiff staining were used to analyze the hepatic steatosis, lipid droplet, and glycogen content in the liver. Western blot and quantitative real-time fluorescent PCR were used to verify the expression levels of the VEGFB and insulin resistance-related signals PI3K/AKT pathway. RESULTS We observed that VEGFB is genetically associated with NAFLD and the PI3K/AKT signal pathway. After VEGFB knockout, glucolipids levels were increased, and glucose uptake ability was decreased in insulin-resistant HepG2 cells. Meanwhile, body weight, blood glucose, blood lipids, and hepatic glucose of NAFLD mice were increased, and hepatic glycogen, glucose tolerance, and insulin sensitivity were decreased. Moreover, VEGFB overexpression reduced glucolipids and insulin resistance levels in HepG2 cells. Specifically, VEGFB/VEGFR1 activates the PI3K/AKT signals by activating p-IRS1Ser307 expression, inhibiting p-FOXO1pS256 and p-GSK3Ser9 expressions to reduce gluconeogenesis and glycogen synthesis in the liver. Moreover, VEGFB could also enhance the expression level of GLUT2 to accelerate glucose transport and reduce blood glucose levels, maintaining glucose homeostasis. CONCLUSIONS Our studies suggest that VEGFB could present a novel strategy for treating NAFLD as a positive factor.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong Province, China
| | - Wenhao Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong Province, China
| | - Xiaonan Zhu
- Department of Intensive Care Medicine, The Second School of Clinical Medical, Binzhou Medical University, Yantai, Shandong, China
| | - Nuo Xu
- Department of Intensive Care Medicine, The Second School of Clinical Medical, Binzhou Medical University, Yantai, Shandong, China
| | - Qinyu Meng
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong Province, China
| | - Wenguo Jiang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lei Zhang
- Department of Infectious Diseases, The Second School clinical Medicine, YanTai Affiliated Hospital of Bin Zhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine of Binzhou Medical University, Yantai, Chian, China
| | - Fang Xu
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong Province, China.
| | - Yana Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
2
|
Yaman E, Heyer N, de Paiva CS, Stepp MA, Pflugfelder SC, Alam J. Mouse Corneal Immune Cell Heterogeneity Revealed by Single-Cell RNA Sequencing. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39432400 PMCID: PMC11500044 DOI: 10.1167/iovs.65.12.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose This study aimed to define the heterogeneity, spatial localization, and functional roles of immune cells in the mouse cornea using single-cell RNA sequencing (scRNA-seq) and immunofluorescent staining. Methods Enriched mouse corneal immune cells (C57BL/6 strain, age 16-20 weeks) underwent single-cell RNA sequencing library preparation, sequencing, and analysis with Seurat, Monocle 3, and CellChat packages in R. Pathway analysis used Qiagen Ingenuity Pathway Analysis software. Immunostaining confirmed cell distribution. Results We identified 14 distinct immune cell clusters (56% myeloid and 44% lymphoid). Myeloid populations included resident macrophages, conventional dendritic cells (cDC2s), Langerhans cells, neutrophils, monocytes, and mast cells. Additionally, lymphocyte subsets (B, CD8, CD4, γδT, natural killer, natural killer T, and group 2 innate lymphoid cells) were found. We also found three new subtypes of resident macrophages in the cornea. Trajectory analysis suggested a differentiation pathway from monocytes to conventional dendritic cells, resident macrophages, and LCs. Intercellular communication network analysis using cord diagram identified amyloid precursor protein, chemokine (C-C motif) ligands (2, 3, 4, 6, 7, 9, and 12), Cxcl2, Mif, Tnf, Tgfb1, Igf1, and Il10 as prominent ligands involved in these interactions. Sexually dimorphic gene expression patterns were observed, with male myeloid cells expressing genes linked to immune regulation (Egr1, Foxp1, Mrc1, and Il1rn) and females showing higher expression of antigen presentation genes (Clic1, Psmb8, and Psmb9). Finally, immunostaining confirmed the spatial distribution of these cell populations within the cornea. Conclusions This study unveils a diverse immune landscape in the mouse cornea, with evidence for cell differentiation and sex-based differences. Immunostaining validates the spatial distribution of these populations, furthering our knowledge of corneal immune function.
Collapse
Affiliation(s)
- Ebru Yaman
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Nicole Heyer
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Mary Ann Stepp
- Departments of Anatomy, Regenerative Biology and Ophthalmology, The George Washington University Medical School and Health Sciences, Washington, DC, United States
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Taheri R, Mokhtari Y, Yousefi AM, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol Int 2024; 48:1049-1068. [PMID: 38812089 DOI: 10.1002/cbin.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.
Collapse
Affiliation(s)
- Rana Taheri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Mokhtari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
UZUN E, BALABANLI DDB, CEVHER ŞC. Vascular Endothelial Growth Factor Supplementation Enhance Skin Antioxidant Capacity in Hyperglycemic Rats. GAZI UNIVERSITY JOURNAL OF SCIENCE 2023. [DOI: 10.35378/gujs.1082697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fundamental reasons for delayed wound healing in diabetic animals include inadequate production of growth factors or their increased devastation. Vascular Growth Factor (VEGF) has a biological role in the healing process of mucosal and skin wounds, especially in the process of new vessel formation. We planned to examine the oxidant-antioxidant events that occur during healing with topical VEGF application in diabetic rats. Experiments were performed 36 adults female Wistar albino rat diabetes induced by streptozotocin. The incisional wounds were made on the dorsal region in the rats. Rats were separated to 3 groups: the untreated (negative control) group (n=12), the chitosan group (n=12), the chitosan + VEGF group (n=12). The treatments were continued for 3 and 7 days, excluding the control and negative control groups. Then, the animals were sacrificed on the 3rd and 7th days of wound healing. Antioxidant and oxidant parameters in skin tissue were measured using biochemical methods. Topical VEGF application was decreased the NOx levels on the 3rd day compared to other groups. Moreover, it increased wound tissue GSH and AA levels, subsequently contributing to the enhance tissue antioxidant capacity. In conclusion, VEGF application increases the antioxidant capacity of the tissue and simultaneously reduces the oxidative stress and thus gives a positive acceleration to the wound healing process.
