1
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Massey JC, Magagnoli J, Sutton SS, Buckhaults PJ, Wyatt MD. Collateral damage of NUDT15 deficiency in cancer provides a cancer pharmacogenetic therapeutic window with thiopurines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588560. [PMID: 38645136 PMCID: PMC11030356 DOI: 10.1101/2024.04.08.588560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genome instability is a hallmark of cancer and are driven by mutations in oncogenes and tumor suppressor genes. Despite successes seen with select targeted therapeutics, this type of personalized medicine is only beneficial for a small subpopulation of cancer patients who have one of a few actionable genetic changes. Most tumors also contain hundreds of passenger mutations that offered no fitness advantage or disadvantage during tumor evolution. Mutations in known pharmacogenetic (PGx) loci for which germline variants encode variability in drug response can cause somatically acquired drug sensitivity. The NUDT15 gene is a known PGx locus that participates in the rate-limiting metabolism of thiopurines. People with two defective germline alleles of NUDT15 are hypersensitive to the toxic effects of thiopurines. NUDT15 is located adjacent to the Retinoblastoma ( RB1 ) tumor suppressor gene, which often undergoes homozygous deletion in retinoblastomas and other epithelial cancers. We observed that RB1 undergoes homozygous deletions in 9.4% of prostate adenocarcinomas and 2.5% of ovarian cancers, and in nearly all of these cases NUDT15 is also lost. Moreover, 44% of prostate adenocarcinomas and over 60% of ovarian cancers have lost one allele of NUDT15, which predicts that a majority of all prostate and ovarian cancers have somatically acquired hypersensitivity to thiopurine treatment. We performed a retrospective analysis of >16,000 patients in the US Veterans Administration health care system and found concurrent xanthine oxidase inhibition (XOi) and thiopurine usage for non-cancer indications is significantly associated with reduced incidence of prostate cancer. The hazard ratio for the development of prostate cancer in patients treated with thiopurines and XOi was 0.562 (0.301-1.051) for the unmatched cohort and 0.389 (0.185-0.819) for the propensity score matched cohort. We experimentally depleted NUDT15 from ovarian and prostate cancer cell lines and observed a dramatic sensitization to thiopurine-induced and DNA damage-dependent toxicity. These results indicate that somatic loss of NUDT15 predicts therapeutic sensitivity to a low cost and well tolerated drug with a broad therapeutic window.
Collapse
|
3
|
Zhang C, Wang Y, Wu G, Sun N, Bai H, Li X, Han S, Zhou H, Qi R, Zhang J. RPL35A promotes the progression of cholangiocarcinoma by mediating HSPA8 ubiquitination. Biol Direct 2024; 19:16. [PMID: 38395908 PMCID: PMC10885515 DOI: 10.1186/s13062-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a biliary epithelial malignant tumor with an increasing incidence worldwide. Therefore, further understanding of the molecular mechanisms of CCA progression is required to identify new therapeutic targets. METHODS The expression of RPL35A in CCA and para-carcinoma tissues was detected by immunohistochemical staining. IP-MS combined with Co-IP identified downstream proteins regulated by RPL35A. Western blot and Co-IP of CHX or MG-132 treated CCA cells were used to verify the regulation of HSPA8 protein by RPL35A. Cell experiments and subcutaneous tumorigenesis experiments in nude mice were performed to evaluate the effects of RPL35A and HSPA8 on the proliferation, apoptosis, cell cycle, migration of CCA cells and tumor growth in vivo. RESULTS RPL35A was significantly upregulated in CCA tissues and cells. RPL35A knockdown inhibited the proliferation and migration of HCCC-9810 and HUCCT1 cells, induced apoptosis, and arrested the cell cycle in G1 phase. HSPA8 was a downstream protein of RPL35A and overexpressed in CCA. RPL35A knockdown impaired HSPA8 protein stability and increased HSPA8 protein ubiquitination levels. RPL35A overexpression promoted CCA cell proliferation and migration. HSPA8 knockdown inhibited CCA cell proliferation and migration, and reversed the promoting effect of RPL35A. Furthermore, RPL35A promoted tumor growth in vivo. In contrast, HSPA8 knockdown suppressed tumor growth, while was able to restore the effects of RPL35A overexpression. CONCLUSION RPL35A was upregulated in CCA tissues and promoted the progression of CCA by mediating HSPA8 ubiquitination.
Collapse
Affiliation(s)
- Chengshuo Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Yu Wang
- Department of General Surgery, Anshan Central Hospital, No.51, South Zhonghua Road, Tiedong District, 114008, Anshan, Liaoning Province, China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Ning Sun
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Han Bai
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Xuejian Li
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Shuai Han
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China
| | - Ruizhao Qi
- Senior Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, No.28, Fuxing Road, Haidian District, 100039, Beijing, China.
| | - Jialin Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical University, No.155, Nanjingbei street, 110001, Shenyang, Liaoning Province, P. R. China.
| |
Collapse
|
4
|
Zhu J, Yang J, Chen X, Wang Y, Wang X, Zhao M, Li G, Wang Y, Zhu Y, Yan F, Liu T, Jiang L. Integrated Bulk and Single-cell RNA Sequencing Data Constructs and Validates a Prognostic Model for Non-small Cell Lung Cancer. J Cancer 2024; 15:796-808. [PMID: 38213729 PMCID: PMC10777029 DOI: 10.7150/jca.90768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Background: Most of the current research on prognostic model construction for non-small cell lung cancer (NSCLC) only involves in bulk RNA-seq data without integration of single-cell RNA-seq (scRNA-seq) data. Besides, most of the prognostic models are constructed by predictive genes, ignoring other predictive variables such as clinical features. Methods: We obtained scRNA-seq data from GEO database and bulk RNA-seq data from TCGA database. We construct a prognostic model through the Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression. Furthermore, we performed ESTIMATE, CIBERSORT, immune checkpoint-related analyses and compared drug sensitivity using pRRophetic method judged by IC50 between different risk groups. Results: 14 tumor-related genes were extracted for model construction. The AUC for 1-, 3-, and 5 years overall survival prediction in TCGA and three validation cohorts were almost higher than 0.65, some of which were even higher than 0.7, even 0.8. Besides, calibration curves suggested no departure between model prediction and perfect fit. Additionally, immune-related and drug sensitivity results revealed potential targets and strategies for treatment, which can provide clinical guidance. Conclusion: We integrated traditional bulk RNA-seq and scRNA-seq data, along with predictive clinical features to develop a prognostic model for patients with NSCLC. According to the constructed model, patients in different groups can follow precise and individual therapeutic schedules based on immune characteristics as well as drug sensitivity.
