1
|
Kolesnikov AV, Murphy DP, Corbo JC, Kefalov VJ. Germline knockout of Nr2e3 protects photoreceptors in three distinct mouse models of retinal degeneration. Proc Natl Acad Sci U S A 2024; 121:e2316118121. [PMID: 38442152 PMCID: PMC10945761 DOI: 10.1073/pnas.2316118121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 03/07/2024] Open
Abstract
Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Daniel P. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Vladimir J. Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| |
Collapse
|
2
|
Loell KJ, Friedman RZ, Myers CA, Corbo JC, Cohen BA, White MA. Transcription factor interactions explain the context-dependent activity of CRX binding sites. PLoS Comput Biol 2024; 20:e1011802. [PMID: 38227575 PMCID: PMC10817189 DOI: 10.1371/journal.pcbi.1011802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and silencers, but the sequence context that determines whether CRX binding sites contribute to activation or repression of transcription is not understood. To investigate the context-dependent activity of CRX sites, we fit neural network-based models to the activities of synthetic CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites consistently make positive, independent contributions to CRE activity, while negative homotypic interactions between sites cause CREs composed of multiple CRX sites to function as silencers. The effects of negative homotypic interactions can be overcome by the presence of other TFBSs that either interact cooperatively with CRX sites or make independent positive contributions to activity. The context-dependent activity of CRX sites is thus determined by the balance between positive heterotypic interactions, independent contributions of TFBSs, and negative homotypic interactions. Our findings explain observed patterns of activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers may require diverse TFBSs to overcome negative homotypic interactions between TFBSs.
Collapse
Affiliation(s)
- Kaiser J. Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan Z. Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Michael A. White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Herrera I, Fernandes JAL, Shir-Mohammadi K, Levesque J, Mattar P. Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration. Cell Death Dis 2023; 14:701. [PMID: 37880237 PMCID: PMC10600220 DOI: 10.1038/s41419-023-06224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Neurodegenerative diseases are accompanied by dynamic changes in gene expression, including the upregulation of hallmark stress-responsive genes. While the transcriptional pathways that impart adaptive and maladaptive gene expression signatures have been the focus of intense study, the role of higher order nuclear organization in this process is less clear. Here, we examine the role of the nuclear lamina in genome organization during the degeneration of rod photoreceptors. Two proteins had previously been shown to be necessary and sufficient to tether heterochromatin at the nuclear envelope. The lamin B receptor (Lbr) is expressed during development, but downregulates upon rod differentiation. A second tether is the intermediate filament lamin A (LA), which is not normally expressed in murine rods. Here, we show that in the rd1 model of retinitis pigmentosa, LA ectopically upregulates in rod photoreceptors at the onset of degeneration. LA upregulation correlated with increased heterochromatin tethering at the nuclear periphery in rd1 rods, suggesting that LA reorganizes the nucleus. To determine how heterochromatin tethering affects the genome, we used in vivo electroporation to misexpress LA or Lbr in mature rods in the absence of degeneration, resulting in the restoration of conventional nuclear architecture. Using scRNA-seq, we show that reorganizing the nucleus via LA/Lbr misexpression has relatively minor effects on rod gene expression. Next, using ATAC-seq, we show that LA and Lbr both lead to marked increases in genome accessibility. Novel ATAC-seq peaks tended to be associated with stress-responsive genes. Together, our data reveal that heterochromatin tethers have a global effect on genome accessibility, and suggest that heterochromatin tethering primes the photoreceptor genome to respond to stress.
Collapse
Affiliation(s)
- Ivana Herrera
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - José Alex Lourenço Fernandes
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Khatereh Shir-Mohammadi
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jasmine Levesque
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Pierre Mattar
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Friedman RZ, Ramu A, Lichtarge S, Myers CA, Granas DM, Gause M, Corbo JC, Cohen BA, White MA. Active learning of enhancer and silencer regulatory grammar in photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554146. [PMID: 37662358 PMCID: PMC10473580 DOI: 10.1101/2023.08.21.554146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cis-regulatory elements (CREs) direct gene expression in health and disease, and models that can accurately predict their activities from DNA sequences are crucial for biomedicine. Deep learning represents one emerging strategy to model the regulatory grammar that relates CRE sequence to function. However, these models require training data on a scale that exceeds the number of CREs in the genome. We address this problem using active machine learning to iteratively train models on multiple rounds of synthetic DNA sequences assayed in live mammalian retinas. During each round of training the model actively selects sequence perturbations to assay, thereby efficiently generating informative training data. We iteratively trained a model that predicts the activities of sequences containing binding motifs for the photoreceptor transcription factor Cone-rod homeobox (CRX) using an order of magnitude less training data than current approaches. The model's internal confidence estimates of its predictions are reliable guides for designing sequences with high activity. The model correctly identified critical sequence differences between active and inactive sequences with nearly identical transcription factor binding sites, and revealed order and spacing preferences for combinations of motifs. Our results establish active learning as an effective method to train accurate deep learning models of cis-regulatory function after exhausting naturally occurring training examples in the genome.
Collapse
Affiliation(s)
- Ryan Z. Friedman
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Avinash Ramu
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Sara Lichtarge
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110
| | - David M. Granas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Maria Gause
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Barak A. Cohen
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Michael A. White
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| |
Collapse
|
5
|
Sun C, Ruzycki PA, Chen S. Rho enhancers play unexpectedly minor roles in Rhodopsin transcription and rod cell integrity. Sci Rep 2023; 13:12899. [PMID: 37558693 PMCID: PMC10412641 DOI: 10.1038/s41598-023-39979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Enhancers function with a basal promoter to control the transcription of target genes. Enhancer regulatory activity is often studied using reporter-based transgene assays. However, unmatched results have been reported when selected enhancers are silenced in situ. In this study, using genomic deletion analysis in mice, we investigated the roles of two previously identified enhancers and the promoter of the Rho gene that codes for the visual pigment rhodopsin. The Rho gene is robustly expressed by rod photoreceptors of the retina, and essential for the subcellular structure and visual function of rod photoreceptors. Mutations in RHO cause severe vision loss in humans. We found that each Rho regulatory region can independently mediate local epigenomic changes, but only the promoter is absolutely required for establishing active Rho chromatin configuration and transcription and maintaining the cell integrity and function of rod photoreceptors. To our surprise, two Rho enhancers that enable strong promoter activation in reporter assays are largely dispensable for Rho expression in vivo. Only small and age-dependent impact is detectable when both enhancers are deleted. Our results demonstrate context-dependent roles of enhancers and highlight the importance of studying functions of cis-regulatory regions in the native genomic context.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Genetics, Washington University, 660 South Euclid Avenue, MSC 8096-0006-11, Saint Louis, MO, 63110, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University, 660 South Euclid Avenue, MSC 8096-0006-06, Saint Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Keeley PW, Patel SS, Reese BE. Cell numbers, cell ratios, and developmental plasticity in the rod pathway of the mouse retina. J Anat 2023; 243:204-222. [PMID: 35292986 PMCID: PMC10335380 DOI: 10.1111/joa.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.