Collapse
|
5
|
Wang G, Zeng L, Gong C, Gong X, Zhu T, Zhu Y. Extracellular vesicles derived from mouse adipose-derived mesenchymal stem cells promote diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving dendritic cells. Exp Eye Res 2023; 231:109484. [PMID: 37080382 DOI: 10.1016/j.exer.2023.109484] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Diabetic keratopathy (DK) is a common ocular complication of diabetes in which the dendritic cells (DCs)-mediated inflammatory response plays an important role. Nerve growth factor (NGF)/Tropomyosin receptor kinase A (TrkA)-mediated inhibition of the nuclear factor kappa B (NF-κB) pathway can reduce inflammatory cytokine production. Extracellular vesicles (EVs) derived from mouse adipose-derived mesenchymal stem cells (mADSC-EVs) have been explored extensively as treatments for degenerative eye disease. However, mADSC-EVs is poorly studied in the DK models. In this study, we investigated the anti-inflammatory effects of mADSC-EVs and explored the underlying mechanisms in vitro and in vivo DK models. Our results showed that mADSC-EVs have significant therapeutic effects including increasing tear volume and the ratio of lacrimal gland/body weight, promoting corneal nerve regeneration, and sensation recovery in streptozotocin (STZ)-induced DK mice. In addition, mADSC-EVs significantly reduced the inflammatory response involving DCs, consistently up-regulated protein expression of the NGF/TrkA pathway, and importantly, reduced lipopolysaccharide (LPS)-mediated IL-6 and TNF-α expression and directly dependent on TrkA in the induced culture of bone marrow-derived DCs (BMDCs). Taken together, our findings revealed that mADSC-EVs promoted diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving DCs. Given the significant therapeutic efficacy of mADSC-EVs and its clinical application, mADSC-EVs appears to be a promising new therapy for DK.
Collapse
Affiliation(s)
- Guifang Wang
- Ophthalmology Department, Loudi Central Hospital, Loudi, China.
| | - Li Zeng
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Can Gong
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Xileyuan Gong
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Tupeng Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| | - Yujie Zhu
- Ophthalmology Department, Loudi Central Hospital, Loudi, China
| |
Collapse
|
6
|
Ran L, Feng J, Qi X, Liu T, Qi B, Jiang K, Zhang Z, Yu Y, Zhou Q, Xie L. Effect of TRPM8 Functional Loss on Corneal Epithelial Wound Healing in Mice. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 36692471 PMCID: PMC9896868 DOI: 10.1167/iovs.64.1.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/24/2022] [Indexed: 01/25/2023] Open
Abstract
Purpose To reveal the role of cold-sensing transient receptor potential melastatin 8 (TRPM8) channels in corneal epithelial wound healing. Methods Cold sensitivity, tear production, corneal thickness, and corneal opacity assessments were used to evaluate the effect of Trpm8 knockout on the ocular surface. A corneal epithelial wounding model was generated by scraping the corneal epithelium once or multiple times using C57BL/6J (wild-type [WT]) and Trpm8-/- mice. The processes of corneal epithelial repair and corneal epitheliopathy were observed and recorded. Corneas were collected for sequencing, immunofluorescence staining, hematoxylin and eosin staining, and quantitative PCR. Results The perception of coldness, basal tear secretion, and corneal thickness were decreased in young Trpm8-/- mice compared with those in WT mice, except for the corneal sensitivity. Corneal opacity and increased corneal thickness were observed in aged Trpm8-/- mice. TRPM8 deficiency promoted corneal epithelial wound closure, consistent with the observed increase in Ki67-positive epithelial cells, and the pharmacological activation of TRPM8 in WT mice delayed corneal re-epithelization. After subjecting mice to multiple injuries, squamous metaplasia emerged in Trpm8-/- corneas, as verified by cytokeratin-1 and small proline-rich protein 1B-positive staining. The IFN-β and IFN-γ signaling pathways were significantly activated in Trpm8-/- mice, which was confirmed based on the up-regulated expression of the key mediators, signal transducer and activator of transcription-1 and phosphor-signal transducer and activator of transcription-1, as well as the induction of IFN-stimulated genes, compared with levels in WT mice. Conclusions In corneal wound healing, the loss of TRPM8 function could promote epithelial repair, but predispose the cornea to epithelial lesions.
Collapse
Affiliation(s)
- Lili Ran
- Qingdao University Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Benxiang Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Kai Jiang
- Qingdao University Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhenzhen Zhang
- Qingdao University Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yang Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|
7
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
8
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
9
|
Zou Z, Wang H, Zhang B, Zhang Z, Chen R, Yang L. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. Biomed Pharmacother 2022; 151:113109. [PMID: 35594713 DOI: 10.1016/j.biopha.2022.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes is one of the risk factors for meibomian gland dysfunction (MGD); however, the underlying molecular mechanism remains unknown. The current study aims to examine the effects of glioma-associated oncogene homolog 1 (Gli1), a transcription factor of the sonic hedgehog (Shh) pathway, in the modulation of diabetic-related MGD. Here, using RNA sequencing and qRT-PCR, we examined the mRNA changes of Shh pathway involving genes. mRNA sequencing analysis showed that the Shh pathway involving genes Shh and Gli1 were markedly upregulated in diabetic MG, and qRT-PCR detection of Shh pathway-associated genes found that Gli1 expression increased most significantly. Contrary to the elevation of Gli1 level, the expression of pparγ was downregulated in diabetic MG and in high glucose treated organotypic cultured mouse MG. GANT61, an inhibitor of Gli1, effectively inhibited the reduction of pparγ expression and lipid accumulation induced by high glucose, which was suppressed by pparγ inhibitor T0070907. We further demonstrated that advanced glycation end products (AGEs) treatment also promoted the expression of Gli1 and pparγ in organotypic cultured mouse MG. AGEs inhibitor Aminoguanidine suppressed high glucose caused Gli1 upregulation in organotypic cultured mouse MG. These results suggest that suppression of Gli1 may be a potentially useful therapeutic option for diabetic-related MGD.
