1
|
Yang J, Chen G, Wang R, Song C, Yi H. Navigating TAM receptor dynamics in tumour immunotherapy. Cancer Immunol Immunother 2025; 74:146. [PMID: 40088262 PMCID: PMC11910493 DOI: 10.1007/s00262-024-03879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/02/2024] [Indexed: 03/17/2025]
Abstract
The TAM receptor family is getting more and more attention in the field of tumour immunity. Activation of TAM receptors not only aids in the survival and multiplication of tumour cells but also increases their likelihood of invading other cells and spreading. In addition, activation of TAM receptors helps to inhibit the anti-tumour immune response, allowing tumour cells to evade immune surveillance. In terms of therapeutic strategies, a number of inhibitors targeting TAM receptors are in preclinical and clinical development. Despite significant progress in clinical trials in recent years, challenges remain. This review delves into the kinetic characteristics of the TAM receptor family, their dual role in tumour immunity, and the transmission process of downstream signalling pathways. Based on this, we analysed and summarised the unique strategies and combination therapies for regulating tumour immunity using TAM receptor inhibitors. It not only helps to elucidate the key role of TAM receptors in tumour immunity but also provides new perspectives and strategies for future tumour therapy.
Collapse
Affiliation(s)
- Jihao Yang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Guanmin Chen
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Rui Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Chengcheng Song
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Huaqiang Yi
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China.
| |
Collapse
|
2
|
Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T, Calianese DC, Patel B, de Dios KV, Poalasin V, De Lorenzo MS, Kotenko SV, Wu Y, Yang A, Choudhary A, Sriram G, Birge RB. Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer. Cell Commun Signal 2025; 23:131. [PMID: 40069722 PMCID: PMC11900106 DOI: 10.1186/s12964-025-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PS), is typically restricted to the inner leaflet of the plasma membrane under normal, healthy physiological conditions. PS is irreversibly externalized during apoptosis, where it serves as a signal for elimination by efferocytosis. PS is also reversibly and transiently externalized during cell activation such as platelet and immune cell activation. These events associated with physiological PS externalization are tightly controlled by the regulated activation of flippases and scramblases. Indeed, improper regulation of PS externalization results in thrombotic diseases such as Scott Syndrome, a defect in coagulation and thrombin production, and in the case of efferocytosis, can result in autoimmunity such as systemic lupus erythematosus (SLE) when PS-mediated apoptosis and efferocytosis fails. The physiological regulation of PS is also perturbed in cancer and during viral infection, whereby PS becomes persistently exposed on the surface of such stressed and diseased cells, which can lead to chronic thrombosis and chronic immune evasion. In this review, we summarize evidence for the dysregulation of PS with a main focus on cancer biology and the pathogenic mechanisms for immune evasion and signaling by PS, as well as the discussion of new therapeutic strategies aimed to target externalized PS. We posit that chronic PS externalization is a universal and agnostic marker for diseased tissues, and in cancer, likely reflects a cell intrinsic form of immune escape. The continued development of new therapeutic strategies for targeting PS also provides rationale for their co-utility as adjuvants and with immune checkpoint therapeutics.
Collapse
Affiliation(s)
- Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Bhumik Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Kenneth Vergel de Dios
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Victor Poalasin
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Yi Wu
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Aizen Yang
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Ganapathy Sriram
- Department Biological, Chemical and Environmental Sciences, Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Yadav M, Sharma A, Patne K, Tabasum S, Suryavanshi J, Rawat L, Machaalani M, Eid M, Singh RP, Choueiri TK, Pal S, Sabarwal A. AXL signaling in cancer: from molecular insights to targeted therapies. Signal Transduct Target Ther 2025; 10:37. [PMID: 39924521 PMCID: PMC11808115 DOI: 10.1038/s41392-024-02121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/02/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
AXL, a member of the TAM receptor family, has emerged as a potential target for advanced-stage human malignancies. It is frequently overexpressed in different cancers and plays a significant role in various tumor-promoting pathways, including cancer cell proliferation, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, DNA damage response, acquired therapeutic resistance, immunosuppression, and inflammatory responses. Beyond oncology, AXL also facilitates viral infections, including SARS-CoV-2 and Zika highlighting its importance in both cancer and virology. In preclinical models, small-molecule kinase inhibitors targeting AXL have shown promising anti-tumorigenic potential. This review primarily focuses on the induction, regulation and biological functions of AXL in mediating these tumor-promoting pathways. We discuss a range of therapeutic strategies, including recently developed small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and antibody-drug conjugates (ADCs), anti-AXL-CAR, and combination therapies. These interventions are being examined in both preclinical and clinical studies, offering the potential for improved drug sensitivity and therapeutic efficacy. We further discuss the mechanisms of acquired therapeutic resistance, particularly the crosstalk between AXL and other critical receptor tyrosine kinases (RTKs) such as c-MET, EGFR, HER2/HER3, VEGFR, PDGFR, and FLT3. Finally, we highlight key research areas that require further exploration to enhance AXL-mediated therapeutic approaches for improved clinical outcomes.
Collapse
Affiliation(s)
- Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- Laboratory of Nanotechnology and Chemical Biology, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Akansha Sharma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ketki Patne
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jyoti Suryavanshi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Laxminarayan Rawat
- Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Marc Machaalani
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marc Eid
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| | - Akash Sabarwal
- Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Liu Y, Xu L, Dou Y, He Y. AXL: shapers of tumor progression and immunosuppressive microenvironments. Mol Cancer 2025; 24:11. [PMID: 39799359 PMCID: PMC11724481 DOI: 10.1186/s12943-024-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance. AXL is highly associated with tumor progression; however, previous studies on AXL have been limited to its impact on the biological behavior of cancer cells. An increasing body of research now demonstrates that AXL can influence the function and differentiation of immune cells, mediating immune suppression and thereby fostering tumor growth. A comprehensive analysis to identify and overcome the causes of immunosuppressive microenvironments represents a novel approach to conquering cancer. In this review, we focus on elucidating the role of AXL within the immunosuppressive microenvironments, discussing and analyzing the effects of AXL on tumor cells, T cells, macrophages, natural killer (NK) cells, fibroblasts, and other immune-stromal cells. We aim to clarify the contributions of AXL to the progression and drug resistance of cancer from its functional role in the immune microenvironment.