Collapse
Affiliation(s)
- Junkai Zhu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Junluo Yang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Xinyi Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yang Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong, 510282, P.R. China
| | - Xin Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Mengmeng Zhao
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Guanjie Li
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yuhang Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yuyao Zhu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Tiantian Liu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Liyun Jiang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
5
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|
6
|
Gan H, Li L, Hu X, Cai J, Hu X, Zhang H, Zhao N, Xu X, Guo H, Pang P. DDX24 regulates the chemosensitivity of hepatocellular carcinoma to sorafenib via mediating the expression of SNORA18. Cancer Biol Ther 2022; 23:1-14. [PMID: 36310384 PMCID: PMC9629112 DOI: 10.1080/15384047.2022.2135960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sorafenib (SFN) is a multi-kinase inhibitor drug for the treatment of advanced hepatocellular carcinoma (HCC), but its limited efficacy is a major obstacle to the clinical outcomes of patients with HCC. We aimed to explore a novel molecular mechanism underlying the chemosensitivity of HCC to SFN, and to identify a promising therapeutic target for HCC treatment. In this study, bioinformatic analysis revealed that DDX24 was associated with poor survival in HCC cases, and significantly related to the pathways modulating tumor development. DDX24 regulated HCC cell proliferation and migration potentials. Moreover, reduction of DDX24 promoted the sorafenib-mediated inhibition of HCC cell growth and migration, the elevation of sorafenib-induced HCC cell apoptosis. DDX24 overexpression suppressed the inhibitory effect of SFN on cell proliferation and migration and reduced the apoptosis induced by SFN. Further, DDX24, combined with SFN treatment, presented a synergistic enhancement of the sensitivity of SFN to the growth and migration of HCC cells via AKT/ERK and the epithelial-mesenchymal transition (EMT) pathways, and that it modulated apoptosis via the caspase/PARP pathway. Mechanistically, SNORA18 served as a target gene for DDX24, regulating the chemosensitivity of sorafenib-treated HCC cells. Furthermore, SNORA18 knockdown or overexpression could partially reverse the inhibition or elevation of cell viability, colony formation and migration induced by DDX24 in sorafenib-treated HCC cells, respectively. Collectively, our results suggest that DDX24 regulates the chemosensitivity of HCC to SFN by mediating the expression of SNORA18, which may act as an effective therapeutic target for improving SFN efficiency in HCC treatment.
Collapse
Affiliation(s)
- Hairun Gan
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,CONTACT Hairun Gan Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Luting Li
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xinyan Hu
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Jianxun Cai
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xiaojun Hu
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Haopei Zhang
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Ni Zhao
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xiwei Xu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Hui Guo
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Pengfei Pang
- Center for Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China,Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
7
|
McLean B, Istadi A, Clack T, Vankan M, Schramek D, Neely GG, Pajic M. A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200014. [PMID: 36911295 PMCID: PMC9993475 DOI: 10.1002/ggn2.202200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Cancer is the second leading cause of death globally, with therapeutic resistance being a major cause of treatment failure in the clinic. The dynamic signaling that occurs between tumor cells and the diverse cells of the surrounding tumor microenvironment actively promotes disease progression and therapeutic resistance. Improving the understanding of how tumors evolve following therapy and the molecular mechanisms underpinning de novo or acquired resistance is thus critical for the identification of new targets and for the subsequent development of more effective combination regimens. Simultaneously targeting multiple hallmark capabilities of cancer to circumvent adaptive or evasive resistance may lead to significantly improved treatment response in the clinic. Here, the latest applications of functional genomics tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) editing, to characterize the dynamic cancer resistance mechanisms, from improving the understanding of resistance to classical chemotherapeutics, to deciphering unique mechanisms that regulate tumor responses to new targeted agents and immunotherapies, are discussed. Potential avenues of future research in combating therapeutic resistance, the contribution of tumor-stroma signaling in this setting, and how advanced functional genomics tools can help streamline the identification of key molecular determinants of drug response are explored.
Collapse
Affiliation(s)
- Benjamin McLean
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
| | - Aji Istadi
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
| | - Teleri Clack
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Mezzalina Vankan
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Daniel Schramek
- Centre for Molecular and Systems BiologyLunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioM5G 1X5Canada
- Department of Molecular GeneticsFaculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - G. Gregory Neely
- Dr. John and Anne Chong Lab for Functional GenomicsCharles Perkins CentreCentenary InstituteUniversity of SydneyCamperdownNew South Wales2006Australia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical Research384 Victoria St, DarlinghurstSydneyNew South Wales2010Australia
- St Vincent's Clinical SchoolFaculty of MedicineUniversity of NSW SydneySydneyNew South Wales2052Australia
| |
Collapse
|
8
|
Gasparian A, Aksenova M, Oliver D, Levina E, Doran R, Lucius M, Piroli G, Oleinik N, Ogretmen B, Mythreye K, Frizzell N, Broude E, Wyatt MD, Shtutman M. Depletion of COPI in cancer cells: the role of reactive oxygen species in the induction of lipid accumulation, noncanonical lipophagy and apoptosis. Mol Biol Cell 2022; 33:ar135. [PMID: 36222847 PMCID: PMC9727790 DOI: 10.1091/mbc.e21-08-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The coatomer protein complex 1 (COPI) is a multisubunit complex that coats intracellular vesicles and is involved in intracellular protein trafficking. Recently we and others found that depletion of COPI complex subunits zeta (COPZ1) and delta (ARCN1) preferentially kills tumor cells relative to normal cells. Here we delineate the specific cellular effects and sequence of events of COPI complex depletion in tumor cells. We find that this depletion leads to the inhibition of mitochondrial oxidative phosphorylation and the elevation of reactive oxygen species (ROS) production, followed by accumulation of lipid droplets (LDs) and autophagy-associated proteins LC3-II and SQSTM1/p62 and, finally, apoptosis of the tumor cells. Inactivation of ROS in COPI-depleted cells with the mitochondrial-specific quencher, mitoquinone mesylate, attenuated apoptosis and markedly decreased both the size and the number of LDs. COPI depletion caused ROS-dependent accumulation of LC3-II and SQSTM1 which colocalizes with LDs. Lack of double-membrane autophagosomes and insensitivity to Atg5 deletion suggested an accumulation of a microlipophagy complex on the surface of LDs induced by depletion of the COPI complex. Our findings suggest a sequence of cellular events triggered by COPI depletion, starting with inhibition of oxidative phosphorylation, followed by ROS activation and accumulation of LDs and apoptosis.