Collapse
Affiliation(s)
- Zongzheng Zou
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Rong Chen
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
10
|
The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis 2022; 13:513. [PMID: 35641491 PMCID: PMC9156734 DOI: 10.1038/s41419-022-04963-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.
Collapse
|
11
|
Zhou T, Lee A, Lo ACY, Kwok JSWJ. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front Pharmacol 2022; 13:816062. [PMID: 35281903 PMCID: PMC8905431 DOI: 10.3389/fphar.2022.816062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Allie Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jeremy Sze Wai John Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
12
|
Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, Xue J, Wei C, Xie L. The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci 2022; 18:809-825. [PMID: 35002527 PMCID: PMC8741862 DOI: 10.7150/ijbs.63219] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/27/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic keratopathy (DK) is an important diabetic complication at the ocular surface. Chronic low-grade inflammation mediated by the NLRP3 inflammasome promotes pathogenesis of diabetes and its complications. However, the effect of the NLRP3 inflammasome on DK pathogenesis remains elusive. Wild-type (WT) and Nlrp3 knockout (KO) C57 mice were used to establish a type I diabetes model by intraperitoneal injection of streptozotocin. The effect of the NLRP3 inflammasome on diabetic corneal wound healing and never regeneration was examined by a corneal epithelial abrasion model. Western blot, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and pharmacological treatment were performed to investigate the regulatory mechanism of advanced glycation end products (AGEs) on NLRP3 inflammasome activation and corneal wound healing in vivo. The cultured mouse corneal epithelial cells (TKE2) were used to evaluate the effect and mechanism of AGEs on NLRP3 inflammasome activation in vitro. We revealed that NLRP3 inflammasome-mediated inflammation and pyroptosis contributed to DK pathogenesis. Under physiological conditions, the NLRP3 inflammasome was required for corneal wound healing and nerve regeneration. However, under a diabetic scenario, sustained activation of the NLRP3 inflammasome resulted in postponed corneal wound healing and impaired nerve regeneration. Mechanistically, the accumulated AGEs promoted hyperactivation of the NLRP3 inflammasome through ROS production. Moreover, genetically and pharmacologically blocking the AGEs/ROS/NLRP3 inflammasome axis significantly expedited diabetic corneal epithelial wound closure and nerve regeneration. Our results revealed that AGEs-induced hyperactivation of the NLRP3 inflammasome resulted in delayed diabetic corneal wound healing and impaired nerve regeneration, which further highlighted the NLRP3 inflammasome as a promising target for DK treatment.
Collapse
Affiliation(s)
- Luqin Wan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Huifeng Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Junfa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
14
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
15
|
Guan H, Huang C, Lu D, Chen G, Lin J, Hu J, He Y, Huang Z. Label-free Raman spectroscopy: A potential tool for early diagnosis of diabetic keratopathy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119731. [PMID: 33819764 DOI: 10.1016/j.saa.2021.119731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Diabetes has become a major public health problem worldwide, and the incidence of diabetes has been increasing progressively. Diabetes is prone to cause various complications, among which diabetic keratopathy (DK) emphasizes the significant impact on the cornea. The current diagnosis of DK lacks biochemical markers that can be used for early and non-invasive screening and detection. In contrast, in this study, Raman spectroscopy, which demonstrates non-destructive, label-free features, especially the unique advantage of providing molecular fingerprint information for target substances, were utilized to interrogate the intrinsic information of the corneal tissues from normal and diabetic mouse models, respectively. Visually, the Raman spectral response derived from the biochemical components and biochemical differences between the two groups were compared. Moreover, multivariate analysis methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were carried out for advanced statistical analysis. PCA yields a diagnostic results of 57.4% sensitivity, 89.2% specificity, 74.8% accuracy between the diabetic group and control group; Moreover, PLS-DA was employed to enhance the diagnostic ability, showing 76.1% sensitivity, 86.1% specificity, and 87.6% accuracy between the diabetic group and control group. Our proof-of-concept results show the potential of Raman spectroscopy-based techniques to help explore the underlying pathogenesis of DK disease and thus be further expanded for potential applications in the early screening of diabetic diseases.
Collapse
Affiliation(s)
- Haohao Guan
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Chunyan Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dechan Lu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Guannan Chen
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Juqiang Lin
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Youwu He
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Zufang Huang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
16
|
Lužnik Z, Anchouche S, Dana R, Yin J. Regulatory T Cells in Angiogenesis. THE JOURNAL OF IMMUNOLOGY 2021; 205:2557-2565. [PMID: 33168598 DOI: 10.4049/jimmunol.2000574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are crucial mediators of immune homeostasis. They regulate immune response by suppressing inflammation and promoting self-tolerance. In addition to their immunoregulatory role, a growing body of evidence highlights the dynamic role of Tregs in angiogenesis, the process of forming new blood vessels. Although angiogenesis is critically important for normal tissue regeneration, it is also a hallmark of pathological processes, including malignancy and chronic inflammation. Interestingly, the role of Tregs in angiogenesis has been shown to be highly tissue- and context-specific and as a result can yield either pro- or antiangiogenic effects. For these reasons, there is considerable interest in determining the molecular underpinnings of Treg-mediated modulation of angiogenesis in different disease states. The present review summarizes the role of Tregs in angiogenesis and mechanisms by which Tregs regulate angiogenesis and discusses how these mechanisms differ in homeostatic and pathological settings.