Collapse
Affiliation(s)
- Patrick W. Keeley
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Shivam S. Patel
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Benjamin E. Reese
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of Psychological & Brain SciencesUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
7
|
Herrera-Uribe J, Lim KS, Byrne KA, Daharsh L, Liu H, Corbett RJ, Marco G, Schroyen M, Koltes JE, Loving CL, Tuggle CK. Integrative profiling of gene expression and chromatin accessibility elucidates specific transcriptional networks in porcine neutrophils. Front Genet 2023; 14:1107462. [PMID: 37287538 PMCID: PMC10242145 DOI: 10.3389/fgene.2023.1107462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Neutrophils are vital components of the immune system for limiting the invasion and proliferation of pathogens in the body. Surprisingly, the functional annotation of porcine neutrophils is still limited. The transcriptomic and epigenetic assessment of porcine neutrophils from healthy pigs was performed by bulk RNA sequencing and transposase accessible chromatin sequencing (ATAC-seq). First, we sequenced and compared the transcriptome of porcine neutrophils with eight other immune cell transcriptomes to identify a neutrophil-enriched gene list within a detected neutrophil co-expression module. Second, we used ATAC-seq analysis to report for the first time the genome-wide chromatin accessible regions of porcine neutrophils. A combined analysis using both transcriptomic and chromatin accessibility data further defined the neutrophil co-expression network controlled by transcription factors likely important for neutrophil lineage commitment and function. We identified chromatin accessible regions around promoters of neutrophil-specific genes that were predicted to be bound by neutrophil-specific transcription factors. Additionally, published DNA methylation data from porcine immune cells including neutrophils were used to link low DNA methylation patterns to accessible chromatin regions and genes with highly enriched expression in porcine neutrophils. In summary, our data provides the first integrative analysis of the accessible chromatin regions and transcriptional status of porcine neutrophils, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the utility of chromatin accessible regions to identify and enrich our understanding of transcriptional networks in a cell type such as neutrophils.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Department of Animal Resource Science, Kongju National University, Yesan, Republic of Korea
| | - Kristen A. Byrne
- USDA-Agriculture Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, United States
| | - Lance Daharsh
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Ryan J. Corbett
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Gianna Marco
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Martine Schroyen
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Crystal L. Loving
- USDA-Agriculture Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, Ames, IA, United States
| | | |
Collapse
|
8
|
Massoudi D, Gorman S, Kuo YM, Iwawaki T, Oakes SA, Papa FR, Gould DB. Deletion of the Unfolded Protein Response Transducer IRE1α Is Detrimental to Aging Photoreceptors and to ER Stress-Mediated Retinal Degeneration. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37097227 PMCID: PMC10148664 DOI: 10.1167/iovs.64.4.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Purpose The unfolded protein response (UPR) is triggered when the protein folding capacity of the endoplasmic reticulum (ER) is overwhelmed and misfolded proteins accumulate in the ER, a condition referred to as ER stress. IRE1α is an ER-resident protein that plays major roles in orchestrating the UPR. Several lines of evidence implicate the UPR and its transducers in neurodegenerative diseases, including retinitis pigmentosa (RP), a group of inherited diseases that cause progressive dysfunction and loss of rod and cone photoreceptors. This study evaluated the contribution of IRE1α to photoreceptor development, homeostasis, and degeneration. Methods We used a conditional gene targeting strategy to selectively inactivate Ire1α in mouse rod photoreceptors. We used a combination of optical coherence tomography (OCT) imaging, histology, and electroretinography (ERG) to assess longitudinally the effect of IRE1α deficiency in retinal development and function. Furthermore, we evaluated the IRE1α-deficient retina responses to tunicamycin-induced ER stress and in the context of RP caused by the rhodopsin mutation RhoP23H. Results OCT imaging, histology, and ERG analyses did not reveal abnormalities in IRE1α-deficient retinas up to 3 months old. However, by 6 months of age, the Ire1α mutant animals showed reduced outer nuclear layer thickness and deficits in retinal function. Furthermore, conditional inactivation of Ire1α in rod photoreceptors accelerated retinal degeneration caused by the RhoP23H mutation. Conclusions These data suggest that IRE1α is dispensable for photoreceptor development but important for photoreceptor homeostasis in aging retinas and for protecting against ER stress-mediated photoreceptor degeneration.
Collapse
Affiliation(s)
- Dawiyat Massoudi
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Seán Gorman
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Scott A. Oakes
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States
| | - Feroz R. Papa
- Department of Medicine, Diabetes Center, Quantitative Biosciences Institute and Lung Biology Center University of California, San Francisco, San Francisco, California, United States
| | - Douglas B. Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, University of California, San Francisco, California, United States
| |
Collapse
|
9
|
Jones MK, Agarwal D, Mazo KW, Chopra M, Jurlina SL, Dash N, Xu Q, Ogata AR, Chow M, Hill AD, Kambli NK, Xu G, Sasik R, Birmingham A, Fisch KM, Weinreb RN, Enke RA, Skowronska-Krawczyk D, Wahlin KJ. Chromatin Accessibility and Transcriptional Differences in Human Stem Cell-Derived Early-Stage Retinal Organoids. Cells 2022; 11:3412. [PMID: 36359808 PMCID: PMC9657268 DOI: 10.3390/cells11213412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023] Open
Abstract
Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.
Collapse
Affiliation(s)
- Melissa K. Jones
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Devansh Agarwal
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin W. Mazo
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Shawna L. Jurlina
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Qianlan Xu
- Center for Translational Vision Research, University of California Irvine, Irvine, CA 92617, USA
| | - Anna R. Ogata
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Chow
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex D. Hill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Netra K. Kambli
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biotechnology, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | | | - Karl J. Wahlin
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Bachu VS, Kandoi S, Park KU, Kaufman ML, Schwanke M, Lamba DA, Brzezinski JA. An enhancer located in a Pde6c intron drives transient expression in the cone photoreceptors of developing mouse and human retinas. Dev Biol 2022; 488:131-150. [PMID: 35644251 PMCID: PMC10676565 DOI: 10.1016/j.ydbio.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.
Collapse
Affiliation(s)
- Vismaya S Bachu
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Miller AL, Fuller-Carter PI, Masarini K, Samardzija M, Carter KW, Rashwan R, Lim XR, Brunet AA, Chopra A, Ram R, Grimm C, Ueffing M, Carvalho LS, Trifunović D. Increased H3K27 trimethylation contributes to cone survival in a mouse model of cone dystrophy. Cell Mol Life Sci 2022; 79:409. [PMID: 35810394 PMCID: PMC9271452 DOI: 10.1007/s00018-022-04436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6ccpfl1 mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival. We investigated the effects of GSK-J4 treatment on cone cell survival in vivo and ex vivo and changes in cone-specific gene expression via single-cell RNA sequencing. A single intravitreal GSK-J4 injection led to transcriptional changes in pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, among other key epigenetic pathways, highlighting the complex interplay between methylation and acetylation in healthy and diseased cones. Furthermore, continuous administration of GSK-J4 in retinal explants increased cone survival. Our results suggest that IRD (Inherited retinal disease)-affected cones respond positively to epigenetic modulation of histones, indicating the potential of this approach in developing a broad class of novel therapies to slow cone degeneration.
Collapse
Affiliation(s)
- Annie L Miller
- Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, 2 Verdun Street, Nedlands, WA, 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Paula I Fuller-Carter
- Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, 2 Verdun Street, Nedlands, WA, 6009, Australia
| | - Klaudija Masarini
- Institute for Ophthalmic Research, Tübingen University, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Germany
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Kim W Carter
- Analytical Computing Solutions, Willetton, WA, 6155, Australia
| | - Rabab Rashwan
- Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, 2 Verdun Street, Nedlands, WA, 6009, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Xin Ru Lim
- Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, 2 Verdun Street, Nedlands, WA, 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Alicia A Brunet
- Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, 2 Verdun Street, Nedlands, WA, 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Marius Ueffing
- Institute for Ophthalmic Research, Tübingen University, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Germany
| | - Livia S Carvalho
- Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, 2 Verdun Street, Nedlands, WA, 6009, Australia.
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| | - Dragana Trifunović
- Institute for Ophthalmic Research, Tübingen University, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Liang X, Brooks MJ, Swaroop A. Developmental genome-wide occupancy analysis of bZIP transcription factor NRL uncovers the role of c-Jun in early differentiation of rod photoreceptors in the mammalian retina. Hum Mol Genet 2022; 31:3914-3933. [PMID: 35776116 DOI: 10.1093/hmg/ddac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
The basic motif-leucine zipper (bZIP) transcription factor NRL determines rod photoreceptor cell fate during retinal development, and its loss leads to cone-only retina in mice. NRL works synergistically with homeodomain protein CRX and other regulatory factors to control the transcription of most genes associated with rod morphogenesis and functional maturation, which span over a period of several weeks in the mammalian retina. We predicted that NRL gradually establishes rod cell identity and function by temporal and dynamic regulation of stage-specific transcriptional targets. Therefore, we mapped the genomic occupancy of NRL at four stages of mouse photoreceptor differentiation by CUT&RUN analysis. Dynamics of NRL-binding revealed concordance with the corresponding changes in transcriptome of the developing rods. Notably, we identified c-Jun proto-oncogene as one of the targets of NRL, which could bind to specific cis-elements in the c-Jun promoter and modulate its activity in HEK293 cells. Coimmunoprecipitation studies showed association of NRL with c-Jun, also a bZIP protein, in transfected cells as well as in developing mouse retina. Additionally, shRNA-mediated knockdown of c-Jun in the mouse retina in vivo resulted in altered expression of almost 1000 genes, with reduced expression of phototransduction genes and many direct targets of NRL in rod photoreceptors. We propose that c-Jun-NRL heterodimers prime the NRL-directed transcriptional program in neonatal rod photoreceptors before high NRL expression suppresses c-Jun at later stages. Our study highlights a broader cooperation among cell-type restricted and widely expressed bZIP proteins, such as c-Jun, in specific spatiotemporal contexts during cellular differentiation.