Collapse
Affiliation(s)
- Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Xu
- Department of Otolaryngology, Southwest Hospital, Army Medical University, Chongqing, 400000, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Zhu J, Guérineau H, Lefebvre‐Fortané A, Largeaud L, Lambert J, Rousselot P, Boudouin M, Calvo J, Prost S, Clauser S, Bardet V. The AXL inhibitor bemcentinib overcomes microenvironment-mediated resistance to pioglitazone in acute myeloid leukemia. FEBS J 2025; 292:115-128. [PMID: 39325663 PMCID: PMC11705203 DOI: 10.1111/febs.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Prognosis of acute myeloid leukemia (AML) remains poor especially in older patients who are ineligible for standard chemotherapy or have refractory disease. Here, we study the potential of Peroxisome Proliferator-Activated Receptor (PPAR)-γ agonist pioglitazone to improve the treatment of AML. We show that pioglitazone exerts an anti-proliferative and anti-clonogenic effect on AML cell lines KG-1a, MOLM-14 and OCI-AML3 and on primary cultures from AML patients. However, co-culture of AML cells with stromal cells mimicking the bone marrow microenvironment counteracts this effect, suggesting the existence of a stroma-mediated resistance mechanism to pioglitazone. We show that pioglitazone treatment upregulates the receptor AXL in AML cells at the mRNA and protein level, allowing AXL to be phosphorylated by its ligand Gas6, which is secreted by the stroma. Addition of exogenous Gas6 or stromal cell conditioned medium also abolishes the anti-proliferative effect of pioglitazone, with an increase in AXL phosphorylation observed in both conditions. Co-incubation with the AXL inhibitor bemcentinib restored the anti-leukemic activity of pioglitazone in the presence of stromal cells by reducing AXL phosphorylation to its baseline level. We also confirm that this resistance mechanism is PPAR-γ-dependent as stromal cells invalidated for PPAR-γ are unable to inhibit the antileukemic effect of pioglitazone. Altogether, we suggest that pioglitazone treatment exerts an anti-leukemic effect but concomitantly triggers a stroma-mediated resistance mechanism involving the Gas6/AXL axis. We demonstrate that a combination of pioglitazone with an AXL inhibitor overcomes this mechanism in primary cultures and AML cell lines and exerts potent anti-leukemic activity requiring further evaluation in vivo through murine xenograft pre-clinical models.
Collapse
MESH Headings
- Humans
- Axl Receptor Tyrosine Kinase
- Pioglitazone/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Tumor Microenvironment/drug effects
- Benzocycloheptenes/pharmacology
- PPAR gamma/metabolism
- PPAR gamma/antagonists & inhibitors
- Cell Proliferation/drug effects
- Intercellular Signaling Peptides and Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Phosphorylation/drug effects
- Cell Line, Tumor
- Coculture Techniques
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Protein Kinase Inhibitors/pharmacology
- Triazoles
Collapse
Affiliation(s)
- Jaja Zhu
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| | - Hippolyte Guérineau
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Anne‐Margaux Lefebvre‐Fortané
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Laetitia Largeaud
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| | - Juliette Lambert
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie et d'Oncologie, Centre Hospitalier André MignotUniversité Versailles Saint Quentin‐Université Paris SaclayMontigny le BretonneuxFrance
| | - Philippe Rousselot
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie et d'Oncologie, Centre Hospitalier André MignotUniversité Versailles Saint Quentin‐Université Paris SaclayMontigny le BretonneuxFrance
| | - Maèva Boudouin
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Julien Calvo
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Stéphane Prost
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Sylvain Clauser
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| | - Valérie Bardet
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| |
Collapse
|
6
|
Kamara S, Wen H, Guo Y, Liu Y, Liu L, Du W, Chen J, Zhu S, Zhang L. Axl and EGFR Dual-Specific Binding Affibody for Targeted Therapy in Nasopharyngeal Carcinoma. Cells 2024; 13:1823. [PMID: 39594573 PMCID: PMC11592995 DOI: 10.3390/cells13221823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor of the head and neck, with a higher incidence in southern China and Southeast Asia. Radiotherapy and chemotherapy are the main treatments; however, metastasis and recurrence remain the main causes of treatment failure. Further, the majority of patients are diagnosed in the late stage due to lack of tumor-specific biomarker for early diagnosis. Therefore, an effective treatment and early detection can improve the outcome of patient with NPC. Axl and EGFR are co-expressed in NPC tissues and play key roles in tumor proliferation, migration, and invasion, which are often correlated with poor prognosis and therapy resistance. In this study, we generated a novel bispecific affibody (Z239-1907) for the dual targeting and inhibition of Axl and EGFR expression in NPC-positive cells both in vitro and in vivo. The in vitro experiments demonstrated that Z239-1907 had more pronounced antitumor effects than either modality alone (ZAXL239 or ZEGFR1907) in NPC-positive cells. Further, mice bearing NPC-positive tumors showed significant inhibition in tumor growth after treatment with Z239-1907 compared to ZAXL239 and ZEGFR1907. The in vivo tumor targeting ability and imaging also showed that Z239-1907 specifically and selectively targeted NPC xenograft mice models and accumulate at tumor site as early as 30 min and disappeared within 24 h post-injection. Collectively, these results suggest that Z239-1907 dual-target affibody is a promising therapeutic agent and a molecular imaging probe for early diagnosis in NPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (S.K.); (H.W.); (Y.G.); (Y.L.); (L.L.); (W.D.); (J.C.); (S.Z.)