Collapse
Affiliation(s)
- Zala Lužnik
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114.,Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; and
| | - Sonia Anchouche
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114.,Faculty of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Reza Dana
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114;
| | - Jia Yin
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114;
| |
Collapse
|
17
|
Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2021; 40:222411. [PMID: 32186721 PMCID: PMC7109002 DOI: 10.1042/bsr20193006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Autophagic dysfunction and abnormal oxidative stress are associated with cataract. The purpose of the present study was to investigate the changes of cellular autophagy and oxidative stress and their association in lens epithelial cells (LECs) upon exposure to high glucose. Methods: Autophagy and oxidative stress-related changes were detected in streptozotocin-induced Type 1 diabetic mice and normal mouse LECs incubated in high glucose conditions. Rapamycin at a concentration of 100 nm/l or 50 μM chloroquine was combined for analysis of the relationship between autophagy and oxidative stress. The morphology of LECs during autophagy was observed by transmission electron microscopy. The expressions of autophagy markers (LC3B and p62) were identified, as well as the key factors of oxidative stress (SOD2 and CAT) and mitochondrial reactive oxygen species (ROS) generation. Results: Transmission electron microscopy indicated an altered autophagy activity in diabetic mouse lens tissues with larger autophagosomes and multiple mitochondria. Regarding the expressions, LC3B was elevated, p62 was decreased first and then increased, and SOD2 and CAT were increased before a decrease during 4 months of follow-up in diabetic mice and 72 h of culture under high glucose for mouse LECs. Furthermore, rapamycin promoted the expressions of autophagy markers but alleviated those of oxidative stress markers, whereas chloroquine antagonized autophagy but enhanced oxidative stress by elevating ROS generation in LECs exposed to high glucose. Conclusions: The changes in autophagy and oxidative stress were fluctuating in the mouse LECs under constant high glucose conditions. Autophagy might attenuate high glucose-induced oxidative injury to LECs.
Collapse
|
18
|
Na KS, Fernandes-Cunha GM, Varela IB, Lee HJ, Seo YA, Myung D. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy 2021; 23:500-509. [PMID: 33752960 PMCID: PMC10069134 DOI: 10.1016/j.jcyt.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Corneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs. METHODS Human MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels. RESULTS All corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels. CONCLUSIONS PEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.
Collapse
Affiliation(s)
- Kyung-Sun Na
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, South Korea
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California, USA; Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, South Korea; VA Palo Alto HealthCare System, Palo Alto, California, USA.
| |
Collapse
|
19
|
hADSCs derived extracellular vesicles inhibit NLRP3inflammasome activation and dry eye. Sci Rep 2020; 10:14521. [PMID: 32884023 PMCID: PMC7471690 DOI: 10.1038/s41598-020-71337-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
The present study was set out to address the therapeutic efficacy of human adipose tissue stem cells derived extracellular vesicles (hADSC-Evs) in a mouse model of dry eye disease and to investigate the underlying mechanisms involved. hADSC-Evs eye drops were topically administered to mice that subjected to desiccating stress (DS). Clinical parameters of ocular surface damage were assessed with fluorescein staining, tear production and PAS staining. For in vitro studies, cell viability assay and TUNEL staining were performed in human corneal epithelial cells (HCECs) treated with hADSC-Evs under hyperosmotic media. In addition, immunofluorescent staining, Real-time PCR (qRT-PCR) and Western blots were used to evaluated NLRP3, ASC, caspase-1, and IL-1β expression levels. Compared with vehicle control mice, topical hADSC-Evs treated mice showed decreased corneal epithelial defects, increased tear production, decreased goblet cell loss, as well as reduced inflammatory cytokines production. In vitro, hADSC-Evs could protect HCECs against hyperosmotic stress-induced cell apoptosis. Mechanistically, hADSC-Evs treatment suppressed the DS induced rises in NLRP3 inflammasome formation, caspase-1 activation and IL-1β maturation. In conclusion, hADSC-Evs eye drops effectively suppress NLRP3 inflammatory response and alleviate ocular surface damage in dry eye disease.
Collapse
|
20
|
Liu X, Liu H, Lu X, Tombran-Tink J, Zhao S. PEDF Attenuates Ocular Surface Damage in Diabetic Mice Model Through Its Antioxidant Properties. Curr Eye Res 2020; 46:302-308. [PMID: 32862727 DOI: 10.1080/02713683.2020.1805770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate the antioxidative effect and mechanism of pigment epithelium-derived factor (PEDF) on the ocular surface damage in diabetic mice. METHODS C57BL/6 mice were injected intraperitoneally with streptozocin to generate diabetic models and then 50 nM PEDF or artificial tears were used to treat the diabetic mice. Treatment was given three times a day for eight weeks. Corneal epithelial damage, corneal sensitivity, and tear volume were quantified by fluorescein staining, esthesiometer, and phenol red cotton thread, respectively. Animals were sacrificed at 16 weeks after diabetes and the whole globe specimens were subjected to histochemical staining. Reactive oxygen species (ROS) generation was detected by 2',7-dichlorodihydrofluorescein probe. The levels of receptor for advanced glycation end products (RAGE) and superoxide dismutase 1 (SOD1) were examined by quantitative real-time PCR and western blotting. RESULTS Topical application of PEDF improved corneal epithelial damage, increased corneal sensitivity, and tear volume in diabetic mice. ROS levels in the cornea were significantly higher in the diabetic mice than in the normal mice. Moreover, PEDF attenuated the accumulation of ROS, decreased the expression of RAGE, and elevated SOD1 expression in the cornea. CONCLUSIONS Topical application of PEDF can alleviate diabetes-related ocular surface damage and increase tear volume, along with the improvement of oxidative stress status.
