1
|
Chaumont L, Peruzzi M, Huetz F, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Salmonid Double-stranded RNA-Dependent Protein Kinase Activates Apoptosis and Inhibits Protein Synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:700-717. [PMID: 39058317 DOI: 10.4049/jimmunol.2400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
dsRNA-dependent protein kinase R (PKR) is a key factor of innate immunity. It is involved in translation inhibition, apoptosis, and enhancement of the proinflammatory and IFN responses. However, how these antiviral functions are conserved during evolution remains largely unknown. Overexpression and knockout studies in a Chinook salmon (Oncorhynchus tshawytscha) cell line were conducted to assess the role of salmonid PKR in the antiviral response. Three distinct mRNA isoforms from a unique pkr gene, named pkr-fl (full length), pkr-ml (medium length) and pkr-sl (short length), were cloned and a pkr-/- clonal fish cell line was developed using CRISPR/Cas9 genome editing. PKR-FL includes an N-terminal dsRNA-binding domain and a C-terminal kinase domain, whereas PKR-ML and PKR-SL display a truncated or absent kinase domain, respectively. PKR-FL is induced during IFNA2 stimulation but not during viral hemorrhagic septicemia virus (VHSV) infection. Overexpression experiments showed that only PKR-FL possesses antiviral functions, including activation of apoptosis and inhibition of de novo protein synthesis. Knockout experiments confirmed that PKR is involved in apoptosis activation during the late stage of VHSV infection. Endogenous PKR also plays a critical role in translation inhibition upon poly(I:C) transfection after IFNA2 treatment. It is, however, not involved in translational arrest during VHSV infection. Extra- and intracellular titrations showed that endogenous PKR does not directly inhibit viral replication but apparently favors virion release into the supernatant, likely by triggering late apoptosis. Altogether, our data confirm that salmonid PKR has conserved molecular functions that VHSV appears to bypass with subversion strategies.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
2
|
Huang J, Zheng S, Li Q, Zhao H, Zhou X, Yang Y, Zhang W, Cao Y. Host miR-146a-3p Facilitates Replication of Infectious Hematopoietic Necrosis Virus by Targeting WNT3a and CCND1. Vet Sci 2024; 11:204. [PMID: 38787176 PMCID: PMC11126136 DOI: 10.3390/vetsci11050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen that causes great economic loss to the salmon and trout industry. Previous studies showed that IHNV alters the expression patterns of splenic microRNAs (miRNAs) in rainbow trout. Among the differentially expressed miRNAs, miRNA146a-3p was upregulated by IHNV. However, it is unclear how IHNV utilizes miRNA146a-3p to escape the immune response or promote viral replication. The present study suggested that one multiplicity of infection (MOI) of IHNV induced the most significant miR-146a-3p expression at 1 day post infection (dpi). The upregulation of miR-146a-3p by IHNV was due to viral N, P, M, and G proteins and relied on the interferon (IFN) signaling pathway. Further investigation revealed that Wingless-type MMTV integration site family 3a (WNT3a) and G1/S-specific cyclin-D1-like (CCND1) are the target genes of miRNA-146a-3p. The regulation of IHNV infection by miRNA-146a-3p is dependent on WNT3a and CCND1. MiRNA-146a-3p was required for the downregulation of WNT3a and CCND1 by IHNV. Moreover, we also found that WNT3a and CCND1 are novel proteins that induce the type-I IFN response in RTG-2 cells, and both of them could inhibit the replication of IHNV. Therefore, IHNV-induced upregulation of miRNA-146a-3p promotes early viral replication by suppressing the type-I IFN response by targeting WNT3a and CCND1. This work not only reveals the molecular mechanism of miRNA-146a-3p during IHNV infection but also provides new antiviral targets for IHNV.
