1
|
Tiwari SK, Yadav JS, Sain K, Rai SK, Kharya A, Kumar V, Sethy PC. Water quality assessment of Upper Ganga and Yamuna river systems during COVID-19 pandemic-induced lockdown: imprints of river rejuvenation. GEOCHEMICAL TRANSACTIONS 2024; 25:8. [PMID: 39342038 PMCID: PMC11439316 DOI: 10.1186/s12932-024-00092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Clean river water is an essential and life-sustaining asset for all living organisms. The upper Ganga and Yamuna river system has shown signs of rejuvenation and tremendous improvement in the water quality following the nationwide lockdown due to the coronavirus pandemic. All the industrial and commercial activity was shut down, and there was negligible wastewater discharge from the industries. This article addresses the water quality assessment from the study area, which is based on the original data of physical parameters, major and trace elements, and stable isotopes (hydrogen and oxygen) systematics during the nationwide lockdown. The impact of the lockdown could be seen in terms of an increase in dissolved oxygen (DO). Water samples were collected from the Upper Ganga and Yamuna river basins (Alaknanda, Bhagirathi, and Tons rivers) during an eight-week lockdown in Uttarakhand, India. We discussed the signs of rejuvenation of riverine based on physical parameters, major ions, trace elements, isotopic ratios, and water pollution index (WPI). Results reveal that the water quality of the entire upper basins of the Ganga has significantly improved by 93%, reflecting the signs of self-rejuvenation of the rivers. Multivariate analysis suggests a negative factor loading for an anthropogenic element (NO 3 - ), implying that they contribute little to the river water during the lockdown. Further, bicarbonate (HCO 3 - ) is a dominant element in both river basins. The geochemical facies are mainly characterized by the (Ca 2 + : Mg 2 + : H C O 3 - ) type of water, suggesting that silicate rock weathering dominates with little influence from carbonate weathering in the area. The positive factor loadings of some cations, likeHCO 3 - ,Ca 2 + , andMg 2 + reflect their strong association with the source of origin in the lockdown phases. Stable isotopic reveals that the glaciated region contributed the most to the river basin, as evidenced by the low d-excess in riverine water compared to anthropogenic contributions. Rivers can self-rejuvenate if issues of human influence and anthropogenic activities are adequately resolved and underline our responsibility for purifying the ecosystem. We observed that this improvement in the river water quality will take a shorter time, and quality will deteriorate again when commercial and industrial activity resumes.
Collapse
Affiliation(s)
- Sameer K Tiwari
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India.
| | - Jairam Singh Yadav
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India
| | - Kalachand Sain
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India
| | - Santosh K Rai
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India
| | - Aditya Kharya
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India
| | - Vinit Kumar
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India
| | - Pratap Chandra Sethy
- Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, Uttarakhand, India
| |
Collapse
|
2
|
Meng Y, Liu G, Xiang Q, Liu Y. Spatio-temporal variation characteristics of stable isotopes of tap water and its potential as a proxy for surface water in Sichuan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168755. [PMID: 38008333 DOI: 10.1016/j.scitotenv.2023.168755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The stability and safety of tap water are essential for human health and economic and social development. The stable isotopes can be used to reveal characteristics of tap water and link it with its source. In this paper, 1556 tap water samples were collected from Sichuan, China and the stable isotope ratios for these samples were determined. The δ2H ranges from -126.4 ‰ to -26.4 ‰, and the range of δ18O is -17.04 ‰ to -2.08 ‰, reflecting the tap water sources are affected by complex spatial features and changing meteorological elements. Stable isotopes in tap water usually reach the maximum values in summer, indicating that heavy isotope enrichment is easily achievable by the large amount of evaporation from water sources during the summer season. By using spatial interpolation and isoscapes, we can find that there is a strong correlation between both simulated tap water δ2H and river water δ2H, with the maximum difference not exceeding 10.0 ‰, while the overall mean relative error is 6 %. Consequently, it is feasible to use tap water isotopes as a proxy for surface water isotopes in representative watersheds where surface water is the main source of water. The study shows the variation characteristics and influencing factors of tap water isotopes and enriches the isotope database of tap water in China. Meanwhile, the utilize of stable isotopes in tap water as a proxy for surface water expands the application field of tap water stable isotopes and opens new perspectives for indirectly obtaining isotope data of surface water.