Collapse
Affiliation(s)
- Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
14
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Sirés A, Turch-Anguera M, Bogdanov P, Sampedro J, Ramos H, Ruíz Lasa A, Huo J, Xu S, Lam KP, López-Soriano J, Pérez-García MJ, Hernández C, Simó R, Solé M, Comella JX. Faim knockout leads to gliosis and late-onset neurodegeneration of photoreceptors in the mouse retina. J Neurosci Res 2021; 99:3103-3120. [PMID: 34713467 DOI: 10.1002/jnr.24978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023]
Abstract
Fas Apoptotic Inhibitory Molecule protein (FAIM) is a death receptor antagonist and an apoptosis regulator. It encodes two isoforms, namely FAIM-S (short) and FAIM-L (long), both with significant neuronal functions. FAIM-S, which is ubiquitously expressed, is involved in neurite outgrowth. In contrast, FAIM-L is expressed only in neurons and it protects them from cell death. Interestingly, FAIM-L is downregulated in patients and mouse models of Alzheimer's disease before the onset of neurodegeneration, and Faim transcript levels are decreased in mouse models of retinal degeneration. However, few studies have addressed the role of FAIM in the central nervous system, yet alone the retina. The retina is a highly specialized tissue, and its degeneration has proved to precede pathological mechanisms of neurodegenerative diseases. Here we describe that Faim depletion in mice damages the retina persistently and leads to late-onset photoreceptor death in older mice. Immunohistochemical analyses showed that Faim knockout (Faim-/- ) mice present ubiquitinated aggregates throughout the retina from early ages. Moreover, retinal cells released stress signals that can signal to Müller cells, as shown by immunofluorescence and qRT-PCR. Müller cells monitor retinal homeostasis and trigger a gliotic response in Faim-/- mice that becomes pathogenic when sustained. In this regard, we observed pronounced vascular leakage at later ages, which may be caused by persistent inflammation. These results suggest that FAIM is an important player in the maintenance of retinal homeostasis, and they support the premise that FAIM is a plausible early marker for late photoreceptor and neuronal degeneration.
Collapse
Affiliation(s)
- Anna Sirés
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Mireia Turch-Anguera
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Joel Sampedro
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Agustín Ruíz Lasa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Research Center and Memory Clinic. Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jianxin Huo
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - M Jose Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
16
|
Smith CL, Lan Y, Jain R, Epstein JA, Poleshko A. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors. SCIENCE ADVANCES 2021; 7:eabj3035. [PMID: 34559565 PMCID: PMC8462898 DOI: 10.1126/sciadv.abj3035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The nuclear architecture of rod photoreceptor cells in nocturnal mammals is unlike that of other animal cells. Murine rod cells have an “inverted” chromatin organization with euchromatin at the nuclear periphery and heterochromatin packed in the center of the nucleus. In conventional nuclear architecture, euchromatin is mostly in the interior, and heterochromatin is largely at the nuclear periphery. We demonstrate that inverted nuclear architecture is achieved through global relabeling of the rod cell epigenome. During rod cell maturation, H3K9me2-labeled nuclear peripheral heterochromatin is relabeled with H3K9me3 and repositioned to the nuclear center, while transcriptionally active euchromatin is labeled with H3K9me2 and positioned at the nuclear periphery. Global chromatin relabeling is correlated with spatial rearrangement, suggesting a critical role for histone modifications, specifically H3K9 methylation, in nuclear architecture. These results reveal a dramatic example of genome-wide epigenetic relabeling of chromatin that accompanies altered nuclear architecture in a postnatal, postmitotic cell.
Collapse
Affiliation(s)
- Cheryl L. Smith
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute, and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Friedman RZ, Granas DM, Myers CA, Corbo JC, Cohen BA, White MA. Information content differentiates enhancers from silencers in mouse photoreceptors. eLife 2021; 10:67403. [PMID: 34486522 PMCID: PMC8492058 DOI: 10.7554/elife.67403] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Enhancers and silencers often depend on the same transcription factors (TFs) and are conflated in genomic assays of TF binding or chromatin state. To identify sequence features that distinguish enhancers and silencers, we assayed massively parallel reporter libraries of genomic sequences targeted by the photoreceptor TF cone-rod homeobox (CRX) in mouse retinas. Both enhancers and silencers contain more TF motifs than inactive sequences, but relative to silencers, enhancers contain motifs from a more diverse collection of TFs. We developed a measure of information content that describes the number and diversity of motifs in a sequence and found that, while both enhancers and silencers depend on CRX motifs, enhancers have higher information content. The ability of information content to distinguish enhancers and silencers targeted by the same TF illustrates how motif context determines the activity of cis-regulatory sequences. Different cell types are established by activating and repressing the activity of specific sets of genes, a process controlled by proteins called transcription factors. Transcription factors work by recognizing and binding short stretches of DNA in parts of the genome called cis-regulatory sequences. A cis-regulatory sequence that increases the activity of a gene when bound by transcription factors is called an enhancer, while a sequence that causes a decrease in gene activity is called a silencer. To establish a cell type, a particular transcription factor will act on both enhancers and silencers that control the activity of different genes. For example, the transcription factor cone-rod homeobox (CRX) is critical for specifying different types of cells in the retina, and it acts on both enhancers and silencers. In rod photoreceptors, CRX activates rod genes by binding their enhancers, while repressing cone photoreceptor genes by binding their silencers. However, CRX always recognizes and binds to the same DNA sequence, known as its binding site, making it unclear why some cis-regulatory sequences bound to CRX act as silencers, while others act as enhancers. Friedman et al. sought to understand how enhancers and silencers, both bound by CRX, can have different effects on the genes they control. Since both enhancers and silencers contain CRX binding sites, the difference between the two must lie in the sequence of the DNA surrounding these binding sites. Using retinas that have been explanted from mice and kept alive in the laboratory, Friedman et al. tested the activity of thousands of CRX-binding sequences from the mouse genome. This showed that both enhancers and silencers have more copies of CRX-binding sites than sequences of the genome that are inactive. Additionally, the results revealed that enhancers have a diverse collection of binding sites for other transcription factors, while silencers do not. Friedman et al. developed a new metric they called information content, which captures the diverse combinations of different transcription binding sites that cis-regulatory sequences can have. Using this metric, Friedman et al. showed that it is possible to distinguish enhancers from silencers based on their information content. It is critical to understand how the DNA sequences of cis-regulatory regions determine their activity, because mutations in these regions of the genome can cause disease. However, since every person has thousands of benign mutations in cis-regulatory sequences, it is a challenge to identify specific disease-causing mutations, which are relatively rare. One long-term goal of models of enhancers and silencers, such as Friedman et al.’s information content model, is to understand how mutations can affect cis-regulatory sequences, and, in some cases, lead to disease.
Collapse
Affiliation(s)
- Ryan Z Friedman
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - David M Granas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Barak A Cohen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Michael A White
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
18
|
Inhibition of Epigenetic Modifiers LSD1 and HDAC1 Blocks Rod Photoreceptor Death in Mouse Models of Retinitis Pigmentosa. J Neurosci 2021; 41:6775-6792. [PMID: 34193554 DOI: 10.1523/jneurosci.3102-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Epigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes. The histone modification eraser enzymes lysine demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) are known to have dramatic effects on the development of rod photoreceptors. In the RP mouse model, inhibitors of these enzymes blocked rod degeneration, preserved vision, and affected the expression of multiple genes including maintenance of rod-specific transcripts and downregulation of those involved in inflammation, gliosis, and cell death. The neuroprotective activity of LSD1 inhibitors includes two pathways. First, through targeting histone modifications, they increase accessibility of chromatin and upregulate neuroprotective genes, such as from the Wnt pathway. We propose that this process is going in rod photoreceptors. Second, through nonhistone targets, they inhibit transcription of inflammatory genes and inflammation. This process is going in microglia, and lack of inflammation keeps rod photoreceptors alive.SIGNIFICANCE STATEMENT Retinal degenerations are a leading cause of vision loss. RP is genetically very heterogeneous, and the multiple pathways leading to cell death are one reason for the slow progress in identifying suitable treatments for patients. Here we demonstrate that inhibition of LSD1and HDAC1 in a mouse model of RP leads to preservation of rod photoreceptors and visual function, retaining of expression of rod-specific genes, and with decreased inflammation, cell death, and Müller cell gliosis. We propose that these epigenetic inhibitors cause more open and accessible chromatin, allowing expression of neuroprotective genes. A second mechanism that allows rod photoreceptor survival is suppression of inflammation by epigenetic inhibitors in microglia. Manipulation of epigenetic modifiers is a new strategy to fight neurodegeneration in RP.