Collapse
Affiliation(s)
- A. Gasparian
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. Aksenova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - D. Oliver
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - E. Levina
- Department of Biological Sciences College of Art and Science, University of South Carolina, Columbia, SC 29208
| | - R. Doran
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - G. Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - N. Oleinik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - B. Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - K. Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - N. Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - E. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. D. Wyatt
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208,*Address correspondence to: M. Shtutman ()
| |
Collapse
|
9
|
Hu X, Li F, Zhou Y, Gan H, Wang T, Li L, Long H, Li B, Pang P. DDX24 promotes metastasis by regulating RPL5 in non-small cell lung cancer. Cancer Med 2022; 11:4513-4525. [PMID: 35864588 PMCID: PMC9741967 DOI: 10.1002/cam4.4835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a leading cause of cancer death, and metastasis is a crucial determinant of increased cancer mortality. DDX24 has garnered increased attention due to its correlation with tumorigenesis and malignant progression. However, the correlation between DDX24 and NSCLC remains unclear. METHODS DDX24 expression in NSCLC tissues and survival rate of patients was analyzed using bioinformatic analysis. Transwell assays, wound-healing assays, and tail vein lung colonization models were employed to determine the role of DDX24 in migration and invasion in vitro and in vivo. We searched for DDX24-interacting proteins using co-immunoprecipitation followed by mass spectroscopy and verified the interaction. The influence of DDX24 on RPL5 expression and ubiquitination was examined using protein stability assays. RESULTS DDX24 expression was upregulated in NSCLC cell lines and tumors of patients, particularly those with high tumor grades. A high DDX24 level was also correlated with a poor prognosis. DDX24 upregulation enhanced the migration and invasion ability of NSCLC cells, whereas its downregulation had the opposite effects. In vivo xenograft experiments confirmed that tumors with high DDX24 expression had higher metastatic abilities. The interaction between DDX24 and RPL5 promoted its ubiquitination and destabilized it. CONCLUSIONS DDX24 acted as a pro-tumorigenic factor and promoted metastasis in NSCLC. DDX24 interacted with RPL5 to promote its ubiquitination and degradation. As a result, targeting DDX24/RPL5 axis may provide a novel potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Xinyan Hu
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Fangfang Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingP.R. China
| | - Yulan Zhou
- Department of NursingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China
| | - Hairun Gan
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Tiancheng Wang
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Luting Li
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Haoyu Long
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| | - Bing Li
- Department of OphthalmologyThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China
| | - Pengfei Pang
- Department of Interventional MedicineThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Key Laboratory of Biomedical ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Guangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhaiP.R. China,Institute of Interventional RadiologySun Yat‐Sen UniversityZhuhaiP.R. China
| |
Collapse
|
10
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Comprehensive omics studies of p53 mutants in human cancer. Brief Funct Genomics 2022; 22:97-108. [PMID: 35809339 DOI: 10.1093/bfgp/elac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
The p53 is the master regulator of the cell known for regulating a large array of cellular processes. Inactivation of p53 by missense mutations is one of the leading causes of cancer. Some of these mutations endow p53 with selective oncogenic functions to promote tumor progression. Due to the vast array of mutations found in p53, the experimental studies showing the role of different mutant p53 as an oncogene are also expanding. In this review, we discuss the oncogenic roles of different p53 mutants at the cellular level identified by multi-omics tools. We discuss some of the therapeutic studies to tackle p53 mutants and their downstream targets identified by omics. We also highlight the future prospective and scope of further studies of downstream p53 targets by omics.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
11
|
Li W, Li M, Zhang X, Yue S, Xu Y, Jian W, Qin Y, Lin L, Liu W. Improved profiling of low molecular weight serum proteome for gastric carcinoma by data-independent acquisition. Anal Bioanal Chem 2022; 414:6403-6417. [PMID: 35773495 DOI: 10.1007/s00216-022-04196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Low molecular weight proteins (LMWPs) in the bloodstream participate in various biological processes and are closely associated with disease status, whereas identification of serous LMWPs remains a great technical challenge due to the wide dynamic range of protein components. In this study, we constructed an integrated LMWP library by combining the LMWPs obtained by three enrichment methods (50% ACN, 20% ACN + 20 mM ABC, and 30 kDa) and their fractions identified by the data-dependent acquisition method. With this newly constructed library, we comprehensively profiled LMWPs in serum using data-independent acquisition and reliably achieved quantitative results for 75% serous LMWPs. When applying this strategy to quantify LMWPs in human serum samples, we could identify 405 proteins on average per sample, of which 136 proteins were with a MW less than 30 kDa and 293 proteins were with a MW less than 65 kDa. Of note, pre- and post-operative gastric carcinoma (GC) patients showed differentially expressed serous LWMPs, which was also different from the pattern of LWMP expression in healthy controls. In conclusion, our results showed that LMWPs could efficiently distinguish GC patients from healthy controls as well as between pre- and post-operative statuses, and more importantly, our newly developed LMWP profiling platform could be used to discover candidate LMWP biomarkers for disease diagnosis and status monitoring.
Collapse
Affiliation(s)
- Weifeng Li
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Mengna Li
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Xiaoli Zhang
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Siqin Yue
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yun Xu
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Wenjing Jian
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yin Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Lin Lin
- Sustech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| |
Collapse
|
12
|
Shan H, Liu T, Gan H, He S, Deng J, Hu X, Li L, Cai L, He J, Long H, Cai J, Li H, Zhang Q, Wang L, Chen F, Chen Y, Zhang H, Li J, Yang L, Liu Y, Yang J, Kuang DM, Pang P, He H. RNA helicase DDX24 stabilizes LAMB1 to promote hepatocellular carcinoma progression. Cancer Res 2022; 82:3074-3087. [PMID: 35763670 DOI: 10.1158/0008-5472.can-21-3748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies. Elucidating the underlying mechanisms of this disease could provide new therapeutic strategies for treating HCC. Here, we identified a novel role of DEAD-box helicase 24 (DDX24), a member of the DEAD-box protein family, in promoting HCC progression. DDX24 levels were significantly elevated in HCC tissues and were associated with poor prognosis of HCC. Overexpression of DDX24 promoted HCC migration and proliferation in vitro and in vivo, whereas suppression of DDX24 inhibited both functions. Mechanistically, DDX24 bound the mRNA618-624nt of laminin subunit beta 1 (LAMB1) and increased its stability in a manner dependent upon the interaction between nucleolin (NCL) and the C-terminal region of DDX24. Moreover, RFX8 was identified as a DDX24 promoter-binding protein that transcriptionally upregulated DDX24 expression. Collectively, these findings demonstrate that the RFX8/DDX24/LAMB1 axis promotes HCC progression, providing potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Hong Shan
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Tianze Liu
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hairun Gan
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Simeng He
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jia Deng
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xinyan Hu
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Luting Li
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Li Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | - JianZhong He
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haoyu Long
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianxun Cai
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hanjie Li
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Zhang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangbin Chen
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuming Chen
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haopei Zhang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lukun Yang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ye Liu
- Sun Yat-sen University 5th Hospital, Zhuhai, Guangdong province, China
| | | | - Dong-Ming Kuang
- Sun Yat-sen University, Guangzhou, Outside the United States or C, China
| | - Pengfei Pang
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
13
|
Rao TD, Xu M, Eng S, Yang G, Manson R, Rosales N, Kumar R, Veillard IE, Zhou Q, Iasonos A, Ouerfelli O, Djaballah H, Spriggs DR, Yeku OO. Dual Fluorescence Isogenic Synthetic Lethal Kinase Screen and High-Content Secondary Screening for MUC16/CA125 Selective Agents. Mol Cancer Ther 2022; 21:775-785. [PMID: 35413118 DOI: 10.1158/1535-7163.mct-21-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Significant strides have been made in the development of precision therapeutics for cancer. Aberrantly expressed glycoproteins represent a potential avenue for therapeutic development. The MUC16/CA125 glycoprotein serves as a biomarker of disease and a driver of malignant transformation in epithelial ovarian cancer. Previously, we demonstrated a proof-of-principle approach to selectively targeting MUC16+ cells. In this report, we performed a synthetic lethal kinase screen using a human kinome RNAi library and identified key pathways preferentially targetable in MUC16+ cells using isogenic dual florescence ovarian cancer cell lines. Utilizing a separate approach, we performed high-content small-molecule screening of 6 different libraries of 356,982 compounds for MUC16/CA125 selective agents and identified lead candidates that showed preferential cytotoxicity in MUC16+ cells. Compounds with differential activity were selected and tested in various other ovarian cell lines or isogenic pairs to identify lead compounds for Structural Activity Relationship (SAR) selection. Lead siRNA and small molecule inhibitor candidates preferentially inhibited invasion of MUC16+ cells in vitro and in vivo and we show that this is due to decreased activation of MAP kinase, and non-receptor tyrosine kinases. Taken together, we present a comprehensive screening approach to the development of a novel class of MUC16-selective targeted therapeutics and identify candidates suitable for further clinical development.