Collapse
Affiliation(s)
- Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Guodong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Qiyun Xiang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Yichen Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Jung H, Kim YS, Yoo J, Han SJ, Lee J. Identification of nitrate sources in tap water sources across South Korea using multiple stable isotopes: Implications for land use and water management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161026. [PMID: 36549543 DOI: 10.1016/j.scitotenv.2022.161026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Stable nitrate isotopes (δ15N-NO3 and δ18O-NO3) in conjunction with stable water isotopes (δ18O-H2O and δD-H2O) were used to identify nitrogen (N) sources and N-biogeochemical transformation in tap water sources sampled from 11 water purification plants across South Korea. The raw water sources are taken from rivers within the water supply basins, which indicates the quality of tap water is highly dependent on surrounding the land use type. We estimated the proportional contribution of the various N sources (AD: atmospheric deposition; SN: soil nitrogen; CF: chemical fertilizer; M&S: manure/sewage) using Bayesian Mixing Model. As a result, the contribution of N sources exhibited large seasonal and spatial differences, which were related to the type of land use in the water supply basins. Commonly, the M&S and SN were the dominant N source during the dry and wet seasons in almost regions, respectively. However, in the regions with high N loading ratios from urban and industrial sources, the M&S was the dominant N source during both the wet and dry seasons. In addition, the regions were characterized by high NO3- concentrations due to the decreased dilution effect of precipitation during the dry seasons. In contrast, the SN was the dominant N source in the regions with high N loading ratios from agricultural areas during both the wet and dry seasons. The NO3--N concentration during the wet season was significantly higher than those during the dry season in these regions due to the input of non-point sources with high concentrations. Meanwhile, denitrification and nitrification were observed in the watersheds. It is important to understand the isotope fractionation due to N-biogeochemical transformation for considering the potential misinterpretations of the origin and fate NO3-. Collectively, our findings provide a basis on N source control strategies to ensure tap water quality in complex land use areas.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun S Kim
- Water Quality & Safety Management Center, K-water, Daejeon 34350, Republic of Korea.
| | - Jisu Yoo
- Water Quality & Safety Management Center, K-water, Daejeon 34350, Republic of Korea; Environmental Measurement & Analysis Center, Fundamental Environmental Research Department, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - So Jeong Han
- Water Quality & Safety Management Center, K-water, Daejeon 34350, Republic of Korea
| | - Jeonghoon Lee
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Avery E, Samonina O, Vyshenska I, Fryar AE, Erhardt AM. Variation of tap-water isotope ratios and municipal water sources across Kyiv city, Ukraine. DISCOVER WATER 2022; 2:13. [PMID: 38013790 PMCID: PMC9640821 DOI: 10.1007/s43832-022-00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Stable isotopes of water allow researchers to examine water pathways and better understand spatial and temporal variability in mixtures of municipal water sources. In regions such as Kyiv (Ukraine), with a water supply that is vulnerable to the effects of climate change, pollution, and geopolitical conflict, such understanding is critical for effective water management. Trends in stable isotope values and water sources can function as a confirmation of municipal data. Additionally, these data can provide an early signal for the effects of climate change on these sources, reducing uncertainty from physical measurements. For this study, tap water, surface water, and groundwater were collected over 14 months in Kyiv and nearby Boryspil, Brovary, and Boyarka and measured for hydrogen (δ2H) and oxygen (δ18O) stable isotopes. The stable isotope values from the tap water for each district show a general seasonal trend in water sources, with more groundwater used in the supply in the winter for most districts. Spatially, groundwater use increases from south to north in the left-bank districts in Kyiv city and groundwater use generally decreases from south to north in the right-bank districts. As precipitation patterns shift and temperatures increase, the reliance on particular water sources may need to shift as well. Overall, δ2H and δ18O data provide a baseline expectancy for current water use throughout the year and, from this, deviations can be assessed early. Supplementary Information The online version contains supplementary material available at 10.1007/s43832-022-00021-x.