Collapse
|
19
|
Poupault C, Choi D, Lam-Kamath K, Dewett D, Razzaq A, Bunker J, Perry A, Cho I, Rister J. A combinatorial cis-regulatory logic restricts color-sensing Rhodopsins to specific photoreceptor subsets in Drosophila. PLoS Genet 2021; 17:e1009613. [PMID: 34161320 PMCID: PMC8259978 DOI: 10.1371/journal.pgen.1009613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/06/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Color vision in Drosophila melanogaster is based on the expression of five different color-sensing Rhodopsin proteins in distinct subtypes of photoreceptor neurons. Promoter regions of less than 300 base pairs are sufficient to reproduce the unique, photoreceptor subtype-specific rhodopsin expression patterns. The underlying cis-regulatory logic remains poorly understood, but it has been proposed that the rhodopsin promoters have a bipartite structure: the distal promoter region directs the highly restricted expression in a specific photoreceptor subtype, while the proximal core promoter region provides general activation in all photoreceptors. Here, we investigate whether the rhodopsin promoters exhibit a strict specialization of their distal (subtype specificity) and proximal (general activation) promoter regions, or if both promoter regions contribute to generating the photoreceptor subtype-specific expression pattern. To distinguish between these two models, we analyze the expression patterns of a set of hybrid promoters that combine the distal promoter region of one rhodopsin with the proximal core promoter region of another rhodopsin. We find that the function of the proximal core promoter regions extends beyond providing general activation: these regions play a previously underappreciated role in generating the non-overlapping expression patterns of the different rhodopsins. Therefore, cis-regulatory motifs in both the distal and the proximal core promoter regions recruit transcription factors that generate the unique rhodopsin patterns in a combinatorial manner. We compare this combinatorial regulatory logic to the regulatory logic of olfactory receptor genes and discuss potential implications for the evolution of rhodopsins. Each type of sensory receptor neuron in our body expresses a specific sensory receptor protein, which allows us to detect and discriminate a variety of environmental stimuli. The regulatory logic that controls this spatially precise and highly restricted expression of sensory receptor proteins remains poorly understood. As a model system, we study the mechanisms that control the expression of different color-sensing Rhodopsin proteins in distinct subtypes of Drosophila photoreceptors, which is the basis for color vision. Compact promoter regions of less than 300 base pairs are sufficient to reproduce the non-overlapping rhodopsin patterns. However, the regulatory logic that underlies the combination (sometimes called ‘grammar’) of the cis-regulatory motifs (sometimes called ‘vocabulary’) within the rhodopsin promoters remains poorly understood. Here, we find that specific combinations of cis-regulatory motifs in the distal and the proximal core promoter regions of each rhodopsin direct its unique expression pattern.
Collapse
Affiliation(s)
- Clara Poupault
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Diane Choi
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Khanh Lam-Kamath
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Deepshe Dewett
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Ansa Razzaq
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joseph Bunker
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Alexis Perry
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Irene Cho
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Functional analysis of Samd11, a retinal photoreceptor PRC1 component, in establishing rod photoreceptor identity. Sci Rep 2021; 11:4180. [PMID: 33603070 PMCID: PMC7892874 DOI: 10.1038/s41598-021-83781-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Establishing correct neuronal cell identity is essential to build intricate neural tissue architecture and acquire precise neural function during vertebrate development. While it is known that transcription factors play important roles in retinal cell differentiation, the contribution of epigenetic factors to establishing cell identity during retinal development remains unclear. We previously reported that Samd7, a rod photoreceptor cell-specific sterile alpha motif (SAM) domain protein, functions as a Polycomb repressive complex 1 component (PRC1) that is essential for establishing rod identity. In the current study, we analyzed a functional role of Samd11, another photoreceptor-enriched SAM-domain protein, in photoreceptor differentiation and maturation. We observed that Samd11 interacts with Phc2 and Samd7, suggesting that Samd11 is a component of PRC1 in photoreceptor cells. We generated Samd11-null allele and established Samd7/11 double knock-out (DKO) mouse. The Samd7/11 DKO retina exhibits shortened photoreceptor outer segments by electron microscopy analysis. Microarray analysis revealed that Samd7/11 DKO up-regulated more retinal genes than Samd7-/- alone, partial functional redundancy of Samd7 and Samd11. Taken together, the current results suggest that Samd7 and Samd11 are PRC1 components and that Samd7 is the major regulator while Samd11 is an accessory factor used for the establishment of precise rod photoreceptor identity.
Collapse
|
21
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
VandenBosch LS, Wohl SG, Wilken MS, Hooper M, Finkbeiner C, Cox K, Chipman L, Reh TA. Developmental changes in the accessible chromatin, transcriptome and Ascl1-binding correlate with the loss in Müller Glial regenerative potential. Sci Rep 2020; 10:13615. [PMID: 32788677 PMCID: PMC7423883 DOI: 10.1038/s41598-020-70334-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Diseases and damage to the retina lead to losses in retinal neurons and eventual visual impairment. Although the mammalian retina has no inherent regenerative capabilities, fish have robust regeneration from Müller glia (MG). Recently, we have shown that driving expression of Ascl1 in adult mouse MG stimulates neural regeneration. The regeneration observed in the mouse is limited in the variety of neurons that can be derived from MG; Ascl1-expressing MG primarily generate bipolar cells. To better understand the limits of MG-based regeneration in mouse retinas, we used ATAC- and RNA-seq to compare newborn progenitors, immature MG (P8-P12), and mature MG. Our analysis demonstrated developmental differences in gene expression and accessible chromatin between progenitors and MG, primarily in neurogenic genes. Overexpression of Ascl1 is more effective in reprogramming immature MG, than mature MG, consistent with a more progenitor-like epigenetic landscape in the former. We also used ASCL1 ChIPseq to compare the differences in ASCL1 binding in progenitors and reprogrammed MG. We find that bipolar-specific accessible regions are more frequently linked to bHLH motifs and ASCL1 binding. Overall, our analysis indicates a loss of neurogenic gene expression and motif accessibility during glial maturation that may prevent efficient reprogramming.
Collapse
Affiliation(s)
- Leah S VandenBosch
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Stefanie G Wohl
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA.,Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, USA
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marcus Hooper
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Kristen Cox
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Laura Chipman
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA. .,Institute for Stem Cells and Regenerative Medicine, University of Washington, Box 358056, Seattle, WA, 98109, USA.
| |
Collapse
|
23
|
Chan CSY, Lonfat N, Zhao R, Davis AE, Li L, Wu MR, Lin CH, Ji Z, Cepko CL, Wang S. Cell type- and stage-specific expression of Otx2 is regulated by multiple transcription factors and cis-regulatory modules in the retina. Development 2020; 147:dev187922. [PMID: 32631829 PMCID: PMC7406324 DOI: 10.1242/dev.187922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Transcription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.
Collapse
Affiliation(s)
- Candace S Y Chan
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Nicolas Lonfat
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rong Zhao
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander E Davis
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Cheng-Hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Zhe Ji
- Department of Bioengineering, Northwestern University, Evanston, IL 60208, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
24
|
Ray TA, Cochran K, Kozlowski C, Wang J, Alexander G, Cady MA, Spencer WJ, Ruzycki PA, Clark BS, Laeremans A, He MX, Wang X, Park E, Hao Y, Iannaccone A, Hu G, Fedrigo O, Skiba NP, Arshavsky VY, Kay JN. Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nat Commun 2020; 11:3328. [PMID: 32620864 PMCID: PMC7335077 DOI: 10.1038/s41467-020-17009-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/30/2020] [Indexed: 02/08/2023] Open
Abstract
Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease.