| |
Collapse
|
7
|
Behrmann CA, Ennis KN, Sarma P, Wetzel C, Clark NA, Von Handorf KM, Vallabhapurapu S, Andreani C, Reigle J, Scaglioni PP, Meller J, Czyzyk-Krzeska MF, Kendler A, Qi X, Sarkaria JN, Medvedovic M, Sengupta S, Dasgupta B, Plas DR. Coordinated Targeting of S6K1/2 and AXL Disrupts Pyrimidine Biosynthesis in PTEN-Deficient Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2215-2227. [PMID: 39087397 PMCID: PMC11342319 DOI: 10.1158/2767-9764.crc-23-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Intrinsic resistance to targeted therapeutics in PTEN-deficient glioblastoma (GBM) is mediated by redundant signaling networks that sustain critical metabolic functions. Here, we demonstrate that coordinated inhibition of the ribosomal protein S6 kinase 1 (S6K1) and the receptor tyrosine kinase AXL using LY-2584702 and BMS-777607 can overcome network redundancy to reduce GBM tumor growth. This combination of S6K1 and AXL inhibition suppressed glucose flux to pyrimidine biosynthesis. Genetic inactivation studies to map the signaling network indicated that both S6K1 and S6K2 transmit growth signals in PTEN-deficient GBM. Kinome-wide ATP binding analysis in inhibitor-treated cells revealed that LY-2584702 directly inhibited S6K1, and substrate phosphorylation studies showed that BMS-777607 inactivation of upstream AXL collaborated to reduce S6K2-mediated signal transduction. Thus, combination targeting of S6K1 and AXL provides a kinase-directed therapeutic approach that circumvents signal transduction redundancy to interrupt metabolic function and reduce growth of PTEN-deficient GBM. SIGNIFICANCE Therapy for glioblastoma would be advanced by incorporating molecularly targeted kinase-directed agents, similar to standard of care strategies in other tumor types. Here, we identify a kinase targeting approach to inhibit the metabolism and growth of glioblastoma.
Collapse
Affiliation(s)
- Catherine A. Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Kelli N. Ennis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Pranjal Sarma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Nicholas A. Clark
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Kate M. Von Handorf
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Subrahmanya Vallabhapurapu
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Cristina Andreani
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - James Reigle
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Pier Paolo Scaglioni
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jarek Meller
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio.
- Department of Pharmacology and Systems Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Xiaoyang Qi
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Soma Sengupta
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Departments of Neurology and Neurosurgery, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| | - Biplab Dasgupta
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio.
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
8
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
9
|
Tanim K, Holtzhausen A, Thapa A, Huelse JM, Graham DK, Earp HS. MERTK Inhibition as a Targeted Novel Cancer Therapy. Int J Mol Sci 2024; 25:7660. [PMID: 39062902 PMCID: PMC11277220 DOI: 10.3390/ijms25147660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
In this issue honoring the contributions of Greg Lemke, the Earp and Graham lab teams discuss several threads in the discovery, action, signaling, and translational/clinical potential of MERTK, originally called c-mer, a member of the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases. The 30-year history of the TAM RTK family began slowly as all three members were orphan RTKs without known ligands and/or functions when discovered by three distinct alternate molecular cloning strategies in the pre-genome sequencing era. The pace of understanding their physiologic and pathophysiologic roles has accelerated over the last decade. The activation of ligands bridging externalized phosphatidylserine (PtdSer) has placed these RTKs in a myriad of processes including neurodevelopment, cancer, and autoimmunity. The field is ripe for further advancement and this article hopefully sets the stage for further understanding and therapeutic intervention. Our review will focus on progress made through the collaborations of the Earp and Graham labs over the past 30 years.
Collapse
Affiliation(s)
- K.M. Tanim
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alisha Holtzhausen
- Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Aashis Thapa
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Justus M. Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - H. Shelton Earp
- Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
11
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
12
|
Chen X, Zheng J, Li T, Liu C, Bao M, Wang X, Li X, Li J, Huang L, Zhang Z, Weng C. Coreceptor AXL Facilitates African Swine Fever Virus Entry via Apoptotic Mimicry. J Virol 2023; 97:e0061623. [PMID: 37382521 PMCID: PMC10373532 DOI: 10.1128/jvi.00616-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
African swine fever (ASF) is an acute and hemorrhagic infectious disease caused by African swine fever virus (ASFV), which is listed as an animal epidemic disease that must be reported by The World Organization for Animal Health and that causes serious economic losses to China and even the whole world. Currently, the entry mechanism of ASFV is not fully understood. Especially in the early stages of virus entry, the host factors required for ASFV entry have not yet been identified and characterized. In this study, we demonstrated that ASFV externalized phosphatidylserine (PS) on the envelope functioned as viral apoptotic mimicry, which interacts with AXL, a tyrosine kinase receptor, to mediate ASFV entry into porcine alveolar macrophages (PAMs). We found that AXL was the most pronounced phosphatidylserine receptor (PSR) affecting ASFV entry in PAMs by RNA interference screening. Knockout AXL gene expression remarkably decreased ASFV internalization and replication in MA104 cells. Furthermore, the antibody against AXL extracellular domains effectively inhibited the ASFV entry. Consistent with these results, the deletion of the intracellular kinase domain of AXL and the treatment of the AXL inhibitor, R428, significantly inhibited the internalization of ASFV. Mechanistically, AXL facilitated the internalization of ASFV virions via macropinocytosis. Collectively, we provide evidence that AXL is a coreceptor for ASFV entry into PAMs, which expands our knowledge of ASFV entry and provides a theoretical basis for identifying new antiviral targets. IMPORTANCE African swine fever (ASF) is a highly contagious infectious disease caused by the ASF virus (ASFV), with a mortality rate of up to 100%. ASFV has caused huge economic losses to pig farming worldwide. Specific cellular surface receptors are considered crucial determinants of ASFV tropism. However, the host factors required for ASFV entry have not yet been identified, and the molecular mechanism of its entry remains unclear. Here, we found that ASFV utilized phosphatidylserine (PS) on the surface of virions to masquerade as apoptotic mimicry and facilitated virus entry by interacting with host factor AXL. We found that knockout of AXL remarkably decreased ASFV internalization and replication. The antibody against AXL extracellular domains and AXL inhibitor R428 significantly inhibited the internalization of ASFV via macropinocytosis. The current work deepens our understanding of ASFV entry and provides clues for the development of antiviral drugs to control ASFV infection.