Collapse
Affiliation(s)
- Elizabeth Avery
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, 121 Washington Ave, Lexington, KY 40506 USA
| | - Olena Samonina
- Department of Environmental Sciences, National University Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Iryna Vyshenska
- Department of Environmental Sciences, National University Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Alan E. Fryar
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, 121 Washington Ave, Lexington, KY 40506 USA
| | - Andrea M. Erhardt
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, 121 Washington Ave, Lexington, KY 40506 USA
- Institute for Advanced Studies, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
A 3-D groundwater isoscape of the contiguous USA for forensic and water resource science. PLoS One 2022; 17:e0261651. [PMID: 34995313 PMCID: PMC8741010 DOI: 10.1371/journal.pone.0261651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
A wide range of hydrological, ecological, environmental, and forensic science applications rely on predictive “isoscape” maps to provide estimates of the hydrogen or oxygen isotopic compositions of environmental water sources. Many water isoscapes have been developed, but few studies have produced isoscapes specifically representing groundwaters. None of these have represented distinct subsurface layers and isotopic variations across them. Here we compiled >6 million well completion records and >27,000 groundwater isotope datapoints to develop a space- and depth-explicit water isoscape for the contiguous United States. This 3-dimensional model shows that vertical isotopic heterogeneity in the subsurface is substantial in some parts of the country and that groundwater isotope delta values often differ from those of coincident precipitation or surface water resources; many of these patterns can be explained by established hydrological and hydrogeological mechanisms. We validate the groundwater isoscape against an independent data set of tap water values and show that the model accurately predicts tap water values in communities known to use groundwater resources. This new approach represents a foundation for further developments and the resulting isoscape should provide improved predictions of water isotope values in systems where groundwater is a known or potential water source.
Collapse
|
6
|
Ueda M, Bell LS. Assessing the predictability of existing water-to-enamel geolocation models against known human teeth. Sci Rep 2021; 11:15645. [PMID: 34341459 PMCID: PMC8329056 DOI: 10.1038/s41598-021-95153-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Stable isotope analysis of human tissues has become a valuable tool for mapping human geolocation. This study adds to the existing knowledge of the relationship between oxygen stable isotopes in human enamel and drinking water by presenting enamel oxygen values in clinic-extracted human dental enamel with known provenance. The results from this study indicate that the theoretical isotopic relationship between enamel and drinking water oxygen is weak at the city and country-level. Differences of up to 15‰ were observed between predicted drinking water oxygen values using existing models and observed values, highlighting the complexity of using water/enamel conversion equations. The lower isotopic boundary of enamel oxygen values is now understood for Metro Vancouver at δ18Oc(VPDB) = - 11.0‰ and presents the possibility of using stable isotope analysis as an exclusionary tool where individuals falling below threshold value can be identified as non-local. Overall, this study's results support the development of geographical reference maps for human enamel oxygen.
Collapse
Affiliation(s)
- Momoko Ueda
- School of Criminology, Centre for Forensic Research, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Lynne S Bell
- School of Criminology, Centre for Forensic Research, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6.
| |
Collapse
|
7
|
Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia. WATER 2021. [DOI: 10.3390/w13111451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The isotope and elemental composition of tap water reflects its multiple distinct inputs and provides a link between infrastructure and the environment over a range of scales. For example, on a local scale, they can be helpful in understanding the geological, hydrogeological, and hydrological conditions and monitor the proper functioning of the water supply system (WSS). However, despite this, studies examining the urban water system remain limited. This study sought to address this knowledge gap by performing a 24 h multiparameter analysis of tap water extracted from a region where the mixing of groundwater between two recharge areas occurs. This work included measurements of temperature and electrical conductivity, as well as pH, δ2H, δ18O, d, δ13CDIC, and 87Sr/86Sr ratios and major and trace elements at hourly intervals over a 24 h period. Although the data show only slight variations in the measured parameters, four groups were distinguishable using visual grouping, and multivariate analysis (Spearman correlation coefficient analysis, hierarchical cluster analysis, and principal components analysis). Finally, changes in the mixing ratios of the two sources were estimated using a linear mixing model. The results confirm that the relative contribution from each source varied considerably over 24 h.