Collapse
Affiliation(s)
- Thomas A Ray
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kelly Cochran
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chris Kozlowski
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jingjing Wang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Graham Alexander
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27710, USA
| | | | | | - Philip A Ruzycki
- John F. Hardesty, M.D. Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, 63110, USA
| | - Brian S Clark
- John F. Hardesty, M.D. Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, 63110, USA
- Department of Developmental Biology, Washington University, St. Louis, MO, 63110, USA
| | | | - Ming-Xiao He
- Advanced Cell Diagnostics, Newark, CA, 94560, USA
| | | | - Emily Park
- Advanced Cell Diagnostics, Newark, CA, 94560, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alessandro Iannaccone
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gary Hu
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Olivier Fedrigo
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27710, USA
- The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Cherry TJ, Yang MG, Harmin DA, Tao P, Timms AE, Bauwens M, Allikmets R, Jones EM, Chen R, De Baere E, Greenberg ME. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc Natl Acad Sci U S A 2020; 117:9001-9012. [PMID: 32265282 PMCID: PMC7183164 DOI: 10.1073/pnas.1922501117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interplay of transcription factors and cis-regulatory elements (CREs) orchestrates the dynamic and diverse genetic programs that assemble the human central nervous system (CNS) during development and maintain its function throughout life. Genetic variation within CREs plays a central role in phenotypic variation in complex traits including the risk of developing disease. We took advantage of the retina, a well-characterized region of the CNS known to be affected by pathogenic variants in CREs, to establish a roadmap for characterizing regulatory variation in the human CNS. This comprehensive analysis of tissue-specific regulatory elements, transcription factor binding, and gene expression programs in three regions of the human visual system (retina, macula, and retinal pigment epithelium/choroid) reveals features of regulatory element evolution that shape tissue-specific gene expression programs and defines regulatory elements with the potential to contribute to Mendelian and complex disorders of human vision.
Collapse
Affiliation(s)
- Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101;
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98101
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98101
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Peter Tao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Evan M Jones
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | | |
Collapse
|
26
|
Differences in the Response to DNA Double-Strand Breaks between Rod Photoreceptors of Rodents, Pigs, and Humans. Cells 2020; 9:cells9040947. [PMID: 32290532 PMCID: PMC7226979 DOI: 10.3390/cells9040947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023] Open
Abstract
Genome editing (GE) represents a powerful approach to fight inherited blinding diseases in which the underlying mutations cause the degeneration of the light sensing photoreceptor cells of the retina. Successful GE requires the efficient repair of DNA double-stranded breaks (DSBs) generated during the treatment. Rod photoreceptors of adult mice have a highly specialized chromatin organization, do not efficiently express a variety of DSB response genes and repair DSBs very inefficiently. The DSB repair efficiency in rods of other species including humans is unknown. Here, we used ionizing radiation to analyze the DSB response in rods of various nocturnal and diurnal species, including genetically modified mice, pigs, and humans. We show that the inefficient repair of DSBs in adult mouse rods does not result from their specialized chromatin organization. Instead, the DSB repair efficiency in rods correlates with the level of Kruppel-associated protein-1 (KAP1) expression and its ataxia-telangiectasia mutated (ATM)-dependent phosphorylation. Strikingly, we detected robust KAP1 expression and phosphorylation only in human rods but not in rods of other diurnal species including pigs. Hence, our study provides important information about the uniqueness of the DSB response in human rods which needs to be considered when choosing model systems for the development of GE strategies.
Collapse
|
27
|
Hook PW, McCallion AS. Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia. Genome Res 2020; 30:528-539. [PMID: 32303558 PMCID: PMC7197474 DOI: 10.1101/gr.256578.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to obtain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of human phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neurons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schizophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin interaction, and validated enhancer data, placing variants in the cellular context where they may modulate risk.
Collapse
Affiliation(s)
- Paul W Hook
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
28
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
29
|
Pasquini G, Cora V, Swiersy A, Achberger K, Antkowiak L, Müller B, Wimmer T, Fraschka SAK, Casadei N, Ueffing M, Liebau S, Stieger K, Busskamp V. Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in vivo Genome Editing. Int J Mol Sci 2020; 21:E1380. [PMID: 32085662 PMCID: PMC7073035 DOI: 10.3390/ijms21041380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.
Collapse
Affiliation(s)
- Giovanni Pasquini
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Anka Swiersy
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Brigitte Müller
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Sabine Anne-Kristin Fraschka
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
- Universitäts-Augenklinik Bonn, University of Bonn, Dept. of Ophthalmology, 53127 Bonn, Germany
| |
Collapse
|
30
|
Perez-Cervantes C, Smith LA, Nadadur RD, Hughes AEO, Wang S, Corbo JC, Cepko C, Lonfat N, Moskowitz IP. Enhancer transcription identifies cis-regulatory elements for photoreceptor cell types. Development 2020; 147:dev184432. [PMID: 31915147 PMCID: PMC7033740 DOI: 10.1242/dev.184432] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
Identification of cell type-specific cis-regulatory elements (CREs) is crucial for understanding development and disease, although identification of functional regulatory elements remains challenging. We hypothesized that context-specific CREs could be identified by context-specific non-coding RNA (ncRNA) profiling, based on the observation that active CREs produce ncRNAs. We applied ncRNA profiling to identify rod and cone photoreceptor CREs from wild-type and mutant mouse retinas, defined by presence or absence, respectively, of the rod-specific transcription factor (TF) NrlNrl-dependent ncRNA expression strongly correlated with epigenetic profiles of rod and cone photoreceptors, identified thousands of candidate rod- and cone-specific CREs, and identified motifs for rod- and cone-specific TFs. Colocalization of NRL and the retinal TF CRX correlated with rod-specific ncRNA expression, whereas CRX alone favored cone-specific ncRNA expression, providing quantitative evidence that heterotypic TF interactions distinguish cell type-specific CRE activity. We validated the activity of novel Nrl-dependent ncRNA-defined CREs in developing cones. This work supports differential ncRNA profiling as a platform for the identification of cell type-specific CREs and the discovery of molecular mechanisms underlying TF-dependent CRE activity.
Collapse
Affiliation(s)
- Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Linsin A Smith
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew E O Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sui Wang
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Constance Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nicolas Lonfat
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Buono L, Martinez-Morales JR. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development. Bioessays 2020; 42:e1900187. [PMID: 31997389 DOI: 10.1002/bies.201900187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ontogeny of the vertebrate retina has been a topic of interest to developmental biologists and human geneticists for many decades. Understanding the unfolding of the genetic program that transforms a field of progenitors cells into a functionally complex and multi-layered sensory organ is a formidable challenge. Although classical genetic studies succeeded in identifying the key regulators of retina specification, understanding the architecture of their gene network and predicting their behavior are still a distant hope. The emergence of next-generation sequencing platforms revolutionized the field unlocking the access to genome-wide datasets. Emerging techniques such as RNA-seq, ChIP-seq, ATAC-seq, or single cell RNA-seq are used to characterize eye developmental programs. These studies provide valuable information on the transcriptional and cis-regulatory profiles of precursors and differentiated cells, outlining the trajectories that connect each intermediate state. Here, recent systems biology efforts are reviewed to understand the genetic programs shaping the vertebrate retina.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville, 41013 , Spain
| | | |
Collapse
|
32
|
Feodorova Y, Falk M, Mirny LA, Solovei I. Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals. Trends Cell Biol 2020; 30:276-289. [PMID: 31980345 DOI: 10.1016/j.tcb.2019.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
The cell nucleus is a remarkably well-organized organelle with membraneless but distinct compartments of various functions. The largest of them, euchromatin and heterochromatin, are spatially segregated in such a way that the transcriptionally active genome occupies the nuclear interior, whereas silent genomic loci are preferentially associated with the nuclear envelope. This rule is broken by rod photoreceptor cells of nocturnal mammals, in which the two major compartments have inverted positions. The inversion and dense compaction of heterochromatin converts these nuclei into microlenses that focus light and facilitate nocturnal vision. As is often the case in biology, when a mutation helps to understand normal processes and structures, inverted nuclei have served as a tool to unravel general principles of nuclear organization, including mechanisms of heterochromatin tethering to the nuclear envelope, autonomous behavior of small genomic segments, and euchromatin-heterochromatin segregation.