Collapse
Affiliation(s)
- Xin Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Tingting Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Chuanxia Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Miaofei Bao
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xiao Wang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xuewen Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Zhaoxia Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
13
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
14
|
Vago JP, Valdrighi N, Blaney-Davidson EN, Hornikx DLAH, Neefjes M, Barba-Sarasua ME, Thielen NGM, van den Bosch MHJ, van der Kraan PM, Koenders MI, Amaral FA, van de Loo FAJ. Gas6/Axl Axis Activation Dampens the Inflammatory Response in Osteoarthritic Fibroblast-like Synoviocytes and Synovial Explants. Pharmaceuticals (Basel) 2023; 16:ph16050703. [PMID: 37242486 DOI: 10.3390/ph16050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, and it is characterized by cartilage degeneration, synovitis, and bone sclerosis, resulting in swelling, stiffness, and joint pain. TAM receptors (Tyro3, Axl, and Mer) play an important role in regulating immune responses, clearing apoptotic cells, and promoting tissue repair. Here, we investigated the anti-inflammatory effects of a TAM receptor ligand, i.e., growth arrest-specific gene 6 (Gas6), in synovial fibroblasts from OA patients. TAM receptor expression was determined in synovial tissue. Soluble Axl (sAxl), a decoy receptor for the ligand Gas6, showed concentrations 4.6 times higher than Gas6 in synovial fluid of OA patients. In OA fibroblast-like synoviocytes (OAFLS) exposed to inflammatory stimuli, the levels of sAxl in the supernatants were increased, while the expression of Gas6 was downregulated. In OAFLS under TLR4 stimulation by LPS (Escherichia coli lipopolysaccharide), the addition of exogenous Gas6 by Gas6-conditioned medium (Gas6-CM) reduced pro-inflammatory markers including IL-6, TNF-α, IL-1β, CCL2, and CXCL8. Moreover, Gas6-CM downregulated IL-6, CCL2, and IL-1β in LPS-stimulated OA synovial explants. Pharmacological inhibition of TAM receptors by a pan inhibitor (RU301) or by a selective Axl inhibitor (RU428) similarly abrogated Gas6-CM anti-inflammatory effects. Mechanistically, Gas6 effects were dependent on Axl activation, determined by Axl, STAT1, and STAT3 phosphorylation, and by the downstream induction of the suppressors of the cytokine signaling family (SOCS1 and SOCS3). Taken together, our results showed that Gas6 treatment dampens inflammatory markers of OAFLS and synovial explants derived from OA patients associated with SOCS1/3 production.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Natália Valdrighi
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Esmeralda N Blaney-Davidson
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Daniel L A H Hornikx
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Margot Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - María E Barba-Sarasua
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nathalie G M Thielen
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Flávio A Amaral
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
15
|
The First-In-Class Anti-AXL×CD3ε Pronectin™-Based Bispecific T-Cell Engager Is Active in Preclinical Models of Human Soft Tissue and Bone Sarcomas. Cancers (Basel) 2023; 15:cancers15061647. [PMID: 36980534 PMCID: PMC10046451 DOI: 10.3390/cancers15061647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Sarcomas are heterogeneous malignancies with limited therapeutic options and a poor prognosis. We developed an innovative immunotherapeutic agent, a first-in-class Pronectin™-based Bispecific T-Cell Engager (pAXL×CD3ε), for the targeting of AXL, a TAM family tyrosine kinase receptor highly expressed in sarcomas. AXL expression was first analyzed by flow cytometry, qRT-PCR, and Western blot on a panel of sarcoma cell lines. The T-cell-mediated pAXL×CD3ε cytotoxicity against sarcoma cells was investigated by flow cytometry, luminescence assay, and fluorescent microscopy imaging. The activation and degranulation of T cells induced by pAXL×CD3ε were evaluated by flow cytometry. The antitumor activity induced by pAXL×CD3ε in combination with trabectedin was also investigated. In vivo activity studies of pAXL×CD3ε were performed in immunocompromised mice (NSG), engrafted with human sarcoma cells and reconstituted with human peripheral blood mononuclear cells from healthy donors. Most sarcoma cells showed high expression of AXL. pAXL×CD3ε triggered T-lymphocyte activation and induced dose-dependent T-cell-mediated cytotoxicity. The combination of pAXL×CD3ε with trabectedin increased cytotoxicity. pAXL×CD3ε inhibited the in vivo growth of human sarcoma xenografts, increasing the survival of treated mice. Our data demonstrate the antitumor efficacy of pAXL×CD3ε against sarcoma cells, providing a translational framework for the clinical development of pAXL×CD3ε in the treatment of human sarcomas, aggressive and still-incurable malignancies.
Collapse
|
16
|
Targeted Phagocytosis Induction for Cancer Immunotherapy via Bispecific MerTK-Engaging Antibodies. Int J Mol Sci 2022; 23:ijms232415673. [PMID: 36555321 PMCID: PMC9779728 DOI: 10.3390/ijms232415673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The Tyro, Axl, and MerTK receptors (TAMRs) play a significant role in the clearance of apoptotic cells. In this work, the spotlight was set on MerTK, as it is one of the prominent TAMRs expressed on the surface of macrophages and dendritic cells. MerTK-specific antibodies were previously isolated from a transgenic rat-derived immune library with suitable biophysical properties. Further characterisation resulted in an agonistic MerTK antibody that led to phospho AKT activation in a dose-dependent manner. In this proof-of-concept study, a MerTK-specific antibody, MerK28, was combined with tandem, biparatopic EGFR-binding VHH camelid antibody domains (7D9G) in different architectures to generate bispecific antibodies with the capacity to bind EGFR and MerTK simultaneously. The bispecific molecules exhibited appropriate binding properties with regard to both targets in their soluble forms as well as to cells, which resulted in the engagement of macrophage-like THP-1 cells with epidermoid carcinoma A431 cells. Furthermore, targeted phagocytosis in co-culture experiments was observed only with the bispecific variants and not the parental MerTK-binding antibody. This work paves the way for the generation of bispecific macrophage-engaging antibodies for targeted phagocytosis harnessing the immune-modulating roles of MerTK in immunotherapy.