Collapse
Affiliation(s)
- Jingwen Huang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Shihao Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Qiuji Li
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Hongying Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Xinyue Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Yutong Yang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150069, China
| | - Yongsheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Street NO.600, Harbin 150030, China
| |
Collapse
|
3
|
Pan F, Gong J, Ma X, Tang X, Xing J, Sheng X, Chi H, Zhan W. Expression characteristics of non-virion protein of Hirame novirhabdovirus and its transfection induced response in hirame natural embryo cells. Int J Biol Macromol 2023; 242:124567. [PMID: 37100320 DOI: 10.1016/j.ijbiomac.2023.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/19/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The non-virion (NV) protein is the signature of genus Novirhabdovirus, which has been of considerable concern due to its potential role in viral pathogenicity. However, its expression characteristics and induced immune response remain limited. In the present work, it was demonstrated that Hirame novirhabdovirus (HIRRV) NV protein was only detected in the viral infected hirame natural embryo (HINAE) cells, but absent in the purified virions. Results showed that the transcription of NV gene could be stably detected in HIRRV-infected HINAE cells at 12 h post infection (hpi) and then reached the peak at 72 hpi. A similar expression trend of NV gene was also found in HIRRV-infected flounders. Subcellular localization analysis further exhibited that HIRRV-NV protein was predominantly localized in the cytoplasm. To elucidate the biological function of HIRRV-NV protein, NV eukaryotic plasmid was transfected into HINAE cells for RNA-seq. Compared to empty plasmid group, some key genes in RLR signaling pathway were significantly downregulated in NV-overexpressed HINAE cells, indicating that RLR signaling pathway was inhibited by HIRRV-NV protein. The interferon-associated genes were also significantly suppressed upon transfection of NV gene. This research would improve our understanding of expression characteristics and biological function of NV protein during HIRRV infection process.
Collapse
Affiliation(s)
- Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiaojiao Gong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
4
|
Souto S, Mérour E, Le Coupanec A, Lamoureux A, Bernard J, Brémont M, Millet JK, Biacchesi S. Recombinant viral hemorrhagic septicemia virus with rearranged genomes as vaccine vectors to protect against lethal betanodavirus infection. Front Immunol 2023; 14:1138961. [PMID: 36999033 PMCID: PMC10043230 DOI: 10.3389/fimmu.2023.1138961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
The outbreaks of viral hemorrhagic septicemia (VHS) and viral encephalopathy and retinopathy (VER) caused by the enveloped novirhabdovirus VHSV, and the non-enveloped betanodavirus nervous necrosis virus (NNV), respectively, represent two of the main viral infectious threats for aquaculture worldwide. Non-segmented negative-strand RNA viruses such as VHSV are subject to a transcription gradient dictated by the order of the genes in their genomes. With the goal of developing a bivalent vaccine against VHSV and NNV infection, the genome of VHSV has been engineered to modify the gene order and to introduce an expression cassette encoding the major protective antigen domain of NNV capsid protein. The NNV Linker-P specific domain was duplicated and fused to the signal peptide (SP) and the transmembrane domain (TM) derived from novirhabdovirus glycoprotein to obtain expression of antigen at the surface of infected cells and its incorporation into viral particles. By reverse genetics, eight recombinant VHSVs (rVHSV), termed NxGyCz according to the respective positions of the genes encoding the nucleoprotein (N) and glycoprotein (G) as well as the expression cassette (C) along the genome, have been successfully recovered. All rVHSVs have been fully characterized in vitro for NNV epitope expression in fish cells and incorporation into VHSV virions. Safety, immunogenicity and protective efficacy of rVHSVs has been tested in vivo in trout (Oncorhynchus mykiss) and sole (Solea senegalensis). Following bath immersion administration of the various rVHSVs to juvenile trout, some of the rVHSVs were attenuated and protective against a lethal VHSV challenge. Results indicate that rVHSV N2G1C4 is safe and protective against VHSV challenge in trout. In parallel, juvenile sole were injected with rVHSVs and challenged with NNV. The rVHSV N2G1C4 is also safe, immunogenic and efficiently protects sole against a lethal NNV challenge, thus presenting a promising starting point for the development of a bivalent live attenuated vaccine candidate for the protection of these two commercially valuable fish species against two major diseases in aquaculture.