Collapse
Affiliation(s)
- Yana Feodorova
- Biozentrum, Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany; Department of Medical Biology, Medical University-Plovdiv, Boulevard Vasil Aprilov 15A, Plovdiv 4000, Bulgaria
| | - Martin Falk
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Irina Solovei
- Biozentrum, Ludwig-Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
33
|
Buenaventura DF, Corseri A, Emerson MM. Identification of Genes With Enriched Expression in Early Developing Mouse Cone Photoreceptors. Invest Ophthalmol Vis Sci 2019; 60:2787-2799. [PMID: 31260032 PMCID: PMC6607928 DOI: 10.1167/iovs.19-26951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The early transcriptional events that occur in newly generated cone photoreceptors are not well described. Knowledge of these events is critical to provide benchmarks for in vitro-derived cone photoreceptors and to understand the process of cone and rod photoreceptor diversification. We sought to identify genes with differential gene expression in embryonic mouse cone photoreceptors. Methods The specificity of expression of the LHX4 transcription factor in developing cone photoreceptors was examined using immunofluorescence visualization in both mouse and chicken retinas. A LHX4 transgenic reporter line with high specificity for developing mouse cone photoreceptors was identified and used to purify early-stage cone photoreceptors for profiling by single-cell RNA sequencing. Comparisons were made to previous datasets targeting photoreceptors. Results The LHX4 transcription factor and a transgenic reporter were determined to be highly specific to early developing cone photoreceptors in the mouse. Single-cell transcriptional profiling identified new genes with enriched expression in cone photoreceptors relative to concurrent cell populations. Comparison to previous profiling datasets allowed for further characterization of these genes across developmental time, species, photoreceptor type, and gene regulatory network. Conclusions The LHX4 gene is highly enriched in developing cone photoreceptors as are several new genes identified through transcriptional profiling, some of which are expressed in subclusters of cones. Many of these cone-enriched genes do not show obvious de-repression in profiling of retinas mutant for the rod-specific transcription factor NRL, highlighting differences between endogenous cones and those induced in NRL mutants.
Collapse
Affiliation(s)
- Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States.,Biology PhD Program, Graduate Center, City University of New York, New York, New York, United States
| | - Adrianne Corseri
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States.,Biology PhD Program, Graduate Center, City University of New York, New York, New York, United States.,Biochemistry PhD Program, Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
34
|
Subramanian K, Weigert M, Borsch O, Petzold H, Garcia-Ulloa A, Myers EW, Ader M, Solovei I, Kreysing M. Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice. eLife 2019; 8:49542. [PMID: 31825309 PMCID: PMC6974353 DOI: 10.7554/elife.49542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Rod photoreceptors of nocturnal mammals display a striking inversion of nuclear architecture, which has been proposed as an evolutionary adaptation to dark environments. However, the nature of visual benefits and the underlying mechanisms remains unclear. It is widely assumed that improvements in nocturnal vision would depend on maximization of photon capture at the expense of image detail. Here, we show that retinal optical quality improves 2-fold during terminal development, and that this enhancement is caused by nuclear inversion. We further demonstrate that improved retinal contrast transmission, rather than photon-budget or resolution, enhances scotopic contrast sensitivity by 18–27%, and improves motion detection capabilities up to 10-fold in dim environments. Our findings therefore add functional significance to a prominent exception of nuclear organization and establish retinal contrast transmission as a decisive determinant of mammalian visual perception.
Collapse
Affiliation(s)
- Kaushikaram Subramanian
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Martin Weigert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Oliver Borsch
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Petzold
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany.,Department of Computer Science, Technische Universität Dresden, Dresden, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Irina Solovei
- Biozentrum, Ludwig Maximilians Universität, München, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
35
|
Tufford AR, Onyak JR, Sondereker KB, Lucas JA, Earley AM, Mattar P, Hattar S, Schmidt TM, Renna JM, Cayouette M. Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Rep 2019; 23:2416-2428. [PMID: 29791852 DOI: 10.1016/j.celrep.2018.04.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022] Open
Abstract
Newborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina. This effect is partly mediated by light-evoked activity in ipRGCs, as dark rearing or silencing of ipRGCs leads a subset of cones to mislocalize. Furthermore, ablation of ipRGCs alters the cone transcriptome and decreases expression of the dopamine receptor D4, while injection of L-DOPA or D4 receptor agonist rescues the displaced cone phenotype observed in dark-reared animals. These results show that early light-mediated activity in ipRGCs influences neuronal lamination and identify ipRGC-elicited dopamine release as a mechanism influencing cone position.
Collapse
Affiliation(s)
- Adele R Tufford
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | | | | | - Jasmine A Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aaron M Earley
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Samer Hattar
- National Institute of Mental Health, Bethesda, MD, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
36
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
37
|
Ingram NT, Sampath AP, Fain GL. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors. J Gen Physiol 2019; 151:1287-1299. [PMID: 31562185 PMCID: PMC6829558 DOI: 10.1085/jgp.201912419] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
We describe the first extensive study of voltage-clamp current responses of cone photoreceptors in unlabeled, dark-adapted mouse retina using only the position and appearance of cone somata as a guide. Identification was confirmed from morphology after dye filling. Photocurrents recorded from wild-type mouse cones were biphasic with a fast cone component and a slower rod component. The rod component could be eliminated with dim background light and was not present in mouse lines lacking the rod transducin-α subunit (Gnat1-/- ) or connexin 36 (Cx36-/- ). Cones from Gnat1-/- or Cx36-/- mice had resting membrane potentials between -45 and -55 mV, peak photocurrents of 20-25 picoamps (pA) at a membrane potential Vm = -50 mV, sensitivities 60-70 times smaller than rods, and a total membrane capacitance two to four times greater than rods. The rate of activation (amplification constant) was largely independent of the brightness of the flash and was 1-2 s-2, less than half that of rods. The role of Ca2+-dependent transduction modulation was investigated by recording from cones in mice lacking rod transducin (Gnat1), recoverin, and/or the guanylyl-cyclase-activating proteins (GCAPs). In confirmation of previous results, responses of Gnat1-/- ;Gcaps-/- cones and triple-mutant Gnat1-/- ;Gcaps-/- ;Rv-/- cones recovered more slowly both to light flashes and steps and were more sensitive than cones expressing the GCAPs. Cones from all four mouse lines showed significant recovery and escaped saturation even in bright background light. This recovery occurred too rapidly to be caused by pigment bleaching or metaII decay and appears to reflect some modulation of response inactivation in addition to those produced by recoverin and the GCAPs. Our experiments now make possible a more detailed understanding of the cellular physiology of mammalian cone photoreceptors and the role of conductances in the inner and outer segment in producing cone light responses.
Collapse
Affiliation(s)
- Norianne T Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
38
|
Murphy DP, Hughes AEO, Lawrence KA, Myers CA, Corbo JC. Cis-regulatory basis of sister cell type divergence in the vertebrate retina. eLife 2019; 8:e48216. [PMID: 31633482 PMCID: PMC6802965 DOI: 10.7554/elife.48216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Multicellular organisms evolved via repeated functional divergence of transcriptionally related sister cell types, but the mechanisms underlying sister cell type divergence are not well understood. Here, we study a canonical pair of sister cell types, retinal photoreceptors and bipolar cells, to identify the key cis-regulatory features that distinguish them. By comparing open chromatin maps and transcriptomic profiles, we found that while photoreceptor and bipolar cells have divergent transcriptomes, they share remarkably similar cis-regulatory grammars, marked by enrichment of K50 homeodomain binding sites. However, cell class-specific enhancers are distinguished by enrichment of E-box motifs in bipolar cells, and Q50 homeodomain motifs in photoreceptors. We show that converting K50 motifs to Q50 motifs represses reporter expression in bipolar cells, while photoreceptor expression is maintained. These findings suggest that partitioning of Q50 motifs within cell type-specific cis-regulatory elements was a critical step in the evolutionary divergence of the bipolar transcriptome from that of photoreceptors.