Collapse
Affiliation(s)
- Xuemei Liu
- College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Tianjin Medical University , Tianjin, China
| | - Hui Liu
- College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Tianjin Medical University , Tianjin, China
| | - Xiaoxiao Lu
- College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Tianjin Medical University , Tianjin, China
| | - Joyce Tombran-Tink
- Department of Neural and Behavioral Sciences and Department of Ophthalmology, Penn State College of Medicine , Hershey, PA, USA
| | - Shaozhen Zhao
- College of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Tianjin Medical University , Tianjin, China
| |
Collapse
|
21
|
Yang S, Zhang Y, Zhang Z, Dan J, Zhou Q, Wang X, Li W, Zhou L, Yang L, Xie L. Insulin Promotes Corneal Nerve Repair and Wound Healing in Type 1 Diabetic Mice by Enhancing Wnt/β-Catenin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2237-2250. [PMID: 32858016 DOI: 10.1016/j.ajpath.2020.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
The insulin and Wnt signaling pathways are involved in cell proliferation, tissue homeostasis, and tumorigenesis. However, their interrelationship in the pathophysiological process of diabetic corneal injury remains unclear. In this study, the role of insulin in the diabetic cornea was investigated in vitro, using cultured TKE2 cells and trigeminal ganglion neurons, and in vivo, by assessing corneal wound-healing responses in diabetic mice. A selective Wnt antagonist (XAV-939) and activator (BML-284) were used to regulate the interactions between insulin and the Wnt pathway. The results demonstrated that insulin promoted corneal epithelial wound healing and sensation recovery, whereas the expression of molecules involved in the Wnt/β-catenin pathway was also up-regulated in the injured corneal epithelium. However, XAV-939 limited the insulin-induced epithelial and corneal nerve repair. By contrast, BML-284 treatment promoted the healing of the corneal epithelium and corneal nerve repair in diabetic mice. These results indicate that insulin, via Wnt signaling, contributes to diabetic corneal epithelial wound healing and nerve injury recovery and is, therefore, a potential protective factor for diabetic corneal epithelial wounds and nerve injury.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China; Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Zhaohua Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Jing Dan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaochuan Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Li Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
22
|
Li W, Wang X, Cheng J, Li J, Wang Q, Zhou Q, Li H, Xue J, Zhang Y, Yang L, Xie L. Leucine-rich α-2-glycoprotein-1 promotes diabetic corneal epithelial wound healing and nerve regeneration via regulation of matrix metalloproteinases. Exp Eye Res 2020; 196:108060. [DOI: 10.1016/j.exer.2020.108060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
|
23
|
Wang X, Li W, Zhou Q, Li J, Wang X, Zhang J, Li D, Qi X, Liu T, Zhao X, Li S, Yang L, Xie L. MANF Promotes Diabetic Corneal Epithelial Wound Healing and Nerve Regeneration by Attenuating Hyperglycemia-Induced Endoplasmic Reticulum Stress. Diabetes 2020; 69:1264-1278. [PMID: 32312869 DOI: 10.2337/db19-0835] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/15/2020] [Indexed: 11/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor widely expressed in mammalian tissues, and it exerts critical protective effects on neurons and other cell types in various disease models, such as those for diabetes. However, to date, the expression and roles of MANF in the cornea, with or without diabetic keratopathy (DK), remain unclear. Here, we demonstrate that MANF is abundantly expressed in normal corneal epithelial cells; however, MANF expression was significantly reduced in both unwounded and wounded corneal epithelium in streptozotocin-induced type 1 diabetic C57BL/6 mice. Recombinant human MANF significantly promoted normal and diabetic corneal epithelial wound healing and nerve regeneration. Furthermore, MANF inhibited hyperglycemia-induced endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis. Attenuation of ER stress with 4-phenylbutyric acid (4-PBA) also ameliorated corneal epithelial closure and nerve regeneration. However, the beneficial effects of MANF and 4-PBA were abolished by an Akt inhibitor and Akt-specific small interfering RNA (siRNA). Finally, we reveal that the subconjunctival injection of MANF-specific siRNA prevents corneal epithelial wound healing and nerve regeneration. Our results provide important evidence that hyperglycemia-suppressed MANF expression may contribute to delayed corneal epithelial wound healing and impaired nerve regeneration by increasing ER stress, and MANF may be a useful therapeutic modality for treating DK.
Collapse
Affiliation(s)
- Xiaochuan Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Jing Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Jing Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Dewei Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Suxia Li
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| |
Collapse
|
24
|
Dmytriyeva O, de Diego Ajenjo A, Lundø K, Hertz H, Rasmussen KK, Christiansen AT, Klingelhofer J, Nielsen AL, Hoeber J, Kozlova E, Woldbye DPD, Pankratova S. Neurotrophic Effects of Vascular Endothelial Growth Factor B and Novel Mimetic Peptides on Neurons from the Central Nervous System. ACS Chem Neurosci 2020; 11:1270-1282. [PMID: 32283014 DOI: 10.1021/acschemneuro.9b00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor B (VEGFB) is a pleiotropic trophic factor, which in contrast to the closely related VEGFA is known to have a limited effect on angiogenesis. VEGFB improves survival in various tissues including the nervous system, where the effect was observed mainly for peripheral neurons. The neurotrophic effect of VEGFB on central nervous system neurons has been less investigated. Here we demonstrated that VEGFB promotes neurite outgrowth from primary cerebellar granule, hippocampal, and retinal neurons in vitro. VEGFB protected hippocampal and retinal neurons from both oxidative stress and glutamate-induced neuronal death. The VEGF receptor 1 (VEGFR1) is required for VEGFB-induced neurotrophic and neuroprotective effects. Using a structure-based approach, we designed short peptides, termed Vefin1-7, mimicking the binding interface of VEGFB to VEGFR1. Vefins were analyzed for their secondary structure and binding to VEGF receptors and compared with previously described peptides derived from VEGFA, another ligand of VEGFR1. We show that Vefins have neurotrophic and neuroprotective effects on primary hippocampal, cerebellar granule, and retinal neurons in vitro with potencies comparable to VEGFB. Similar to VEGFB, Vefins were not mitogenic for MCF-7 cancer cells. Furthermore, one of the peptides, Vefin7, even dose-dependently inhibited the proliferation of MCF-7 cells in vitro. Unraveling the neurotrophic and neuroprotective potentials of VEGFB, the only nonangiogenic factor of the VEGF family, is promising for the development of neuroprotective peptide-based therapies.