Collapse
|
8
|
Vegetation Cover Change and Its Attribution in China from 2001 to 2018. REMOTE SENSING 2021. [DOI: 10.3390/rs13030496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is confirmed that China has been greening over the last two decades. Such greening and its driving factors are therefore significant for understanding the relationship between vegetation and environments. However, studies on vegetation changes and attribution analyses at the national scale are limited in China after 2000. In this study, fractional vegetation cover (FVC) data from Global Land Surface Satellite (GLASS) was used to detect vegetation change trends from 2001 to 2018, and the effects of CO2, temperature, shortwave radiation, precipitation, and land cover change (LCC) on FVC changes were quantified using generalized linear models (GLM). The results showed that (1) FVC in China increased by 14% from 2001 to 2018 with a greening rate of approximately 0.0019/year (p < 0.01), which showed an apparent greening trend. (2) On the whole, CO2, climate-related factors, and LCC accounted for 88% of FVC changes in China, and the drivers explained 82%, 89%, 90%, and 89% of the FVC changes in the Qinghai–Tibet region, northwest region, northern region, and southern region, respectively. CO2 was the major driving factor for FVC changes, accounting for 31% of FVC changes in China, indicating that CO2 was an essential factor in vegetation growth research. (3) The statistical results of pixels with land cover changes showed that LCC explained 12% of FVC changes, LCC has played a relatively important role and this phenomenon may be related to the ecological restoration projects. This study enriches the study of vegetation changes and its driving factors, and quantitatively describes the response relationship between vegetation and its driving factors. The results have an important significance for adjusting terrestrial ecosystem services.
Collapse
|
9
|
Tian C, Wang L, Jiao W, Li F, Tian F, Zhao S. Triple isotope variations of monthly tap water in China. Sci Data 2020; 7:336. [PMID: 33046708 PMCID: PMC7550354 DOI: 10.1038/s41597-020-00685-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/17/2020] [Indexed: 11/08/2022] Open
Abstract
Tap water isotopic compositions could potentially record information on local climate and water management practices. A new water isotope tracer 17O-excess became available in recent years providing additional information of the various hydrological processes. Detailed data records of tap water 17O-excess have not been reported. In this report, monthly tap water samples (n = 652) were collected from December 2014 to November 2015 from 92 collection sites across China. The isotopic composition (δ2H, δ18O, and δ17O) of tap water was analyzed by a Triple Water Vapor Isotope Analyzer (T-WVIA) based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique and two second-order isotopic variables (d-excess and 17O-excess) were calculated. The geographic location information of the 92 collection sites including latitude, longitude, and elevation were also provided in this dataset. This report presents national-scale tap water isotope dataset at monthly time scale. Researchers and water resource managers who focus on the tap water issues could use them to probe the water source and water management strategies at large spatial scales.
Collapse
Affiliation(s)
- Chao Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, USA.
| | - Wenzhe Jiao
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | - Fadong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuqiang Tian
- Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Sihan Zhao
- Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
10
|
Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci Rep 2020; 10:81. [PMID: 31919374 PMCID: PMC6952358 DOI: 10.1038/s41598-019-57078-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022] Open
Abstract
Climate changes significantly impact environmental and hydrological processes. Precipitation is one of the most significant climatic parameters and its variability and trends have great influences on environmental and socioeconomic development. We investigate the spatio-temporal variability of precipitation occurrence frequency, mean precipitation depth, PVI and total precipitation in China based on long-term precipitation series from 1961 to 2015. As China's topography is diverse and precipitation is affected by topography strongly, ANUSPLIN can model the effect of topography on precipitation effectively is adopted to generate the precipitation interpolation surface. Mann-Kendall trend analysis and simple linear regression was adopted to examine long-term trend for these indicators. The results indicate ANUSPLIN precipitation surface is reliable and the precipitation variation show different regional and seasonal trend. For example, there is a sporadic with decreasing frequency precipitation trend in spring and a uniform with increasing frequency trend in summer in Yangtze Plain, which may affect spring ploughing and alteration of flood risk for this main rice-production areas of China. In north-western China, there is a uniform with increasing precipitation frequency and intensity trend, which is beneficial for this arid region. Our study could be helpful for other counties with similar climate types.