Collapse
Affiliation(s)
- Daniel P Murphy
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Andrew EO Hughes
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Karen A Lawrence
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Connie A Myers
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| |
Collapse
|
39
|
Fu Z, Chen CT, Cagnone G, Heckel E, Sun Y, Cakir B, Tomita Y, Huang S, Li Q, Britton W, Cho SS, Kern TS, Hellström A, Joyal JS, Smith LE. Dyslipidemia in retinal metabolic disorders. EMBO Mol Med 2019; 11:e10473. [PMID: 31486227 PMCID: PMC6783651 DOI: 10.15252/emmm.201910473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/10/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
The light‐sensitive photoreceptors in the retina are extremely metabolically demanding and have the highest density of mitochondria of any cell in the body. Both physiological and pathological retinal vascular growth and regression are controlled by photoreceptor energy demands. It is critical to understand the energy demands of photoreceptors and fuel sources supplying them to understand neurovascular diseases. Retinas are very rich in lipids, which are continuously recycled as lipid‐rich photoreceptor outer segments are shed and reformed and dietary intake of lipids modulates retinal lipid composition. Lipids (as well as glucose) are fuel substrates for photoreceptor mitochondria. Dyslipidemia contributes to the development and progression of retinal dysfunction in many eye diseases. Here, we review photoreceptor energy demands with a focus on lipid metabolism in retinal neurovascular disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gael Cagnone
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Emilie Heckel
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shuo Huang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - William Britton
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Lois Eh Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
40
|
Zhang X, Piano I, Messina A, D'Antongiovanni V, Crò F, Provenzano G, Bozzi Y, Gargini C, Casarosa S. Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience 2019; 408:177-190. [DOI: 10.1016/j.neuroscience.2019.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
41
|
Kaufman ML, Park KU, Goodson NB, Chew S, Bersie S, Jones KL, Lamba DA, Brzezinski JA. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Dev Biol 2019; 453:155-167. [PMID: 31163126 DOI: 10.1016/j.ydbio.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Uncovering the gene regulatory networks that control cone photoreceptor formation has been hindered because cones only make up a few percent of the retina and form asynchronously during development. To overcome these limitations, we used a γ-secretase inhibitor, DAPT, to disrupt Notch signaling and force proliferating retinal progenitor cells to rapidly adopt neuronal identity. We treated mouse retinal explants at the peak of cone genesis with DAPT and examined tissues at several time-points by histology and bulk RNA-sequencing. We found that this treatment caused supernumerary cone formation in an overwhelmingly synchronized fashion. This analysis revealed several categorical patterns of gene expression changes over time relative to DMSO treated control explants. These were placed in the temporal context of the activation of Otx2, a transcription factor that is expressed at the onset of photoreceptor development and that is required for both rod and cone formation. One group of interest had genes, such as Mybl1, Ascl1, Neurog2, and Olig2, that became upregulated by DAPT treatment before Otx2. Two other groups showed upregulated gene expression shortly after Otx2, either transiently or permanently. This included genes such as Mybl1, Meis2, and Podxl. Our data provide a developmental timeline of the gene expression events that underlie the initial steps of cone genesis and maturation. Applying this strategy to human retinal organoid cultures was also sufficient to induce a massive increase in cone genesis. Taken together, our results provide a temporal framework that can be used to elucidate the gene regulatory logic controlling cone photoreceptor development.
Collapse
Affiliation(s)
- Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Noah B Goodson
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shereen Chew
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Stephanie Bersie
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
42
|
Massengill MT, Young B, Patel D, Jafri F, Sabogal E, Ash N, Li H, Ildefonso CJ, Lewin AS. Clinically Relevant Outcome Measures for the I307N Rhodopsin Mouse: A Model of Inducible Autosomal Dominant Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:5417-5430. [PMID: 30452595 PMCID: PMC6237214 DOI: 10.1167/iovs.18-25345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose The I307N rhodopsin (Rho) mouse is a light-inducible model of autosomal dominant retinitis pigmentosa (adRP) that may be useful in testing therapies. We investigated the time-course of retinal changes of the I307N Rho mouse with spectral-domain optical coherence tomography (SD-OCT). Methods SD-OCT was performed up to day 30 after light damage; electroretinography (ERG) was employed to evaluate photoreceptor function. We utilized ImageJ to analyze reflectivity of the retina. We used light and electron microscopy to assess retinal organization. We stained synaptophysin and zonula occludins-1 with immunohistochemistry to determine injury to the plexiform layers and retinal pigment epithelium (RPE). We performed lectin staining to evaluate retinal blood vessels. Results Retinal degeneration increased with longer exposures to light. An increase in retinal thickness was detected by SD-OCT on day 1 after light challenge followed by loss of the outer nuclear layer (ONL) by day 8. Degeneration was most severe in the nasal and inferior retina. Hyper-reflectivity on SD-OCT developed as early as 1 day after light exposure. Disorganization of the ONL, condensation of photoreceptor chromatin, disruption of the outer limiting membrane, and disarray of outer segments were associated with the hyper-reflectivity. Retraction of the outer plexiform synapses and resorption of the subretinal detachment contributed to retinal thinning. The RPE remained intact, whereas atrophied major retinal vessels were evident after light damage. Conclusions Our time-course analysis of retinal degeneration in the I307N Rho mouse with SD-OCT and other outcome measures should enable the use of the mouse model in preclinical efficacy studies and mechanistic studies.
Collapse
Affiliation(s)
- Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Brianna Young
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Deep Patel
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Farwa Jafri
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Ernesto Sabogal
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Neil Ash
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| |
Collapse
|
43
|
Epigenetics in neuronal regeneration. Semin Cell Dev Biol 2019; 97:63-73. [PMID: 30951894 DOI: 10.1016/j.semcdb.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Damage to neuronal tissues in mammals leads to permanent loss of tissue function that can have major health consequences. While mammals have no inherent regenerative capacity to functionally repair neuronal tissue, other species such as amphibians and teleost fish readily replace damaged tissue. The exploration of development and native regeneration can thus inform the process of inducing regeneration in non-regenerative systems, which can be used to develop new therapeutics. Increasing evidence points to an epigenetic component in the regulation of the changes in cellular gene expression necessary for regeneration. In this review, we compare evidence of epigenetic roles in development and regeneration of neuronal tissue. We have focused on three key systems of important clinical significance: the neural retina, the inner ear, and the spinal cord in regenerative and non-regenerative species. While evidence for epigenetic regulation of regeneration is still limited, changes in DNA accessibility, histone acetylation and DNA methylation have all emerged as key elements in this process. To date, most studies have used broadly acting experimental manipulations to establish a role for epigenetics in regeneration, but the advent of more targeted approaches to modify the epigenome will be critical to dissecting the relative contributions of these regulatory factors in this process and the development of methods to stimulate the regeneration in those organisms like ourselves where only limited regeneration occurs in these neural systems.
Collapse
|
44
|
Abstract
Enhancer activity is determined by both the activity and occupancy of transcription factors as well as the specific sequences they bind. Experimental investigation of this dynamic requires the ability to manipulate components of the system, ideally in as close to an in vivo context as possible. Here we use electroporation of plasmid reporters to define critical parameters of a specific cis-regulatory element, ThrbCRM1, during retinal development. ThrbCRM1 is associated with cone photoreceptor genesis and activated in a subset of developing retinal cells that co-express the Otx2 and Onecut1 (OC1) transcription factors. Variation of reporter plasmid concentration was used to generate dose response curves and revealed an effect of binding site availability on the number and strength of cells with reporter activity. Critical sequence elements of the ThrbCRM1 element were defined using both mutagenesis and misexpression of the Otx2 and OC1 transcription factors in the developing retina. Additionally, these experiments suggest that the ThrbCRM1 element is co-regulated by Otx2 and OC1 even under conditions of sub-optimal binding of OC1.