Collapse
Affiliation(s)
- Oksana Dmytriyeva
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Laboratory for Molecular Pharmacology, Department of Biomedical Science and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Amaia de Diego Ajenjo
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kathrine Lundø
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik Hertz
- Laboratory of Neuropsychiatry, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kim K. Rasmussen
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anders T. Christiansen
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jorg Klingelhofer
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alexander L. Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jan Hoeber
- Department of Neuroscience, Uppsala University, Uppsala 75124, Sweden
| | - Elena Kozlova
- Department of Neuroscience, Uppsala University, Uppsala 75124, Sweden
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stanislava Pankratova
- Laboratory of Neural Plasticity, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
25
|
Gao H, Huang C, Zhao K, Chen X, Zhang X, Deng Y, Liu Z, Duan DD. Research Progress on the Molecular Mechanism by Which Depression Affects Bone Metabolism. DNA Cell Biol 2020; 39:738-746. [PMID: 32077753 DOI: 10.1089/dna.2019.5284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Haiming Gao
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Chenyi Huang
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Kaili Zhao
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Xueyan Chen
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Xuemei Zhang
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yaoge Deng
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Zongchao Liu
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - D D Duan
- Center for Phenomics of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
26
|
Zhang J, Dai Y, Wei C, Zhao X, Zhou Q, Xie L. DNase I improves corneal epithelial and nerve regeneration in diabetic mice. J Cell Mol Med 2020; 24:4547-4556. [PMID: 32168430 PMCID: PMC7176839 DOI: 10.1111/jcmm.15112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
DNase I has been reported to improve diabetic wound healing through the clearance of neutrophils extracellular traps (NETs) caused by neutrophil aggregation. However, the function of DNase I on diabetic corneal wound healing remains unclear. Here, we investigated the effect and mechanism of topical DNase I application on diabetic mouse corneal epithelial and nerve regeneration. Corneal epithelial defects, inflammatory response, regeneration‐related signalling pathways, oxidative stress, corneal innervation and sensation were examined and compared between the diabetic and normal mice. The results confirmed firstly the increased NETs production during the delayed corneal epithelial wound healing of diabetic mice, which was significantly improved through either DNase I or Cl‐amidine administration. Mechanistically, DNase I improved inflammation resolution, reactivated epithelial regeneration‐related signalling pathways and attenuated the accumulation of reactive oxygen species (ROS). Moreover, DNase I application also promoted corneal nerve regeneration and restored the impaired corneal sensitivity in diabetic mice. Therefore, these results indicate that topical DNase I application promotes corneal epithelial wound healing and mechanical sensation restoration in diabetic mice, representing the potential therapeutic approach for diabetic keratopathy.
Collapse
Affiliation(s)
- Jing Zhang
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yunhai Dai
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Chao Wei
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaowen Zhao
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
27
|
Li J, Qi X, Wang X, Li W, Li Y, Zhou Q. PTEN Inhibition Facilitates Diabetic Corneal Epithelial Regeneration by Reactivating Akt Signaling Pathway. Transl Vis Sci Technol 2020; 9:5. [PMID: 32704425 PMCID: PMC7347282 DOI: 10.1167/tvst.9.3.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose To investigate the contribution of phosphatase and tensin homologue (PTEN) on the delayed epithelial regeneration and impaired Akt activation in diabetic mice. Methods The expression of PTEN on cornea was compared between normal and diabetic mice. The corneal epithelial and nerve regeneration rate was evaluated in diabetic mice after the treatment with PTEN small interfering RNA (siRNA), PTEN inhibitors, or Akt inhibitor. The reactivation of epithelial regeneration-related signaling, including phosphorylated (p)-Akt, p-Stat3, Sirt1, and Parkin, were assessed with Western blot and immunofluorescence staining. The effects of PTEN inhibition on cellular proliferation and migration were further evaluated in cultured mouse corneal epithelial cells. Results PTEN messenger RNA and protein levels exhibited up-regulation in diabetic cornea. Upon central epithelial debridement, the epithelial regeneration rate was significantly promoted in diabetic mice with the treatment of PTEN inhibition than that of vehicle control (P < 0.05), which accompanied with the recovered levels of p-Akt, p-Stat3, Sirt1, and Parkin. However, the promotion of diabetic corneal epithelial regeneration rate and Akt reactivation was completed reversed by Akt inhibitor. In vitro, PTEN inhibition promoted their migration, but not the proliferation capacity. In addition, PTEN inhibitor treatment also improved the recovery of corneal nerve fiber density and sensitivity that was impaired in diabetic mice. Conclusions Elevated PTEN expression contributes to the impaired corneal epithelial regeneration and Akt activation in diabetic mice, which can be improved with PTEN inhibition. Translational Relevance Our study suggests that PTEN inhibition may serve as a new strategy for restoring the impaired corneal epithelial regeneration ability in patients with diabetes.