Collapse
|
17
|
Wang Z, Liu D, Yan Q, Liu F, Zhan M, Qi S, Fang Q, Yao L, Wang W, Zhang R, Du J, Chen L. Activated AXL Protects Against Hepatic Ischemia-reperfusion Injury by Upregulating SOCS-1 Expression. Transplantation 2022; 106:1351-1364. [PMID: 35546091 PMCID: PMC9213082 DOI: 10.1097/tp.0000000000004156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is the main factor affecting the morbidity and mortality associated with perioperative complications of liver transplantation and major hepatectomy. AXL is a member of the TYRO3, AXL, MERTK family and is involved in immune and apoptosis processes in multiple organs. However, the role of AXL in hepatic I/R injury remains to be elucidated. METHODS Mice pretreated with rmGas6 or R428 and mice tail vein injected with adeno-associated virus knockdown suppressor of cytokine signaling protein-1 (SOCS-1) underwent liver I/R surgery to detect the function of activated AXL in vivo. Primary hepatocytes undergo hypoxic reoxygenation injury in vitro. RESULTS AXL expression was significantly upregulated, and phosphorylated-AXL was substantially downregulated in liver transplantation patients and hepatic I/R surgery mice. A mouse model of hepatic I/R injury showed that AXL activation reduced liver inflammation and liver cells apoptosis. The inhibition of AXL activation (AXL-specific inhibitor R428) aggravated hepatic I/R injury, resulted in larger areas of liver injury, aggravated inflammatory response, and increased apoptosis of liver cells. In addition, activated AXL promotes the expression level of SOCS-1 and inhibits toll-like receptor 4 and its downstream signaling pathways. Finally, SOCS-1 was knocked down with an adeno-associated virus, and activated AXL failed to protect against hepatic I/R injury. CONCLUSIONS AXL activation protects the liver from I/R injury by upregulating SOCS-1 and inhibiting the toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa-B signaling axis. Targeting AXL may be a new therapeutic option for ameliorating hepatic I/R injury.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shunli Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lei Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weizhi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruixin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Infectious Disease Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Two-Front War on Cancer-Targeting TAM Receptors in Solid Tumour Therapy. Cancers (Basel) 2022; 14:cancers14102488. [PMID: 35626092 PMCID: PMC9140196 DOI: 10.3390/cancers14102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In recent years, many studies have shown the importance of TAM kinases in both normal and neoplastic cells. In this review, we present and discuss the role of the TAM family (AXL, MERTK, TYRO3) of receptor tyrosine kinases (RTKs) as a dual target in cancer, due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment. This review presents the potential of TAMs as emerging therapeutic targets in cancer treatment, focusing on the distinct structures of TAM receptor tyrosine kinases. We analyse and compare different strategies of TAM inhibition, for a full perspective of current and future battlefields in the war with cancer. Abstract Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play an important role in signal transduction in both normal and malignant cells, and their encoding genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3, AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity. MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and compare current approaches to target TAM RTKs in solid tumours and the development of new inhibitors for both extra- and intracellular domains of TAM receptor kinases.
Collapse
|
19
|
Lahey KC, Gadiyar V, Hill A, Desind S, Wang Z, Davra V, Patel R, Zaman A, Calianese D, Birge RB. Mertk: An emerging target in cancer biology and immuno-oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:35-59. [PMID: 35636929 PMCID: PMC9994207 DOI: 10.1016/bs.ircmb.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mertk, a type I Receptor Tyrosine Kinase (RTK) and member of the TAM (Tyro3, Axl, and Mertk) family of homologous tyrosine kinases, has important roles in signal transduction both homeostatically on normal cells as well as patho-physiologically on both tumor-associated macrophages and malignant cells by its overexpression in a wide array of cancers. The main ligands of Mertk are Vitamin K-modified endogenous proteins Gas6 and Protein S (ProS1), heterobifunctional modular proteins that bind Mertk via two carboxyl-terminal laminin-like globular (LG) domains, and an N-terminal Gla domain that binds anionic phospholipids, whereby externalized phosphatidylserine (PS) on stressed viable and caspase-activated apoptotic cells is most emblematic. Recent studies indicate that Vitamin K-dependent γ-carboxylation on the N-terminal Gla domain of Gas6 and Protein S is necessary for PS binding and Mertk activation, implying that Mertk is preferentially active in tissues where there is high externalized PS, such as the tumor microenvironment (TME) and acute virally infected tissues. Once stimulated, activated Mertk can provide a survival advantage for cancer cells as well as drive compensatory proliferation. On monocytes and tumor-associated macrophages, Mertk promotes efferocytosis and acts as an inhibitory receptor that impairs host anti-tumor immunity, functioning akin to a myeloid checkpoint inhibitor. In recent years, inhibition of Mertk has been implicated in a dual role to enhance the sensitivity of cancer cells to cytotoxic agents along with improving host anti-tumor immunity with anti-PD-1/PD-L1 immunotherapy. Here, we examine the rationale of Mertk-targeted immunotherapies, the current and potential therapeutic strategies, the clinical status of Mertk-specific therapies, and potential challenges and obstacles for Mertk-focused therapies.
Collapse
Affiliation(s)
- Kevin C Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States.
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Amanda Hill
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Samuel Desind
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Radhey Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Ahnaf Zaman
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ, United States.
| |
Collapse
|
20
|
Tajbakhsh A, Gheibi Hayat SM, Movahedpour A, Savardashtaki A, Loveless R, Barreto GE, Teng Y, Sahebkar A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed Pharmacother 2021; 140:111776. [PMID: 34062411 DOI: 10.1016/j.biopha.2021.111776] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Koo J, Hayashi M, Verneris MR, Lee-Sherick AB. Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Front Oncol 2020; 10:581107. [PMID: 33381449 PMCID: PMC7769312 DOI: 10.3389/fonc.2020.581107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
For many pediatric sarcoma patients, multi-modal therapy including chemotherapy, radiation, and surgery is sufficient to cure their disease. However, event-free and overall survival rates for patients with more advanced disease are grim, necessitating the development of novel therapeutic approaches. Within many pediatric sarcomas, the normal immune response, including recognition and destruction of cancer cells, is lost due to the highly immune suppressive tumor microenvironment (TME). In this setting, tumor cells evade immune detection and capitalize on the immune suppressed microenvironment, leading to unchecked proliferation and metastasis. Recent preclinical and clinical approaches are aimed at understanding this immune suppressive microenvironment and employing cancer immunotherapy in an attempt to overcome this, by renewing the ability of the immune system to recognize and destroy cancer cells. While there are several factors that drive the attenuation of immune responses in the sarcoma TME, one of the most remarkable are tumor associated macrophage (TAMs). TAMs suppress immune cytolytic function, promote tumor growth and metastases, and are generally associated with a poor prognosis in most pediatric sarcoma subtypes. In this review, we summarize the mechanisms underlying TAM-facilitated immune evasion and tumorigenesis and discuss the potential therapeutic application of TAM-focused drugs in the treatment of pediatric sarcomas.