Collapse
Affiliation(s)
- Thapi Dharma Rao
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Mengyao Xu
- Massachusetts General Hospital, Boston, United States
| | - Stephanie Eng
- Memorial Sloan Kettering Cancer Center, United States
| | - Guangli Yang
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robin Manson
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nestor Rosales
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Raj Kumar
- Massachusetts General Hospital, Boston, Massachusetts, United States
| | | | - Qin Zhou
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alexia Iasonos
- Memorial Sloan Kettering Cancer Center, New York, United States
| | | | | | | | - Oladapo O Yeku
- Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
14
|
AlZahrani WM, AlGhamdi SA, Zughaibi TA, Rehan M. Exploring the Natural Compounds in Flavonoids for Their Potential Inhibition of Cancer Therapeutic Target MEK1 Using Computational Methods. Pharmaceuticals (Basel) 2022; 15:195. [PMID: 35215307 PMCID: PMC8876294 DOI: 10.3390/ph15020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
The Mitogen-Activated Protein Kinase (MAPK) signaling pathway plays an important role in cancer cell proliferation and survival. MAPKs' protein kinases MEK1/2 serve as important targets in drug designing against cancer. The natural compounds' flavonoids are known for their anticancer activity. This study aims to explore flavonoids for their inhibition ability, targeting MEK1 using virtual screening, molecular docking, ADMET prediction, and molecular dynamics (MD) simulations. Flavonoids (n = 1289) were virtually screened using molecular docking and have revealed possible inhibitors of MEK1. The top five scoring flavonoids based on binding affinity (highest score for MEK1 is -10.8 kcal/mol) have been selected for further protein-ligand interaction analysis. Lipinski's rule (drug-likeness) and absorption, distribution, metabolism, excretion, and toxicity predictions were followed to find a good balance of potency. The selected flavonoids of MEK1 have been refined with 30 (ns) molecular dynamics (MD) simulation. The five selected flavonoids are strongly suggested to be promising potent inhibitors for drug development as anticancer therapeutics of the therapeutic target MEK1.
Collapse
Affiliation(s)
- Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Li X, Chen X, Gao J, Xian J, Li Z, Bi L, Yang M, Yang S, Jin H, Shan H. Loss-of-function Mutations K11E or E271K Lead to Novel Tumor Suppression, Implicate Nucleolar Helicase DDX24 Oncogenicity. Int J Med Sci 2022; 19:596-608. [PMID: 35370459 PMCID: PMC8964322 DOI: 10.7150/ijms.67840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Mutations (K11E or E271K) of DEAD-box RNA helicase 24 (DDX24) were related to multi-organ venous lymphatic malformation syndrome (MOVLD). However, the relationship between these mutations and DDX24-function still remains unknown. Understanding whether K11E and E271K cause "loss-of-function" or "gain-of-function" for DDX24 is significant for related diseases. DDX24 was reported to be related to tumors closely, thus this study aims to explore how K11E and E271K affect DDX24-function in tumor proliferation. Methods: Cell lines stably expressing wild-type DDX24, K11E-DDX24, E271K-DDX24, along with vector only based on Chinese hamster ovary cells (CHO) and Balb/c tumor-bearing mice models were constructed. Then immunofluorescence staining, proliferation assay and colony formation assay in vitro and 18F-FDG PET/CT-scan were performed. Finally, the tumor tissues were collected to perform transcriptome sequencing to predict the potential mechanism. Results: Contrasted with CHO-WT-DDX24, CHO-K11E-DDX24 or CHO-E271K-DDX24 showed a decreased number of nucleoli, a slower proliferation rate and a lower colony formation rate significantly. Moreover, mice, inoculated with CHO-K11E-DDX24 or CHO-E271K-DDX24 cells, showed lower tumor formation rate, slower tumor growth rate, better prognosis, reduced standard uptake value and Ki of glucose in subcutaneous tumors. Sequencing indicated CHO-K11E-DDX24 or CHO-E271K-DDX24 caused increasing expression of TNF or chemokines and alteration in immune-related signal pathways. Conclusion: K11E or E271K mutation could lead to "loss-of-function" of DDX24 in cell proliferation and tumor bearing mice, which may be acted by non-specific immune killing to inhibit tumor growth.
Collapse
Affiliation(s)
- Xinglin Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Ultrasound, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province 518000, China
| | - Xiaoyun Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Radiology, Zhongshan Affiliated Hospital, Guangzhou University of Chinese Medicine, Zhongshan, Guangdong Province 528400, China
| | - Jiebing Gao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianzhong Xian
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Shuai Yang
- Center of Oncology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.,Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| |
Collapse
|
16
|
CaMKK2 facilitates Golgi-associated vesicle trafficking to sustain cancer cell proliferation. Cell Death Dis 2021; 12:1040. [PMID: 34725334 PMCID: PMC8560770 DOI: 10.1038/s41419-021-04335-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates cell and whole-body metabolism and supports tumorigenesis. The cellular impacts of perturbing CAMKK2 expression are, however, not yet fully characterised. By knocking down CAMKK2 levels, we have identified a number of significant subcellular changes indicative of perturbations in vesicle trafficking within the endomembrane compartment. To determine how they might contribute to effects on cell proliferation, we have used proteomics to identify Gemin4 as a direct interactor, capable of binding CAMKK2 and COPI subunits. Prompted by this, we confirmed that CAMKK2 knockdown leads to concomitant and significant reductions in δ-COP protein. Using imaging, we show that CAMKK2 knockdown leads to Golgi expansion, the induction of ER stress, abortive autophagy and impaired lysosomal acidification. All are phenotypes of COPI depletion. Based on our findings, we hypothesise that CAMKK2 sustains cell proliferation in large part through effects on organelle integrity and membrane trafficking.
Collapse
|
17
|
Use of relevancy and complementary information for discriminatory gene selection from high-dimensional gene expression data. PLoS One 2021; 16:e0230164. [PMID: 34613963 PMCID: PMC8494339 DOI: 10.1371/journal.pone.0230164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
With the advent of high-throughput technologies, life sciences are generating a huge amount of varied biomolecular data. Global gene expression profiles provide a snapshot of all the genes that are transcribed in a cell or in a tissue under a particular condition. The high-dimensionality of such gene expression data (i.e., very large number of features/genes analyzed with relatively much less number of samples) makes it difficult to identify the key genes (biomarkers) that are truly attributing to a particular phenotype or condition, (such as cancer), de novo. For identifying the key genes from gene expression data, among the existing literature, mutual information (MI) is one of the most successful criteria. However, the correction of MI for finite sample is not taken into account in this regard. It is also important to incorporate dynamic discretization of genes for more relevant gene selection, although this is not considered in the available methods. Besides, it is usually suggested in current studies to remove redundant genes which is particularly inappropriate for biological data, as a group of genes may connect to each other for downstreaming proteins. Thus, despite being redundant, it is needed to add the genes which provide additional useful information for the disease. Addressing these issues, we proposed Mutual information based Gene Selection method (MGS) for selecting informative genes. Moreover, to rank these selected genes, we extended MGS and propose two ranking methods on the selected genes, such as MGSf—based on frequency and MGSrf—based on Random Forest. The proposed method not only obtained better classification rates on gene expression datasets derived from different gene expression studies compared to recently reported methods but also detected the key genes relevant to pathways with a causal relationship to the disease, which indicate that it will also able to find the responsible genes for an unknown disease data.