Collapse
Affiliation(s)
- Jing Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaochuan Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
28
|
Li Y, Ma X, Li J, Yang L, Zhao X, Qi X, Zhang X, Zhou Q, Shi W. Corneal Denervation Causes Epithelial Apoptosis Through Inhibiting NAD+ Biosynthesis. Invest Ophthalmol Vis Sci 2019; 60:3538-3546. [PMID: 31415077 DOI: 10.1167/iovs.19-26909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine if trigeminal innervations of the corneal epithelium maintains its integrity and homeostasis through controlling the nicotinamide adenine dinucleotide (NAD) content of this tissue. Methods Corneal denervation of C57BL/6 mice was induced by squeezing the nerve bundles that derive from the trigeminal ganglion and was confirmed by whole-mount corneal nerve staining and the sensation test. The apoptosis of the corneal epithelium was examined by TUNEL assay and annexin V/propidium iodide staining. NAD biosynthesis-related enzymes were analyzed by quantitative PCR, immunofluorescence staining, and Western blotting. FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), exogenous nicotinamide mononucleotide (NMN), and NAD+ were used to evaluate the effect of NAD+ on the apoptosis of cultured corneal epithelial cells and epithelial detachment in denervated mice. Protein expression that related to apoptosis and phosphorylation were analyzed by Western blotting. Results The denervated mice showed spontaneous corneal epithelial detachment and cell apoptosis accompanied with impaired epithelial NAD+ contents due to low levels of NAMPT. Similarly, inhibition of NAMPT recapitulated epithelial detachment as in denervated mice and induced apoptosis in cultured corneal epithelial cells. The replenishment of NMN or NAD+ partially slowed down corneal nerve fiber degeneration, reduced the epithelial defect in denervated mice, and improved apoptosis induction in FK866-treated cells by restoring the activation levels of SIRT1, AKT, and CREB. Conclusions Corneal denervation lowered epithelial NAD+ contents through reducing the expression of NAMPT and caused cell apoptosis and epithelial defects, suggesting that corneal innervations contribute to epithelial homeostasis by regulating NAD+ biosynthesis.
Collapse
Affiliation(s)
- Ya Li
- Medical College, Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiubin Ma
- Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Medical College, University of Jinan, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | | | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
29
|
Manoukian OS, Baker JT, Rudraiah S, Arul MR, Vella AT, Domb AJ, Kumbar SG. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release 2019; 317:78-95. [PMID: 31756394 DOI: 10.1016/j.jconrel.2019.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injuries can be extremely debilitating, resulting in sensory and motor loss-of-function. Endogenous repair is limited to non-severe injuries in which transection of nerves necessitates surgical intervention. Traditional treatment approaches include the use of biological grafts and alternative engineering approaches have made progress. The current article serves as a comprehensive, in-depth perspective on peripheral nerve regeneration, particularly nerve guidance conduits and drug delivery strategies. A detailed background of peripheral nerve injury and repair pathology, and an in-depth look into augmented nerve regeneration, nerve guidance conduits, and drug delivery strategies provide a state-of-the-art perspective on the field.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jiana T Baker
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT, USA
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Anthony T Vella
- Department of Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
30
|
Chen R, Lee C, Lin X, Zhao C, Li X. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res 2019; 143:33-39. [PMID: 30851357 DOI: 10.1016/j.phrs.2019.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress, due to insufficiency of antioxidants or over-production of oxidants, can lead to severe cell and tissue damage. Oxidative stress occurs constantly and has been shown to be involved in innumerable diseases, such as degenerative, cardiovascular, neurological, and metabolic disorders, cancer, and aging, thus highlighting the vital need of antioxidant defense mechanisms. Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago, and is abundantly expressed in most types of cells and tissues. VEGF-B remained functionally mysterious for many years and later on has been shown to be minimally angiogenic. Recently, VEGF-B is reported to be a potent antioxidant by boosting the expression of key antioxidant enzymes. Thus, one major role of VEGF-B lies in safeguarding tissues and cells from oxidative stress-induced damage. VEGF-B may therefore have promising therapeutic utilities in treating oxidative stress-related diseases. In this review, we discuss the current knowledge on the newly discovered antioxidant function of VEGF-B and the related molecular mechanisms, particularly, in relationship to some oxidative stress-related diseases, such as retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, China; Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200023, Shanghai, China.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
31
|
|
32
|
Maffei A, Lembo G, Carnevale D. PI3Kinases in Diabetes Mellitus and Its Related Complications. Int J Mol Sci 2018; 19:ijms19124098. [PMID: 30567315 PMCID: PMC6321267 DOI: 10.3390/ijms19124098] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that phosphoinositide 3-kinases (PI3Ks) have become the target of many pharmacological treatments, both in clinical trials and in clinical practice. PI3Ks play an important role in glucose regulation, and this suggests their possible involvement in the onset of diabetes mellitus. In this review, we gather our knowledge regarding the effects of PI3K isoforms on glucose regulation in several organs and on the most clinically-relevant complications of diabetes mellitus, such as cardiomyopathy, vasculopathy, nephropathy, and neurological disease. For instance, PI3K α has been proven to be protective against diabetes-induced heart failure, while PI3K γ inhibition is protective against the disease onset. In vessels, PI3K γ can generate oxidative stress, while PI3K β inhibition is anti-thrombotic. Finally, we describe the role of PI3Ks in Alzheimer’s disease and ADHD, discussing the relevance for diabetic patients. Given the high prevalence of diabetes mellitus, the multiple effects here described should be taken into account for the development and validation of drugs acting on PI3Ks.