Collapse
Affiliation(s)
- Jane Koo
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Masanori Hayashi
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Michael R Verneris
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Alisa B Lee-Sherick
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
22
|
Gadiyar V, Patel G, Davra V. Immunological role of TAM receptors in the cancer microenvironment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 357:57-79. [PMID: 33234245 DOI: 10.1016/bs.ircmb.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAM receptors belong to the family of receptor tyrosine kinases, comprising of Tyro3, Axl and Mertk receptors (TAMs) and are important homeostatic regulators of inflammation in higher eukaryotes. Along with their ligands, Gas6 and ProteinS, TAMs acts as receptors to phosphatidylserine (PtdSer), an anionic phospholipid that becomes externalized on the surface of apoptotic and stressed cells. TAM receptors, specially Mertk, have been well established to play a role in the process of efferocytosis, the engulfment of dying cells. Besides being efferocytic receptors, TAMs are pleiotropic immune modulators as the lack of TAM receptors in various mouse models lead to chronic inflammation and autoimmunity. Owing to their immune modulatory role, the PtdSer-TAM receptor signaling axis has been well characterized as a global immune-suppressive signal, and in cancers, and emerging literature implicates TAM receptors in cancer immunology and anti-tumor therapeutics. In the tumor microenvironment, immune-suppressive signals, such as ones that originate from TAM receptor signaling can be detrimental to anti-tumor therapy. In this chapter, we discuss immune modulatory functions of TAM receptors in the tumor microenvironment as well role of differentially expressed TAM receptors and their interactions with immune and tumor cells. Finally, we describe current strategies being utilized for targeting TAMs in several cancers and their implications in immunotherapy.
Collapse
Affiliation(s)
- Varsha Gadiyar
- Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Gopi Patel
- Rutgers New Jersey Medical School, Newark, NJ, United States
| | | |
Collapse
|
23
|
Crystal Structure of the Kinase Domain of MerTK in Complex with AZD7762 Provides Clues for Structure-Based Drug Development. Int J Mol Sci 2020; 21:ijms21217878. [PMID: 33114206 PMCID: PMC7660649 DOI: 10.3390/ijms21217878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant tyrosine-protein kinase Mer (MerTK) expression triggers prosurvival signaling and contributes to cell survival, invasive motility, and chemoresistance in many kinds of cancers. In addition, recent reports suggested that MerTK could be a primary target for abnormal platelet aggregation. Consequently, MerTK inhibitors may promote cancer cell death, sensitize cells to chemotherapy, and act as new antiplatelet agents. We screened an inhouse chemical library to discover novel small-molecule MerTK inhibitors, and identified AZD7762, which is known as a checkpoint-kinase (Chk) inhibitor. The inhibition of MerTK by AZD7762 was validated using an in vitro homogeneous time-resolved fluorescence (HTRF) assay and through monitoring the decrease in phosphorylated MerTK in two lung cancer cell lines. We also determined the crystal structure of the MerTK:AZD7762 complex and revealed the binding mode of AZD7762 to MerTK. Structural information from the MerTK:AZD7762 complex and its comparison with other MerTK:inhibitor structures gave us new insights for optimizing the development of inhibitors targeting MerTK.
Collapse
|
24
|
Wang KH, Ding DC. Dual targeting of TAM receptors Tyro3, Axl, and MerTK: Role in tumors and the tumor immune microenvironment. Tzu Chi Med J 2020; 33:250-256. [PMID: 34386362 PMCID: PMC8323642 DOI: 10.4103/tcmj.tcmj_129_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
In both normal and tumor tissues, receptor tyrosine kinases (RTKs) may be pleiotropically expressed. The RTKs not only regulate ordinary cellular processes, including proliferation, survival, adhesion, and migration, but also have a critical role in the development of many types of cancer. The Tyro3, Axl, and MerTK (TAM) family of RTKs (Tyro3, Axl, and MerTK) plays a pleiotropic role in phagocytosis, inflammation, and normal cellular processes. In this article, we highlight the cellular activities of TAM receptors and discuss their roles in cancer and immune cells. We also discuss cancer therapies that target TAM receptors. Further research is needed to elucidate the function of TAM receptors in immune cells toward the development of new targeted immunotherapies for cancer.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
25
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
26
|
AXL as a Target in Breast Cancer Therapy. JOURNAL OF ONCOLOGY 2020; 2020:5291952. [PMID: 32148495 PMCID: PMC7042526 DOI: 10.1155/2020/5291952] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
AXL is a receptor tyrosine kinase (RTK) that has been implicated in diverse tumor-promoting processes such as proliferation, migration, invasion, survival, and apoptosis. AXL therefore plays a role in cancer progression, and AXL has been implicated in a wide variety of malignancies from solid tumors to hematopoietic cancers where it is often associated with poor prognosis. In cancer, AXL has been shown to promote epithelial to mesenchymal transition (EMT), metastasis formation, drug resistance, and a role for AXL in modulation of the tumor microenvironment and immune response has been identified. In light of these activities multiple AXL inhibitors have been developed, and several of these have entered clinical trials in the U.S. In breast cancer, high levels of AXL expression have been observed. The role of AXL in cancer with a focus on therapeutic implications for breast cancer is discussed.