Collapse
|
18
|
Anwar DM, El-Sayed M, Reda A, Fang JY, Khattab SN, Elzoghby AO. Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes. Expert Opin Drug Deliv 2021; 18:1609-1625. [PMID: 34254868 DOI: 10.1080/17425247.2021.1955853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The use of herbal compounds in cancer therapy has great potential to promote the efficacy of current cancer therapeutic strategies. Herbal compounds were successfully reported to enhance tumor cells sensitization to the action of chemo-, hormonal- and gene-therapeutic agents via different mechanisms. Herbal ingredients can affect different signaling pathways, reduce the toxic side effects or inhibit the efflux of anticancer drugs.Areas covered: This review will discuss the delivery of herbal compounds with other cancer treatments such as hormonal, small molecule inhibitors and inorganic hybrids to tumor cells. An overview of physicochemical properties of herbal components that require intelligent design of combo-nanomedicines for efficient co-delivery of those herbal-derived and other anticancer agents was discussed. Nanocarriers provide various benefits to overcome the shortcomings of the encapsulated herbal compounds including improved solubility, increased stability and enhanced tumor targeting. Different nanocarrier systems were the focus of this review.Expert opinion: Multifunctional nanocarrier systems encapsulating herbal and different anticancer drugs showed to be a wonderful approach in the treatment of cancer enabling the co-delivery of anticancer drugs with versatile modes of action in an accurate manner in an attempt to enhance the efficacy, benefit from the synergism between the drugs as well as to minimize the development of multi-drug resistance. The main challenge point is the early detection and management of any developed adverse effect.
Collapse
Affiliation(s)
- Doaa M Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Arab Academy for Science Technology & Maritime Transport, Alexandria, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mousa El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Asmaa Reda
- Nanomedicine Division, Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt.,Molecular and Cellular Biology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of AnesthesiologyChang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Li F, Li J, Yu J, Pan T, Yu B, Sang Q, Dai W, Hou J, Yan C, Zang M, Zhu Z, Su L, Li YY, Liu B. Identification of ARGLU1 as a potential therapeutic target for gastric cancer based on genome-wide functional screening data. EBioMedicine 2021; 69:103436. [PMID: 34157484 PMCID: PMC8220577 DOI: 10.1016/j.ebiom.2021.103436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Due to the molecular mechanism complexity and heterogeneity of gastric cancer (GC), mechanistically interpretable biomarkers were required for predicting prognosis and discovering therapeutic targets for GC patients. METHODS Based on a total of 824 GC-specific fitness genes from the Project Score database, LASSOCox regression was performed in TCGA-STAD cohort to construct a GC Prognostic (GCP) model which was then evaluated on 7 independent GC datasets. Targets prioritization was performed in GC organoids. ARGLU1 was selected to further explore the biological function and molecular mechanism. We evaluated the potential of ARGLU1 serving as a promising therapeutic target for GC using patients derived xenograft (PDX) model. FINDINGS The 9-gene GCP model showed a statistically significant prognostic performance for GC patients in 7 validation cohorts. Perturbation of SSX4, DDX24, ARGLU1 and TTF2 inhibited GC organoids tumor growth. The results of tissue microarray indicated lower expression of ARGLU1 was correlated with advanced TNM stage and worse overall survival. Over-expression ARGLU1 significantly inhibited GC cells viability in vitro and in vivo. ARGLU1 could enhance the transcriptional level of mismatch repair genes including MLH3, MSH2, MSH3 and MSH6 by potentiating the recruitment of SP1 and YY1 on their promoters. Moreover, inducing ARGLU1 by LNP-formulated saRNA significantly inhibited tumor growth in PDX model. INTERPRETATION Based on genome-wide functional screening data, we constructed a 9-gene GCP model with satisfactory predictive accuracy and mechanistic interpretability. Out of nine prognostic genes, ARGLU1 was verified to be a potential therapeutic target for GC. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Fangyuan Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jianfang Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Junxian Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tao Pan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Beiqin Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Qingqing Sang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wentao Dai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; Shanghai Center for Bioinformation Technology, Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, PR China
| | - Junyi Hou
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Chao Yan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Mingde Zang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, 200032 Shanghai, PR China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Liping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yuan-Yuan Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; Shanghai Center for Bioinformation Technology, Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, PR China.
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
20
|
Li B, Fang L, Wang B, Yang Z, Zhao T. Identification of Prognostic RBPs in Osteosarcoma. Technol Cancer Res Treat 2021; 20:15330338211004918. [PMID: 33754909 PMCID: PMC8120427 DOI: 10.1177/15330338211004918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma often occurs in children and adolescents and causes poor prognosis. The role of RNA-binding proteins (RBPs) in malignant tumors has been elucidated in recent years. Our study aims to identify key RBPs in osteosarcoma that could be prognostic factors and treatment targets. GSE33382 dataset was downloaded from Gene Expression Omnibus (GEO) database. RBPs extraction and differential expression analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to explore the biological function of differential expression RBPs. Moreover, we constructed Protein-protein interaction (PPI) network and obtained key modules. Key RBPs were identified by univariate Cox regression analysis and multiple stepwise Cox regression analysis combined with the clinical information from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Risk score model was generated and validated by GSE16091 dataset. A total of 38 differential expression RBPs was identified. Go and KEGG results indicated these RBPs were significantly involved in ribosome biogenesis and mRNA surveillance pathway. COX regression analysis showed DDX24, DDX21, WARS and IGF2BP2 could be prognostic factors in osteosarcoma. Spearman's correlation analysis suggested that WARS might be important in osteosarcoma immune infiltration. In conclusion, DDX24, DDX21, WARS and IGF2BP2 might play key role in osteosarcoma, which could be therapuetic targets for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bei Li
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Long Fang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baolong Wang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengkun Yang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingbao Zhao
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
Cui BC, Sikirzhytski V, Aksenova M, Lucius MD, Levon GH, Mack ZT, Pollack C, Odhiambo D, Broude E, Lizarraga SB, Wyatt MD, Shtutman M. Pharmacological inhibition of DEAD-Box RNA Helicase 3 attenuates stress granule assembly. Biochem Pharmacol 2020; 182:114280. [PMID: 33049245 DOI: 10.1016/j.bcp.2020.114280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.