Collapse
Affiliation(s)
- Benjamin Souferi
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, USA
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, USA .,Graduate Center, City University of New York, New York, NY 10031, USA
| |
Collapse
|
45
|
Starks RR, Biswas A, Jain A, Tuteja G. Combined analysis of dissimilar promoter accessibility and gene expression profiles identifies tissue-specific genes and actively repressed networks. Epigenetics Chromatin 2019; 12:16. [PMID: 30795793 PMCID: PMC6385419 DOI: 10.1186/s13072-019-0260-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The assay for transposase-accessible chromatin (ATAC-seq) is a powerful method to examine chromatin accessibility. While many studies have reported a positive correlation between gene expression and promoter accessibility, few have investigated the genes that deviate from this trend. In this study, we aimed to understand the relationship between gene expression and promoter accessibility in multiple cell types while also identifying gene regulatory networks in the placenta, an understudied organ that is critical for a successful pregnancy. RESULTS We started by assaying the open chromatin landscape in the mid-gestation placenta, when the fetal vasculature has started developing. After incorporating transcriptomic data generated in the placenta at the same time point, we grouped genes based on their expression levels and ATAC-seq promoter coverage. We found that the genes with the strongest correlation (high expression and high coverage) are likely involved in housekeeping functions, whereas tissue-specific genes were highly expressed and had only medium-low coverage. We also predicted that genes with medium-low expression and high promoter coverage were actively repressed. Within this group, we extracted a protein-protein interaction network enriched for neuronal functions, likely preventing the cells from adopting a neuronal fate. We further confirmed that a repressive histone mark is bound to the promoters of genes in this network. Finally, we ran our pipeline using ATAC-seq and RNA-seq data generated in ten additional cell types. We again found that genes with the strongest correlation are enriched for housekeeping functions and that genes with medium-low promoter coverage and high expression are more likely to be tissue-specific. These results demonstrate that only two data types, both of which require relatively low starting material to generate and are becoming more commonly available, can be integrated to understand multiple aspects of gene regulation. CONCLUSIONS Within the placenta, we identified an active placenta-specific gene network as well as a repressed neuronal network. Beyond the placenta, we demonstrate that ATAC-seq data and RNA-seq data can be integrated to identify tissue-specific genes and actively repressed gene networks in multiple cell types.
Collapse
Affiliation(s)
- Rebekah R. Starks
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 USA
| | - Anilisa Biswas
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Molecular, Cellular, and Developmental Biology, Iowa State University, Ames, IA 50011 USA
| | - Ashish Jain
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 USA
| | - Geetu Tuteja
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011 USA
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 USA
- Molecular, Cellular, and Developmental Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
46
|
Shevelyov YY, Ulianov SV. The Nuclear Lamina as an Organizer of Chromosome Architecture. Cells 2019; 8:E136. [PMID: 30744037 PMCID: PMC6406483 DOI: 10.3390/cells8020136] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/20/2023] Open
Abstract
The nuclear lamina (NL) is a meshwork of lamins and lamin-associated proteins adjoining the inner side of the nuclear envelope. In early embryonic cells, the NL mainly suppresses background transcription, whereas, in differentiated cell types, its disruption affects gene expression more severely. Normally, the NL serves as a backbone for multiple chromatin anchoring sites, thus shaping the spatial organization of chromosomes in the interphase nucleus. However, upon cell senescence, aging, or in some types of terminally differentiated cells and lamin-associated diseases, the loss of NL-chromatin tethering causes drastic alterations in chromosome architecture. Here, we provide an overview of the recent advances in the field of NL-chromatin interactions, focusing on their impact on chromatin positioning, compaction, repression, and spatial organization.
Collapse
Affiliation(s)
- Yuri Y. Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia;
| | - Sergey V. Ulianov
- Division of the Regulation of Transcription and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
47
|
Hughes AEO, Myers CA, Corbo JC. A massively parallel reporter assay reveals context-dependent activity of homeodomain binding sites in vivo. Genome Res 2018; 28:1520-1531. [PMID: 30158147 PMCID: PMC6169884 DOI: 10.1101/gr.231886.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Cone-rod homeobox (CRX) is a paired-like homeodomain transcription factor (TF) and a master regulator of photoreceptor development in vertebrates. The in vitro DNA binding preferences of CRX have been described in detail, but the degree to which in vitro binding affinity is correlated with in vivo enhancer activity is not known. In addition, paired-class homeodomain TFs can bind DNA cooperatively as both homodimers and heterodimers at inverted TAAT half-sites separated by 2 or 3 nucleotides. This dimeric configuration is thought to mediate target specificity, but whether monomeric and dimeric sites encode distinct levels of activity is not known. Here, we used a massively parallel reporter assay to determine how local sequence context shapes the regulatory activity of CRX binding sites in mouse photoreceptors. We assayed inactivating mutations in more than 1700 TF binding sites and found that dimeric CRX binding sites act as stronger enhancers than monomeric CRX binding sites. Furthermore, the activity of dimeric half-sites is cooperative, dependent on a strict 3-bp spacing, and tuned by the identity of the spacer nucleotides. Saturating single-nucleotide mutagenesis of 195 CRX binding sites showed that, on average, changes in TF binding site affinity are correlated with changes in regulatory activity, but this relationship is obscured when considering mutations across multiple cis-regulatory elements (CREs). Taken together, these results demonstrate that the activity of CRX binding sites is highly dependent on sequence context, providing insight into photoreceptor gene regulation and illustrating functional principles of homeodomain binding sites that may be conserved in other cell types.
Collapse
Affiliation(s)
- Andrew E O Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
48
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
49
|
Abstract
Eukaryotic cells depend on precise genome organization within the nucleus to maintain an appropriate gene-expression profile. Critical to this process is the packaging of functional domains of open and closed chromatin to specific regions of the nucleus, but how this is regulated remains unclear. In this study, we show that the zinc finger protein Casz1 regulates higher-order nuclear organization of rod photoreceptors in the mouse retina by repressing nuclear lamina function, which leads to central localization of heterochromatin. Loss of Casz1 in rods leads to an abnormal transcriptional profile followed by degeneration. These results identify Casz1 as a regulator of higher-order genome organization. Genome organization plays a fundamental role in the gene-expression programs of numerous cell types, but determinants of higher-order genome organization are poorly understood. In the developing mouse retina, rod photoreceptors represent a good model to study this question. They undergo a process called “chromatin inversion” during differentiation, in which, as opposed to classic nuclear organization, heterochromatin becomes localized to the center of the nucleus and euchromatin is restricted to the periphery. While previous studies showed that the lamin B receptor participates in this process, the molecular mechanisms regulating lamina function during differentiation remain elusive. Here, using conditional genetics, we show that the zinc finger transcription factor Casz1 is required to establish and maintain the inverted chromatin organization of rod photoreceptors and to safeguard their gene-expression profile and long-term survival. At the mechanistic level, we show that Casz1 interacts with the polycomb repressor complex in a splice variant-specific manner and that both are required to suppress the expression of the nuclear envelope intermediate filament lamin A/C in rods. Lamin A is in turn sufficient to regulate heterochromatin organization and nuclear position. Furthermore, we show that Casz1 is sufficient to expand and centralize the heterochromatin of fibroblasts, suggesting a general role for Casz1 in nuclear organization. Together, these data support a model in which Casz1 cooperates with polycomb to control rod genome organization, in part by silencing lamin A/C.
Collapse
|
50
|
Ruzycki PA, Zhang X, Chen S. CRX directs photoreceptor differentiation by accelerating chromatin remodeling at specific target sites. Epigenetics Chromatin 2018; 11:42. [PMID: 30068366 PMCID: PMC6069558 DOI: 10.1186/s13072-018-0212-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/22/2018] [Indexed: 12/24/2022] Open
Abstract
Background Recent technological advances have delivered the genome-wide targets of many important transcription factors (TFs). However, increasing evidence suggests that not all target sites mediate regulatory function, raising the questions of how to determine which sites are active, what are the epigenetic consequences of TF binding at these sites, and how the specificity is coded. To address these questions, we focused on CRX, a disease-associated homeodomain TF required for photoreceptor gene expression and development. Since CRX binds more than 6000 sites across the genome in the retina, we profiled chromatin landscape changes at each binding site during normal development and in the absence of CRX and interpreted the results by thorough investigation of other epigenomic datasets and sequence features. Results CRX is required for chromatin remodeling at only a subset of its binding sites, which undergo retina or neuronal specific activation during photoreceptor differentiation. Genes near these “CRX Dependent” sites code for proteins important for photoreceptor physiology and function, and their transcription is significantly reduced in Crx deficient retinas. In addition, the nucleotide and motif content distinguish these CRX Dependent sites from other CRX-bound sites. Conclusions Together, our results suggest that CRX acts only at select, uniquely-coded binding sites to accelerate chromatin remodeling during photoreceptor differentiation. This study emphasizes the importance of connecting TF binding with its functional consequences and provides a framework for making such a connection using comparative analyses of available genomic datasets. Finally, this study prioritizes sets of non-coding DNA sites for future functional interrogation and identification of mutations associated with retinal disease. Electronic supplementary material The online version of this article (10.1186/s13072-018-0212-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.,Molecular Genetics and Genomics Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA. .,Molecular Genetics and Genomics Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|