Collapse
|
27
|
Sarukhanyan E, Shityakov S, Dandekar T. Rational Drug Design of Axl Tyrosine Kinase Type I Inhibitors as Promising Candidates Against Cancer. Front Chem 2020; 7:920. [PMID: 32117858 PMCID: PMC7010640 DOI: 10.3389/fchem.2019.00920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Edita Sarukhanyan
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sergey Shityakov
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Department of Anesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO, Zheng Z, Kasikara C, Davra V, Meroni M, Chung RT, Rothlin CV, Schwabe RF, Blaner WS, Birge RB, Valenti L, Tabas I. Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis. Cell Metab 2020; 31:406-421.e7. [PMID: 31839486 PMCID: PMC7004886 DOI: 10.1016/j.cmet.2019.11.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a leading cause of chronic liver disease. However, therapeutic options are limited by incomplete understanding of the mechanisms of NASH fibrosis, which is mediated by activation of hepatic stellate cells (HSCs). In humans, human genetic studies have shown that hypomorphic variations in MERTK, encoding the macrophage c-mer tyrosine kinase (MerTK) receptor, provide protection against liver fibrosis, but the mechanisms remain unknown. We now show that holo- or myeloid-specific Mertk targeting in NASH mice decreases liver fibrosis, congruent with the human genetic data. Furthermore, ADAM metallopeptidase domain 17 (ADAM17)-mediated MerTK cleavage in liver macrophages decreases during steatosis to NASH transition, and mice with a cleavage-resistant MerTK mutant have increased NASH fibrosis. Macrophage MerTK promotes an ERK-TGFβ1 pathway that activates HSCs and induces liver fibrosis. These data provide insights into the role of liver macrophages in NASH fibrosis and provide a plausible mechanism underlying MERTK as a genetic risk factor for NASH fibrosis.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Kathleen E Corey
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Igor O Shmarakov
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Canan Kasikara
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Raymond T Chung
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine and Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano 20122, Italy; Translational Medicine - Transfusion Medicine and Hematology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Departments of Pathology & Cell Biology and Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
29
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
Receptor Tyrosine Kinases in Osteosarcoma: 2019 Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:141-155. [PMID: 32767239 DOI: 10.1007/978-3-030-43085-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary conclusions of our 2014 contribution to this series were as follows: Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes. Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies. Different combinations of RTKs are likely important in individual patients. AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines. This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published.
Collapse
|
31
|
Subasi E, Atalay EB, Erdogan D, Sen B, Pakyapan B, Kayali HA. Synthesis and characterization of thiosemicarbazone-functionalized organoruthenium (II)-arene complexes: Investigation of antitumor characteristics in colorectal cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110152. [DOI: 10.1016/j.msec.2019.110152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023]
|
32
|
Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:81-122. [DOI: 10.1016/bs.ircmb.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Cruz-López O, Temps C, Longo B, Myers SH, Franco-Montalban F, Unciti-Broceta A. Synthesis and Characterization of a Click-Assembled 18-Atom Macrocycle That Displays Selective AXL Kinase Inhibitory Activity. ACS OMEGA 2019; 4:21620-21626. [PMID: 31867559 PMCID: PMC6921642 DOI: 10.1021/acsomega.9b03525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
A novel macrocyclic construct consisting of a pyrazolopyrimidine scaffold concatenated to a benzene ring through two triazoles has been developed to investigate uncharted chemical space with bioactive potential. The 18-atom macrocycle was assembled via a double copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between 1,3-bis(azidomethyl)benzene and a bis-propargylated pyrazolo[3,4-d]pyrimidine core. The resulting macrocycle was functionalized further into a multicyclic analog that displays selective inhibitory activity against the receptor tyrosine kinase AXL.
Collapse
Affiliation(s)
- Olga Cruz-López
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Department
of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Carolin Temps
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Beatrice Longo
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Samuel H. Myers
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Francisco Franco-Montalban
- Department
of Medicinal & Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Asier Unciti-Broceta
- Cancer
Research UK Edinburgh Centre, Institute of Genetics and Molecular
Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
34
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
35
|
Smith J, Kulkarni A, Birkeland AC, McHugh JB, Brenner JC. Whole-Exome Sequencing of Sinonasal Small Cell Carcinoma Arising within a Papillary Schneiderian Carcinoma In Situ. Otolaryngol Head Neck Surg 2018; 159:859-865. [PMID: 29734873 PMCID: PMC6212311 DOI: 10.1177/0194599818774004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The pathogenetic underpinnings of extrapulmonary small cell carcinomas (EPSCCs) of the head and neck are poorly understood. We sought to describe the clinical case and whole-exome DNA sequencing data of a patient with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma (SCC). STUDY DESIGN Case report and whole-exome sequencing of tumor DNA. SETTING Academic medical center. SUBJECTS AND METHODS A 52-year-old man with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma. We performed whole-exome genetic sequencing and copy-number variation (CNV) analysis of tumor and normal DNA extracted from flash-frozen, paraffin-embedded (FFPE) samples. RESULTS A total of 93 high-confidence, nonsynonymous somatic mutation events were identified in sinonasal SCC, including loss-of-function mutations in TP53, MAML3, a transcriptional coactivator of the Notch pathway, and GAS6, an activating ligand of the TAM family of tyrosine kinase receptors. Focal amplifications of chromosomal regions 6p25-11.1, containing SOX4 and VEGFA, and 14q32.1-32.3, containing AKT1 and the Notch inhibitory ligand DLK1, were also seen. Further CNV analysis revealed deletions in the critical cell cycle regulators CDKN2A, RB1, RBL1, and RBL2 and the chromatin modifier EP300. CONCLUSIONS Small cell carcinoma may rarely arise from sinonasal Schneiderian carcinoma in situ and exhibits similar genomic aberrations (eg, SOX amplification, Notch pathway inactivation) to pulmonary small cell carcinoma.