Collapse
Affiliation(s)
- B Celia Cui
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Marina Aksenova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Matthew D Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Gabrielle H Levon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Charlotte Pollack
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Diana Odhiambo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Eugenia Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
22
|
Mughees M, Samim M, Sharma Y, Wajid S. Identification of protein targets and the mechanism of the cytotoxic action of Ipomoea turpethum extract loaded nanoparticles against breast cancer cells. J Mater Chem B 2020; 7:6048-6063. [PMID: 31549130 DOI: 10.1039/c9tb00824a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shortcomings of the currently available anti-breast cancer agents compel the development of the safer targeted drug delivery for the treatment of breast cancer. The aim of the present study was to evaluate the anti-breast cancer potential of Ipomoea turpethum extract loaded nanoparticles (NIPAAM-VP-AA) against breast cancer, together with the identification of the key proteins responsible for the caused cytotoxicity. For this, we explored the tumor microenvironment for targeted drug delivery and synthesized (temperature and pH responsive) double triggered polymeric nanoparticles by the free radical mechanism and characterized them by DLS and TEM. The extract which emerged as the best extract, i.e. root extract, was loaded on the nanoparticles and the cytotoxicity was evaluated in breast cancer cell lines (MCF-7 and MDA-MB-231) by various cytotoxic assays like MTT assay, CFSE cell proliferation assay, apoptosis assay, cell cycle study and DAPI nuclear staining. The key protein targets responsible for the caused cytotoxicity were identified by nano-LC-MS/MS analysis. The proteome analysis revealed that most of the significantly differentially expressed proteins have a role in proliferation, vesicular trafficking, apoptosis and tumor suppression. Finally, the interaction among the highly differentially expressed proteins was identified by using the STRING online tool, which showed that I. turpethum nanoparticles caused apoptosis in MCF-7 and MDA MB-231 cells by targeting nucleolysin TIAR, serine/threonine-protein phosphatase PP1 and ubiquitin-60S ribosomal protein L40.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India.
| | | | | | | |
Collapse
|
23
|
Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. Int J Pharm 2020; 586:119583. [PMID: 32603837 DOI: 10.1016/j.ijpharm.2020.119583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Targeted drug delivery system in the form of herbal based nano-formulations is the new ray of hope for minimizing the side effects related to the anti-cancer drugs as well as conventional drug delivery system. In view of this, the present study was designed to evaluate the cytotoxic potential of A. absinthium extract loaded polymeric nanoparticles (NVA-AA) against the breast cancer cell lines (MCF-7 and MDA MB-231) and to identify the protein targets for the caused cytotoxicity. The polymeric nanoparticles (PNPs) were prepared by free radical mechanism and loaded with the whole plant extract. The cytotoxicity of these NVA-AA were evaluated on the breast cancer cell lines via different cytotoxic parameters viz. MTT assay, CFSE proliferation assay, apoptosis assay, cell cycle study. The protein targets and the interaction among them were identified by nano-LCMS/MS analysis and STRING online tool respectively, which were further validated by qPCR and BLI. The LCMS/MS analysis suggests that the caused cytotoxicity was due to the alteration of proteins involved in vesicular trafficking, apoptosis, proliferation and metastasis. Further, interactome analysis identified UBA52 in MCF-7 and TIAL1, PPP1CC in MDA MB-231 cells as the central molecule in the vesicular trafficking and apoptosis networking connection.
Collapse
|
24
|
Di Marco T, Bianchi F, Sfondrini L, Todoerti K, Bongarzone I, Maffioli EM, Tedeschi G, Mazzoni M, Pagliardini S, Pellegrini S, Neri A, Anania MC, Greco A. COPZ1 depletion in thyroid tumor cells triggers type I IFN response and immunogenic cell death. Cancer Lett 2020; 476:106-119. [PMID: 32061953 DOI: 10.1016/j.canlet.2020.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
The coatomer protein complex zeta 1 (COPZ1) represents a non-oncogene addiction for thyroid cancer (TC); its depletion impairs the viability of thyroid tumor cells, leads to abortive autophagy, ER stress, UPR and apoptosis, and reduces tumor growth of TC xenograft models. In this study we investigated the molecular pathways activated by COPZ1 depletion and the paracrine effects on cellular microenvironment and immune response. By comprehensive and target approaches we demonstrated that COPZ1 depletion in TPC-1 and 8505C thyroid tumor cell lines activates type I IFN pathway and viral mimicry responses. The secretome from COPZ1-depleted cells was enriched for several inflammatory molecules and damage-associated molecular patterns (DAMPs). Moreover, we found that dendritic cells, exposed to these secretomes, expressed high levels of differentiation and maturation markers, and stimulated the proliferation of naïve T cells. Interestingly, T cells stimulated with COPZ1-depleted cells showed increased cytotoxic activity against parental tumor cells. Collectively, our findings support the notion that targeting COPZ1 may represent a promising therapeutic approach for TC, considering its specificity for cancer cells, the lack of effect on normal cells, and the capacity to prompt an anti-tumor immune response.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per La Salute, University of Milan, Via Mangiagalli, 31, 20133, Milan, Italy.
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy.
| | - Italia Bongarzone
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | | | - Gabriella Tedeschi
- Department of Veterinary Medicine, University of Milan, Via Celoria, 10, 20133, Milan, Italy; Fondazione Filarete, Via Celoria, 10, 20133, Milan, Italy.
| | - Mara Mazzoni
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Sonia Pagliardini
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Sandra Pellegrini
- Institut Pasteur, Unit of Cytokine Signaling, Inserm U1221, 75724, Paris, France.
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Italy Via Francesco Sforza, 35, 20122, Milan, Italy.
| | - Maria Chiara Anania
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| | - Angela Greco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| |
Collapse
|
25
|
Anania MC, Di Marco T, Mazzoni M, Greco A. Targeting Non-Oncogene Addiction: Focus on Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12010129. [PMID: 31947935 PMCID: PMC7017043 DOI: 10.3390/cancers12010129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common malignancy of endocrine organs with an increasing incidence in industrialized countries. The majority of TC are characterized by a good prognosis, even though cases with aggressive forms not cured by standard therapies are also present. Moreover, target therapies have led to low rates of partial response and prompted the emergence of resistance, indicating that new therapies are needed. In this review, we summarize current literature about the non-oncogene addiction (NOA) concept, which indicates that cancer cells, at variance with normal cells, rely on the activity of genes, usually not mutated or aberrantly expressed, essential for coping with the transformed phenotype. We highlight the potential of non-oncogenes as a point of intervention for cancer therapy in general, and present evidence for new putative non-oncogenes that are essential for TC survival and that may constitute attractive new therapeutic targets.
Collapse
|
26
|
Song JH, Kang HJ, Luevano LA, Gokhale V, Wu K, Pandey R, Sherry Chow HH, Hurley LH, Kraft AS. Small-Molecule-Targeting Hairpin Loop of hTERT Promoter G-Quadruplex Induces Cancer Cell Death. Cell Chem Biol 2019; 26:1110-1121.e4. [PMID: 31155510 PMCID: PMC6713458 DOI: 10.1016/j.chembiol.2019.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
Abstract
Increased telomerase activity is associated with malignancy and poor prognosis in human cancer, but the development of targeted agents has not yet provided clinical benefit. Here we report that, instead of targeting the telomerase enzyme directly, small molecules that bind to the G-hairpin of the hTERT G-quadruplex-forming sequence kill selectively malignant cells without altering the function of normal cells. RG260 targets the hTERT G-quadruplex stem-loop folding but not tetrad DNAs, leading to downregulation of hTERT expression. To improve physicochemical and pharmacokinetic properties, we derived a small-molecule analog, RG1603, from the parent compound. RG1603 induces mitochondrial defects including PGC1α and NRF2 inhibition and increases oxidative stress, followed by DNA damage and apoptosis. RG1603 injected as a single agent has tolerable toxicity while achieving strong anticancer efficacy in a tumor xenograft mouse model. These results demonstrate a unique approach to inhibiting the hTERT that functions by impairing mitochondrial activity, inducing cell death.