Collapse
|
11
|
Stable Isotope Reveals Tap Water Source under Different Water Supply Modes in the Eastern Margin of the Qinghai–Tibet Plateau. WATER 2019. [DOI: 10.3390/w11122578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Based on 1260 tap water samples gathered monthly and 136 surface water samples collected seasonally in the eastern margin of the Qinghai–Tibet Plateau, the local tap water line, the basic spatiotemporal characteristics of tap water isotopes, and their indication for water source under different water supply modes were discussed, linking the local tap water supply and water source information. A new tap water isotopes data set based on dense sampling sites was established, which was reliable for the analysis of tap water isotope features, tap water supply management, and tap water sources. The main conclusions are: (1) The local tap water lines in Gannan and Longnan are δ2H = (7.06 ± 0.17) δ18O + (3.24 ± 1.75) (r2 = 0.81, p < 0.01) and δ2H = (5.66 ± 0.09) δ18O + (−8.12 ± 0.82) (r2 = 0.82, p < 0.01), respectively. (2) The annual mean δ2H and δ18O in tap water show an increasing trend from southwest to northeast. The seasonal differences of δ2H and δ18O in tap water in Gannan and Longnan are small. (3) The correlation of tap water isotopes with those in main source water is high, while that of isotopes in tap water with those in non-water source is low. Under the central water supply mode by local tap water company, tap water isotopes in Gannan where groundwater is the direct water source show weak connection with those in surface water and precipitation, and those in tap water in Longnan with surface water as main source water reveal good connection with isotopes in surface water. Under mixed water supply modes, tap water isotopes indicate that surface water is the main tap water source in Gannan and Longnan with multiple water sources.
Collapse
|
12
|
Abstract
Stable isotopes of O and H in water are meaningful indicators of hydrological and ecological patterns and processes. The Global Network of Isotopes in Precipitation (GNIP) and the Global Network of Isotopes in Rivers (GNIR) are the two most important global databases of isotopes in precipitation and rivers. While the data of GNIP is almost globally distributed, GNIR has an incomplete spatial coverage, which hinders the utilization of river isotopes to study global hydrological cycle. To fill this knowledge gap, this study supplements GNIR and provides a river isotope database with global-coverage by the meta-analysis method, i.e., collecting 17015 additional data points from 215 published articles. Based on the newly compiled database, we find that (1) the relationship between δ18O and δ2H in river waters exhibits an asymmetric imbricate feature, and bifurcation can be observed in Africa and North America, indicating the effect of evaporation on isotopes; (2) multiple regression analysis with geographical factors indicates that spatial patterns of river isotopes are quite different across regions; (3) multiple regression with geographical and meteorological factors can well predict the river isotopes, which provides regional regression models with r2 of 0.50 to 0.89, and the best predictors in different regions are different. This work presents a global map of river isotopes and establishes a benchmark for further research on isotopes in rivers.
Collapse
|
13
|
Stable Isotope Ratios in Tap Water of a Riverside City in a Semi-Arid Climate: An Application to Water Source Determination. WATER 2019. [DOI: 10.3390/w11071441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stable isotopes (e.g., δ2H and δ18O) in tap water are important tools to understand the local climate or environment background, water sources and the state of regional water supply. Based on 242 tap water samples, 35 precipitation samples and 24 surface water samples gathered in the urban area of Lanzhou, the basic spatiotemporal characteristics of isotopes in tap water, their connection with isotopes in other water bodies and change during the process from raw water to tap water are discussed in detail, combining the information of local tap water supply and water source. It can provide reliable help for understanding the isotope characteristics of local tap water, regional water supply management and determination of tap water source of in a small area. Except for the establishment of a new data set of isotopes in tap water with complete time series and uniform spatial distribution of sampling sites, other results show that: (1) The Local Tap Water Line (LTWL) of Lanzhou is δ2H = (6.03 ± 0.57) δ18O + (−8.63 ± 5.44) (r2 = 0.41, p < 0.01). (2) For seasonal variations, δ2H and δ18O in tap water both are higher in autumn and lower in spring. The diurnal and daily variations of isotopes in tap water are not large. As for spatial variations, the monthly mean values of δ2H and δ18O in tap water at each sampling site show little difference. The isotopes in tap water collected from one single sampling site can be considered as a representative for isotopes in tap water in the area with a single tap water source. (3) Isotopes in tap water show weak connection with precipitation isotopes, but exhibit good connection (consistent seasonal variation, similar numerical range, small numerical difference and high correlation) with isotopes in surface water, which is the direct water source. Isotopes in water change little from raw water to tap water. Isotopic composition of tap water in Lanzhou can be used as a representative of isotopes in surface water.