Collapse
Affiliation(s)
- Joshua Smith
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Aditi Kulkarni
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Andrew C Birkeland
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan B. McHugh
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - J. Chad Brenner
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
36
|
Ojha CR, Rodriguez M, Lapierre J, Muthu Karuppan MK, Branscome H, Kashanchi F, El-Hage N. Complementary Mechanisms Potentially Involved in the Pathology of Zika Virus. Front Immunol 2018; 9:2340. [PMID: 30374352 PMCID: PMC6196287 DOI: 10.3389/fimmu.2018.02340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) has emerged as a global health threat due to its neuro-teratogenic effect and wide range of transmission routes. Most recently, ZIKV infection has been linked with both autoimmune disorders in adults and neurodevelopmental disorders in newborns. Researchers are exploring potential cellular and molecular mechanisms underlying the neuro-teratogenicity and related consequences by using various in vitro cell culture methods and in vivo animal models. Though some of the putative viral entry receptors have been identified for ZIKV entry into the target cells, the exact mechanism of ZIKV entry or induced pathology are still not clear. Some of the important host cellular pathways including the toll-like receptor (TLR), autophagy, apoptosis and unfolded protein response (UPR) pathways are considered potential mechanism(s) for ZIKV induced neuroinflammation and for neurodevelopmental disorders. Since there is still a dire need for efficient treatment and vaccine to prevent ZIKV mediated disorders, a better understanding of the interaction between virus and host cellular pathways could pave the way for development of targeted therapeutic intervention. In this review, we are focusing on the recent advances and current knowledge regarding the interaction of ZIKV with abovementioned pathways so as to provide basic understanding to execute further research that could aid in the development of novel therapeutic strategy.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jessica Lapierre
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
37
|
The Dual Role of TAM Receptors in Autoimmune Diseases and Cancer: An Overview. Cells 2018; 7:cells7100166. [PMID: 30322068 PMCID: PMC6210017 DOI: 10.3390/cells7100166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate cellular processes by converting signals from the extracellular environment to the cytoplasm and nucleus. Tyro3, Axl, and Mer (TAM) receptors form an RTK family that plays an intricate role in tissue maintenance, phagocytosis, and inflammation as well as cell proliferation, survival, migration, and development. Defects in TAM signaling are associated with numerous autoimmune diseases and different types of cancers. Here, we review the structure of TAM receptors, their ligands, and their biological functions. We discuss the role of TAM receptors and soluble circulating TAM receptors in the autoimmune diseases systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Lastly, we discuss the effect of TAM receptor deregulation in cancer and explore the therapeutic potential of TAM receptors in the treatment of diseases.
Collapse
|
38
|
Sarukhanyan E, Shityakov S, Dandekar T. In Silico Designed Axl Receptor Blocking Drug Candidates Against Zika Virus Infection. ACS OMEGA 2018; 3:5281-5290. [PMID: 30023915 PMCID: PMC6044927 DOI: 10.1021/acsomega.8b00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/13/2018] [Indexed: 05/24/2023]
Abstract
After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2' (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2' was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies.
Collapse
Affiliation(s)
- Edita Sarukhanyan
- Department
of Bioinformatics, Biocenter, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Sergey Shityakov
- Department
of Anesthesia and Critical Care, University
Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department
of Bioinformatics, Biocenter, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| |
Collapse
|
39
|
Sarode GS, Sarode SC, Maniyar N, Sharma NK, Patil S. Carcinogenesis-relevant biological events in the pathophysiology of the efferocytosis phenomenon. Oncol Rev 2017; 11:343. [PMID: 29285321 PMCID: PMC5733395 DOI: 10.4081/oncol.2017.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
The effective removal of cells undergoing programmed cell death, which is referred to as efferocytosis, prevents the leakage of intracellular contents into the surrounding tissue, which could lead to tissue damage and inflammation. Efferocytosis involves a coordinated orchestration of multiple steps that lead to a swift, coherent and immunologically silent removal of dying cells. The release of wound healing cytokines, which resolve inflammation and enhance tissue repair, is an important feature of efferocytosis. However, in addition to the healing cytokines released during efferocytosis, the immunosuppressive action of cytokines promotes the tumor microenvironment, enhances the motility of cancer cells and promotes the evasion of antitumor immunity. The aim of the present review was to comprehensively discuss the efferocytosis phenomenon, the important players associated with this process and their role in cancer-related biological events.
Collapse
Affiliation(s)
- Gargi Sachin Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nikunj Maniyar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shankargouda Patil
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
40
|
Ludwig KF, Du W, Sorrelle NB, Wnuk-Lipinska K, Topalovski M, Toombs JE, Cruz VH, Yabuuchi S, Rajeshkumar NV, Maitra A, Lorens JB, Brekken RA. Small-Molecule Inhibition of Axl Targets Tumor Immune Suppression and Enhances Chemotherapy in Pancreatic Cancer. Cancer Res 2017; 78:246-255. [PMID: 29180468 DOI: 10.1158/0008-5472.can-17-1973] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Activation of the receptor tyrosine kinase Axl is associated with poor outcomes in pancreatic cancer (PDAC), where it coordinately mediates immune evasion and drug resistance. Here, we demonstrate that the selective Axl kinase inhibitor BGB324 targets the tumor-immune interface to blunt the aggressive traits of PDAC cells in vitro and enhance gemcitibine efficacy in vivo Axl signaling stimulates the TBK1-NFκB pathway and innate immune suppression in the tumor microenvironment. In tumor cells, BGB324 treatment drove epithelial differentiation, expression of nucleoside transporters affecting gemcitabine response, and an immune stimulatory microenvironment. Our results establish a preclinical mechanistic rationale for the clinical development of Axl inhibitors to improve the treatment of PDAC patients.Significance: These results establish a preclinical mechanistic rationale for the clinical development of AXL inhibitors to improve the treatment of PDAC patients. Cancer Res; 78(1); 246-55. ©2017 AACR.
Collapse
Affiliation(s)
- Kathleen F Ludwig
- Division of Pediatric Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wenting Du
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Noah B Sorrelle
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Mary Topalovski
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason E Toombs
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victoria H Cruz
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N V Rajeshkumar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James B Lorens
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
41
|
Tyro3 carboxyl terminal region confers stability and contains the autophosphorylation sites. Biochem Biophys Res Commun 2017; 490:1074-1079. [PMID: 28668391 DOI: 10.1016/j.bbrc.2017.06.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Tyro3, a member of TAM receptor tyrosine kinase family has been suggested to be autophosphorylated upon activation. In the current study we mapped the autophosphorylation sites of murine Tyro3 to tyrosine 723 and 756, with K540 being required for its kinase activity. Knockdown of Axl significantly decreases the tyrosyl-phosphorylation of Tyro3 in fibroblasts NR6WT, suggesting an interaction among the TAM family members. Interestingly, the carboxyl terminal region of Tyro3 is required for its stability in cells with a minimal length of 1-778 amino acids which is not conserved in murine Axl, a member of TAM. These data suggest that the autophosphorylation sites of TAM RTK members are unique although they share high similarity in amino acids within their carboxyl kinase domain.
Collapse
|