Collapse
Affiliation(s)
- Jin H Song
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA; University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | - Hyun-Jin Kang
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; Reglagene LLC, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Libia A Luevano
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Vijay Gokhale
- Reglagene LLC, 1703 East Mabel Street, Tucson, AZ 85721, USA; BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Kui Wu
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA; University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - H-H Sherry Chow
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; Reglagene LLC, 1703 East Mabel Street, Tucson, AZ 85721, USA.
| | - Andrew S Kraft
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| |
Collapse
|
27
|
Reunert J, Rust S, Grüneberg M, Seelhöfer A, Kurz D, Ocker V, Weber D, Fingerhut R, Marquardt T. Transient N-glycosylation abnormalities likely due to a de novo loss-of-function mutation in the delta subunit of coat protein I. Am J Med Genet A 2019; 179:1371-1375. [PMID: 31075182 DOI: 10.1002/ajmg.a.61190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Accurate glycosylation of proteins is essential for their function and their intracellular transport. Numerous diseases have been described, where either glycosylation or intracellular transport of proteins is impaired. Coat protein I (COPI) is involved in anterograde and retrograde transport of proteins between endoplasmic reticulum and Golgi, where glycosylation takes place, but no association of defective COPI proteins and glycosylation defects has been described so far. We identified a patient whose phenotype at a first glance was reminiscent of PGM1 deficiency, a disease that also affects N-glycosylation of proteins. More detailed analyses revealed a different disease with a glycosylation deficiency that was only detectable during episodes of acute illness of the patient. Trio-exome analysis revealed a de novo loss-of-function mutation in ARCN1, coding for the delta-COP subunit of COPI. We hypothesize that the capacity of flow through Golgi is reduced by this defect and at high protein synthesis rates, this bottleneck also manifests as transient glycosylation deficiency.
Collapse
Affiliation(s)
- Janine Reunert
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Stephan Rust
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Marianne Grüneberg
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Anja Seelhöfer
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Daniel Kurz
- Department of Paediatrics, Olgahospital, Stuttgart, Germany
| | - Volker Ocker
- Department of Paediatrics, Olgahospital, Stuttgart, Germany
| | - Dorothea Weber
- Gemeinschaftspraxis für Kinderheilkunde, Bensheim, Germany
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory and Division of Metabolism, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
28
|
Parameswaran S, Kundapur D, Vizeacoumar FS, Freywald A, Uppalapati M, Vizeacoumar FJ. A Road Map to Personalizing Targeted Cancer Therapies Using Synthetic Lethality. Trends Cancer 2018; 5:11-29. [PMID: 30616753 DOI: 10.1016/j.trecan.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Targeted therapies rely on the genetic and epigenetic status of the tumor cells and are seen as the most promising approach to treat cancer today. However, current targeted therapies focus on directly inhibiting those molecules that are altered in tumor cells. Unfortunately, targeting these molecules, even with specific inhibitors, is challenging as tumor cells rewire their genetic circuitry to eliminate genetic dependency on these targets. Here, we describe how synthetic lethality approaches can be used to identify genetic dependencies and develop personalized targeted therapies. We also discuss strategies to specifically target these genetic dependencies, using small molecule and biologic drugs.
Collapse
Affiliation(s)
- Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; These authors contributed equally
| | - Deeksha Kundapur
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; These authors contributed equally
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada.
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5, Canada; Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
29
|
Georges A, Marcon E, Greenblatt J, Frappier L. Identification and Characterization of USP7 Targets in Cancer Cells. Sci Rep 2018; 8:15833. [PMID: 30367141 PMCID: PMC6203733 DOI: 10.1038/s41598-018-34197-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin specific protease, USP7, regulates multiple cellular pathways relevant for cancer through its ability to bind and sometimes stabilize specific target proteins through deubiquitylation. To gain a more complete profile of USP7 interactions in cancer cells, we performed affinity purification coupled to mass spectrometry to identify USP7 binding targets in gastric carcinoma cells. This confirmed reported associations of USP7 with USP11, PPM1G phosphatase and TRIP12 E3 ubiquitin ligase as well as identifying novel interactions with two DEAD/DEAH-box RNA helicases, DDX24 and DHX40. Using USP7 binding pocket mutants, we show that USP11, PPM1G, TRIP12 and DDX24 bind USP7 through its TRAF domain binding pocket, while DHX40 interacts with USP7 through a distinct binding pocket in the Ubl2 domain. P/A/ExxS motifs in USP11 and DDX24 that are critical for USP7 binding were also identified. Modulation of USP7 expression levels and inhibition of USP7 catalytic activity in multiple cells lines showed that USP7 consistently stabilizes DDX24, DHX40 and TRIP12 dependent on its catalytic activity, while USP11 and PPM1G levels were not consistently affected. Our study better defines the mechanisms of USP7 interaction with known targets and identifies DDX24 and DHX40 as new targets that are specifically bound and regulated by USP7.
Collapse
Affiliation(s)
- Anna Georges
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Méhul B, Perrin A, Grisendi K, Galindo AN, Dayon L, Ménigot C, Rival Y, Voegel JJ. Mass spectrometry and DigiWest technology emphasize protein acetylation profile from Quisinostat-treated HuT78 CTCL cell line. J Proteomics 2018; 187:126-143. [PMID: 30012418 DOI: 10.1016/j.jprot.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Histone deacetylases (HDACs) are key enzymes involved in epigenetic modulation and were targeted by HDAC inhibitors (HDACis) for cancer treatment. The action of HDACis is not restricted to histones and also prevents deacetylation of other proteins, supporting their wide biological actions. The HuT78 cell line is recognized as a key tool to support and understand cutaneous T-cell lymphoma (CTCL) biology and was used as a predictive model since HDACi such as Vorinostat and Panobinostat have both demonstrated apoptotic activities in HuT78 cells and in primary blood CTCL cells. In this study, Quisinostat (JNJ-26481585) a novel second-generation HDACi with highest potency for HDAC1, was tested on HuT78 cell line. Quantitative mass spectrometry (MS)-based proteomics after acetylated-lysine peptide enrichment and a targeted antibody-based immunoassay (DigiWest) were used as complementary technologies to assess the modifications of the acetylated proteome. As expected, several acetylated lysines of histones were increased by the HDACi. Additional acetylated non-histone proteins were modulated after treatment with Quisinostat including the nucleolin (a major nucleolar protein), the replication protein A 70 kDa DNA-binding subunit, the phosphoglycerate kinase 1, the stress-70 protein, the proto-oncogene Myc and the serine hydroxymethyltransferase. A better knowledge of histone and non-histone acetylated protein profile after Quisinostat treatment can strongly support the understanding of non-clinical and clinical results of this HDACi. These technological tools can also help in designing new HDACis in a pharmaceutical drug discovery program. SIGNIFICANCE A better knowledge of histone and non-histone acetylated protein profile after HDAC inhibitors (HDACis) treatment can strongly support the understanding of non-clinical and clinical investigations in a pharmaceutical drug discovery program. Relative quantification using mass spectrometry -based proteomics after acetylated-lysine peptide enrichment and a targeted antibody-based immunoassay (DigiWest) are proposed as complementary technologies to assess the modifications of the acetylated proteome. Quisinostat (JNJ-26481585) a novel second-generation HDACi with highest potency for HDAC1 was better characterized in vitro in HuT78 cells to support and understand cutaneous T-cell lymphoma (CTCL) therapeutic research program.