Collapse
|
14
|
Ascott MJ, Stuart ME, Gooddy DC, Marchant BP, Talbot JC, Surridge BWJ, Polya DA. Provenance of drinking water revealed through compliance sampling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1052-1064. [PMID: 31140996 DOI: 10.1039/c8em00437d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding drinking water hydrochemistry is essential for maintaining safe drinking water supplies. Whilst targeted research surveys have characterised drinking water hydrochemistry, vast compliance datasets are routinely collected but are not interrogated amidst concerns regarding the impact of mixed water sources, treatment, the distribution network and customer pipework. In this paper, we examine whether compliance samples retain hydrochemical signatures of their provenance. We first created and subsequently undertook the first hydrochemical analysis of a novel national database of publically available drinking water compliance analyses (n = 3 873 941) reported for 2015 across England and Wales. k-means cluster analysis revealed three spatially coherent clusters. Cluster 1 is dominated by groundwater sources, with high nitrate concentrations and mineralisation, and lower organic carbon, residual chlorine and THM formation. Cluster 2 was dominated by surface water sources and characterised by low mineralisation (low conductivity and major ion concentrations), low nitrate and high organic carbon concentrations (and hence residual chlorine and THM formation). Cluster 3 shows a mixture of groundwater overlain by confining layers and superficial deposits (resulting in higher trace metal concentrations and mineralisation) and surface water sources. These analyses demonstrate that, despite extensive processing of drinking water, at the national scale signatures of the provenance of drinking water remain. Analysis of compliance samples is therefore likely to be a helpful tool in the characterisation of processes that may affect drinking water chemistry. The methodology used is generic and can be applied in any area where drinking water chemistry samples are taken.
Collapse
Affiliation(s)
- Matthew J Ascott
- British Geological Survey, Maclean Building, Benson Lane, Crowmarsh, Oxfordshire OX10 8BB, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Stable Hydrogen and Oxygen Isotope Characteristics of Bottled Water in China: A Consideration of Water Source. WATER 2019. [DOI: 10.3390/w11051065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The origin of bottled water can be identified via its stable isotope signature because of the spatial variation of the stable isotope composition of natural waters. In this paper, the spatial pattern of δ2H and δ18O values were analyzed for a total of 242 bottled water samples produced at 137 sites across China that were randomly purchased during 2014–2015. The isotopic ratios of bottled water vary between −166‰ and −19‰ for δ2H, and between −21.6‰ and −2.1‰ for δ18O. Based on multiple regression analyses using meteorological and geographical parameters, an isoscape of Chinese bottled water was created. The results showed that altitude among spatial parameters and precipitation amount and air temperature among meteorological parameters were major natural factors determining the isotopic variation of bottled water. Our findings indicate the potential and the significance of the use of stable isotopes for the source identification of bottled water. An analysis of different origin types (spring, glacier and unmarked) and several different brands of bottled water in the same location reflected different production processes and source signatures.
Collapse
|
16
|
Understanding of Storm Runoff Generation in a Weathered, Fractured Granitoid Headwater Catchment in Northern China. WATER 2019. [DOI: 10.3390/w11010123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Few of the classical field studies of streamflow generation in headwater watersheds have been conducted in catchments with thin soils and deeply weathered crystalline silicate bedrock. As such, the role of the (potentially very large) storage capacity of weathered, fractured rock in baseflow and storm event discharge remains poorly characterized. Here we present a study of streamflow generation in an upland semi-humid watershed (Xitaizi Experimental Watershed, XEW, 4.22 km2) dominated by baseflow feeding one of the main water supply reservoirs for the city of Beijing, China. This catchment is relatively dry (625 mm/yr precipitation, 480 mm/yr Evapotranspiration), but has strongly seasonal precipitation that varies in phase with strongly seasonal potential evapotranspiration. The catchment was instrumented with four weather stations and precipitation collectors, 11 deep wells drilled into the bedrock along three hillslopes, and additional soil moisture sensors and water samplers along one hillslope. In six storm events over two years, samples of rainfall, soil water (10–80 cm depth), groundwater, and stream water were collected with high frequency and analyzed for stable water isotopes (δ18O and δ2H). Tracer-based hydrograph separation showed that event water (precipitation) makes up the majority of the hydrograph peak above baseflow, and pre-event water contributions (on average) simply represent the steady release of groundwater. The quantity of event water corresponded to a very small effective contributing area (<0.2% of the catchment) that nevertheless showed a clear dependence on catchment wetness as measured by the streamflow. The streamflow itself was isotopically identical to the deep groundwater in wells. This suggests that the fractured, weathered, bedrock system dominates the production of streamflow in this catchment.
Collapse
|