Collapse
Affiliation(s)
- Angelo Maffei
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
33
|
Li D, Chen YG, Zhang CJ, Tian J, Li X. Safflower Extract and Aceglutamide Injection Promoting Recovery of Peripheral Innervations via Vascular Endothelial Growth Factor-B Signaling in Diabetic Mice. Chin Med J (Engl) 2018; 130:2829-2835. [PMID: 29176141 PMCID: PMC5717862 DOI: 10.4103/0366-6999.219143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Safflower extract and aceglutamide (SA) has been used clinically for the treatment of cerebrovascular diseases such as cerebral embolism, hemorrhage, and mental deterioration. This study aimed to investigate the effect and mechanism of SA injection in the recovery of peripheral innervations of diabetic mice. Methods: The C57BL/6 male mice were divided into four groups: normal control group (n = 44), diabetic group (n = 44), diabetic + SA group (diabetic mice treated with SA injection, n = 44), and diabetic + SA + vascular endothelial growth factor receptor (VEGFR)1-BL group (diabetic mice treated with SA injection and VEGFR 1 blocking antibody n = 24). The streptozotocin-induced diabetic mice model and injured peripheral nerve mice model were built. The mice with injured peripheral nerves were intraperitonealy administered with SA injection for successive 21 days. The corneal sensitivity, number of corneal nerve fibers, and contents of vascular endothelial growth factor (VEGF)-B and various neurotrophic factors such as nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in corneal tissue of four groups were observed. Results: The diabetic group showed decreased number of corneal nerve fibers, compared with the control group (P = 0.002). And compared with the diabetic group, the diabetic + SA group showed a significant increase in the number of nerve fibers (P = 0.024) and the contents of VEGF-B, NGF, and GDNF in the cornea (all P < 0.05). However, when the diabetic mice were treated with the blocking antibodies specialized for VEGF-B receptor, the neutralization of VEGFR-1 completely abolished the increased expression of NGF and GDNF stimulated by SA injection. Conclusions: SA injection could reduce the nerve injury caused by diabetic peripheral neuropathy, and its protective effect might be associated with the promotion of the expressions of VEGF-B, NGF, and GDNF.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - You-Gang Chen
- Department of Medicine, The Hospital of 91208 Troops, PLA Navy, Qingdao, Shandong 266102, China
| | - Cui-Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Jing Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Xia Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| |
Collapse
|
34
|
Han SB, Liu YC, Mohamed-Noriega K, Mehta JS. Application of Novel Drugs for Corneal Cell Regeneration. J Ophthalmol 2018; 2018:1215868. [PMID: 29854423 PMCID: PMC5954904 DOI: 10.1155/2018/1215868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
Corneal transplantation has been the only treatment method for corneal blindness, which is the major cause of reversible blindness. However, despite the advancement of surgical techniques for corneal transplantation, demand for the surgery can never be met due to a global shortage of donor cornea. The development of bioengineering and pharmaceutical technology provided us with novel drugs and biomaterials that can be used for innovative treatment methods for corneal diseases. In this review, the authors will discuss the efficacy and safety of pharmacologic therapies, such as Rho-kinase (ROCK) inhibitors, blood-derived products, growth factors, and regenerating agent on corneal cell regeneration. The promising results of these agents suggest that these can be viable options for corneal reconstruction and visual rehabilitation.
Collapse
Affiliation(s)
- Sang Beom Han
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University, Chuncheon, Republic of Korea
| | - Yu-Chi Liu
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karim Mohamed-Noriega
- Department of Ophthalmology, Faculty of Medicine, University Hospital “Jose E. Gonzalez”, Autonomous University of Nuevo Leon, Monterrey, NL, Mexico
| | - Jodhbir S. Mehta
- Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
35
|
Zhang Z, Hu X, Qi X, Di G, Zhang Y, Wang Q, Zhou Q. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice. Mol Vis 2018; 24:274-285. [PMID: 29643724 PMCID: PMC5881880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/30/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. METHODS Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. RESULTS Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. CONCLUSIONS Topical application of RvD1 promotes corneal epithelial wound healing and the restoration of mechanical sensation in diabetic mice, which may be related to the lipid mediator's regulation of inflammation resolution, the reactivation of regenerative signaling in the epithelium, and the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Guohu Di
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yangyang Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qian Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
36
|
Zhang X, Di G, Dong M, Qu M, Zhao X, Duan H, Hu X, Liu T, Zhou Q, Shi W. Epithelium-derived miR-204 inhibits corneal neovascularization. Exp Eye Res 2017; 167:122-127. [PMID: 29246498 DOI: 10.1016/j.exer.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/28/2022]
Abstract
MicroRNA-204 (miR-204) is highly expressed in cornea, here we explored the role and mechanism of miR-204 in corneal neovascularization (CNV). Mouse CNV was induced by intrastromal placement of suture in BALB/c mice with the subconjunctival injection of miR-204 agomir or negative control. Human primary limbal epithelial cells (LECs) and immortalized microvascular endothelial cells (HMECs) were used to evaluate the expression changes and anti-angiogenic effects of miR-204 under biomechanical stress (BS). The expression and localization of miR-204, vascular endothelial growth factor (VEGF) and their receptors were detected by quantitative real-time PCR, in situ hybridization, immunohistochemistry and Western blot. The results showed that miR-204 expression was mainly localized in epithelium and down-expressed in vascularized cornea. Subconjunctival injection of miR-204 agomir inhibited CNV and reduced the expression of VEGF and VEGF receptor 2. Similarly, miR-204 overexpression attenuated the increased expression of VEGF by biomechanical stress in LECs, and suppressed the proliferation, migration, and tube formation of HMECs. These novel findings indicate that epithelium-derived miR-204 inhibits suture-induced CNV through regulating VEGF and VEGF receptor 2.
Collapse
Affiliation(s)
- Xiaoping Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Guohu Di
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Muchen Dong
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingli Qu
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaowen Zhao
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Haoyun Duan
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaoli Hu
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Ting Liu
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Qingjun Zhou
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China.
| | - Weiyun Shi
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China.
| |
Collapse
|
37
|
Insights into the Mechanisms Involved in Protective Effects of VEGF-B in Dopaminergic Neurons. PARKINSONS DISEASE 2017; 2017:4263795. [PMID: 28473940 PMCID: PMC5394414 DOI: 10.1155/2017/4263795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor-B (VEGF-B), when initially discovered, was thought to be an angiogenic factor, due to its intimate sequence homology and receptor binding similarity to the prototype angiogenic factor, vascular endothelial growth factor-A (VEGF-A). Studies demonstrated that VEGF-B, unlike VEGF-A, did not play a significant role in angiogenesis or vascular permeability and has become an active area of interest because of its role as a survival factor in pathological processes in a multitude of systems, including the brain. By characterization of important downstream targets of VEGF-B that regulate different cellular processes in the nervous system and cardiovascular system, it may be possible to develop more effective clinical interventions in diseases such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and ischemic heart disease, which all share mitochondrial dysfunction as part of the disease. Here we summarize what is currently known about the mechanism of action of VEGF-B in pathological processes. We explore its potential as a homeostatic protective factor that improves mitochondrial function in the setting of cardiovascular and neurological disease, with a specific focus on dopaminergic neurons in Parkinson's disease.
Collapse
|