Collapse
Affiliation(s)
- Bruno Méhul
- Galderma, Nestlé Skin Health R & D, 2400, route des Colles, 06410 Biot, France.
| | - Agnes Perrin
- Galderma, Nestlé Skin Health R & D, 2400, route des Colles, 06410 Biot, France
| | - Karine Grisendi
- Galderma, Nestlé Skin Health R & D, 2400, route des Colles, 06410 Biot, France
| | | | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Corinne Ménigot
- Galderma, Nestlé Skin Health R & D, 2400, route des Colles, 06410 Biot, France
| | - Yves Rival
- Galderma, Nestlé Skin Health R & D, 2400, route des Colles, 06410 Biot, France
| | - Johannes J Voegel
- Galderma, Nestlé Skin Health R & D, 2400, route des Colles, 06410 Biot, France
| |
Collapse
|
31
|
Zhou Y, Xu Z, Quan D, Zhang F, Zhang H, Xiao T, Hou S, Qiao H, Harismendy O, Wang JYJ, Suo G. Nuclear respiratory factor 1 promotes spheroid survival and mesenchymal transition in mammary epithelial cells. Oncogene 2018; 37:6152-6165. [PMID: 29995872 DOI: 10.1038/s41388-018-0349-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/18/2018] [Accepted: 05/13/2018] [Indexed: 12/18/2022]
Abstract
Epithelial cells aggregate into spheroids when deprived of matrix, and the proclivity for spheroid formation and survival is a hallmark of normal and tumorigenic mammary stem cells. We show here that Nuclear Respiratory Factor 1 (NRF1) is a spheroid promoter by in silico identification of this transcription factor as highly connected to top shRNA-hits deduced from re-iterative selections for shRNAs enriched in MCF10A spheroids. NRF1-promoted spheroid survival is linked to its stimulation of mitochondrial OXPHOS, cell migration, invasion, and mesenchymal transition. Conversely, NRF1 knockdown in breast cancer MDA-MB-231 cells reduced spheroids, migration, invasion, and mesenchymal marker expression. NRF1 knockdown also reduced tumor burden in mammary fat pads and lungs of orthotopic- or tail vein-transplanted mice. With the Luminal A subtype of breast cancer, higher NRF1 expression is associated with lower survival. These results show that NRF1, an activator of mitochondrial metabolism, supports mammary spheroid survival and tumor development.
Collapse
Affiliation(s)
- Yuanshuai Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Daniel Quan
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, 92093-0820, USA
| | - Fan Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hai Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Tongqian Xiao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Hou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Olivier Harismendy
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, 92093-0820, USA
| | - Jean Y J Wang
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, 92093-0820, USA
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, 215123, China.
| |
Collapse
|
32
|
Flentje A, Kober KM, Carrico AW, Neilands TB, Flowers E, Heck NC, Aouizerat BE. Minority stress and leukocyte gene expression in sexual minority men living with treated HIV infection. Brain Behav Immun 2018; 70:335-345. [PMID: 29548994 PMCID: PMC5953835 DOI: 10.1016/j.bbi.2018.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Sexual minority (i.e., non-heterosexual) individuals experience poorer mental and physical health, accounted for in part by the additional burden of sexual minority stress occurring from being situated in a culture favoring heteronormativity. Informed by previous research, the purpose of this study was to identify the relationship between sexual minority stress and leukocyte gene expression related to inflammation, cancer, immune function, and cardiovascular function. Sexual minority men living with HIV who were on anti-retroviral medication, had viral load < 200 copies/mL, and had biologically confirmed, recent methamphetamine use completed minority stress measures and submitted blood samples for RNA sequencing on leukocytes. Differential gene expression and pathway analyses were conducted comparing those with clinically elevated minority stress (n = 18) and those who did not meet the clinical cutoff (n = 20), covarying reactive urine toxicology results for very recent stimulant use. In total, 90 differentially expressed genes and 138 gene set pathways evidencing 2-directional perturbation were observed at false discovery rate (FDR) < 0.10. Of these, 41 of the differentially expressed genes and 35 of the 2-directionally perturbed pathways were identified as functionally related to hypothesized mechanisms of inflammation, cancer, immune function, and cardiovascular function. The neuroactive-ligand receptor pathway (implicated in cancer development) was identified using signaling pathway impact analysis. Our results suggest several potential biological pathways for future work investigating the relationship between sexual minority stress and health.
Collapse
Affiliation(s)
- Annesa Flentje
- Community Health Systems, School of Nursing, University of California, San Francisco, United States.
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Computational Health Sciences, University of California, San Francisco, United States
| | | | - Torsten B Neilands
- Center for AIDS Prevention Studies, Department of Medicine, University of California, San Francisco, United States
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States
| | - Nicholas C Heck
- Department of Psychology, Marquette University, United States
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| |
Collapse
|
33
|
Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget 2018; 9:19050-19064. [PMID: 29721183 PMCID: PMC5922377 DOI: 10.18632/oncotarget.24887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
High Mobility Group B (HMGB) proteins are involved in cancer progression and in cellular responses to platinum compounds used in the chemotherapy of prostate and ovary cancer. Here we use affinity purification coupled to mass spectrometry (MS) and yeast two-hybrid (Y2H) screening to carry out an exhaustive study of HMGB1 and HMGB2 protein interactions in the context of prostate and ovary epithelia. We present a proteomic study of HMGB1 partners based on immunoprecipitation of HMGB1 from a non-cancerous prostate epithelial cell line. In addition, HMGB1 and HMGB2 were used as baits in yeast two-hybrid screening of libraries from prostate and ovary epithelial cell lines as well as from healthy ovary tissue. HMGB1 interacts with many nuclear proteins that control gene expression, but also with proteins that form part of the cytoskeleton, cell-adhesion structures and others involved in intracellular protein translocation, cellular migration, secretion, apoptosis and cell survival. HMGB2 interacts with proteins involved in apoptosis, cell motility and cellular proliferation. High confidence interactors, based on repeated identification in different cell types or in both MS and Y2H approaches, are discussed in relation to cancer. This study represents a useful resource for detailed investigation of the role of HMGB1 in cancer of epithelial origins, as well as potential alternative avenues of therapeutic intervention.
Collapse
|
34
|
Anania MC, Cetti E, Lecis D, Todoerti K, Gulino A, Mauro G, Di Marco T, Cleris L, Pagliardini S, Manenti G, Belmonte B, Tripodo C, Neri A, Greco A. Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells. Cancer Lett 2017; 410:201-211. [PMID: 28951131 DOI: 10.1016/j.canlet.2017.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023]
Abstract
Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ1 depletion leads to thyroid tumor cell death. We showed that siRNA-mediated COPZ1 depletion causes abortive autophagy, endoplasmic reticulum stress, unfolded protein response and apoptosis. Interestingly, we observed that mouse tumor xenografts, locally treated with siRNA targeting COPZ1, showed a significant reduction of tumor growth. On the whole, we demonstrated for the first time the crucial role of COPZ1 in the viability of thyroid tumor cells, suggesting that it may be considered an attractive target for novel therapeutic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Maria Chiara Anania
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Elena Cetti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Daniele Lecis
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Alessandro Gulino
- Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Giuseppe Mauro
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Tiziana Di Marco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loredana Cleris
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Sonia Pagliardini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giacomo Manenti
- Department of Predictive and Preventive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Beatrice Belmonte
- Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Claudio Tripodo
- Department of Health Science, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Greco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|