Collapse
Affiliation(s)
- Sandra Souto
- Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Stéphane Biacchesi, ; Sandra Souto,
| | - Emilie Mérour
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Alain Le Coupanec
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annie Lamoureux
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Julie Bernard
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Michel Brémont
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Stéphane Biacchesi
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
- *Correspondence: Stéphane Biacchesi, ; Sandra Souto,
| |
Collapse
|
5
|
Lee EG, Kim KH. Effect of temperature and IRF-9 gene-knockout on dynamics of vRNA, cRNA, and mRNA of viral hemorrhagic septicemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108617. [PMID: 36796598 DOI: 10.1016/j.fsi.2023.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The replication of viral hemorrhagic septicemia virus (VHSV) in appropriate host cells depends on environmental factors and the host cell's immunity. The dynamics of each VHSV RNA strand (vRNA, cRNA, and mRNA) in different conditions can provide a clue on the viral replication strategies, which can be a base for the development of efficient control measures. As VHSV is known to be sensitive to temperature and type I interferon (IFN) responses, in this study, we analyzed the effect of temperature difference (15 °C and 20 °C) and IRF-9 gene knockout on the dynamics of the three VHSV RNA strands in Epithelioma papulosum cyprini (EPC) cells using a strand-specific RT-qPCR. The tagged primers designed in this study successfully worked to quantify the three strands of VHSV. In the results of the temperature effect, the higher speed in viral mRNA transcription and the significantly higher (more than 10 times at 12-36 h) copy number of cRNA at 20 °C compared to those at 15 °C suggested the positive effect of high temperature on VHSV replication. In the results of the IRF-9 gene knockout effect, although IRF-9 gene knockout did not bring a dramatic effect on VHSV replication compared to the temperature effect, the increase of mRNA in IRF-9 KO cells was faster than normal EPC cells, which was reflected in the copy numbers of cRNA and vRNA. The IRF-9 gene knockout effect was not dramatic even in the replication of rVHSV-ΔNV-eGFP that harbors eGFP gene ORF instead of NV gene ORF. These results suggest that VHSV may be highly susceptible to pre-activated type I IFN responses but not highly susceptible to post-infection-mediated type I IFN responses or lowered type I IFN before infection. In both experiments of temperature effect and IRF-9 gene knockout effect, the copy number of cRNA never exceeded the copy number of vRNA at all assay times, suggesting that the binding efficiency of the RNP complex to the 3' end of cRNA might be lower than that to the 3' end of vRNA. Further research is needed to elucidate the regulatory mechanism that limits the amount of cRNA at an appropriate level during VHSV replication.
Collapse
Affiliation(s)
- Eun Gyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
6
|
Ramnani B, Powell S, Shetty AG, Manivannan P, Hibbard BR, Leaman DW, Malathi K. Viral Hemorrhagic Septicemia Virus Activates Integrated Stress Response Pathway and Induces Stress Granules to Regulate Virus Replication. Viruses 2023; 15:466. [PMID: 36851680 PMCID: PMC9965902 DOI: 10.3390/v15020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition pathway and the production of type I interferon (IFN). However, the mechanisms by which VHSV interacts with ISR pathway regulating SG formation is poorly understood. Here, we demonstrate that fish cells respond to heat shock, oxidative stress and VHSV infection by forming SG that localized key SG marker, Ras GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1). We show that PKR-like endoplasmic reticulum kinase (PERK), but not (dsRNA)-dependent protein kinase (PKR), is required for VHSV-induced SG formation. Furthermore, in VHSV Ia infected cells, PERK activity is required for IFN production, antiviral signaling and viral replication. SG formation required active virus replication as individual VHSV Ia proteins or inactive virus did not induce SG. Cells lacking G3BP1 produced increased IFN, antiviral genes and viral mRNA, however viral protein synthesis and viral titers were reduced. We show a critical role of the activation of ISR pathway and SG formation highlighting a novel role of G3BP1 in regulating VHSV protein translation and replication.
Collapse
Affiliation(s)
- Barkha Ramnani
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Shelby Powell
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Adarsh G. Shetty
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Praveen Manivannan
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Brian R. Hibbard
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Douglas W. Leaman
- College of Sciences, Auburn University at Montgomery, 7400 East Dr., Montgomery, AL 36117, USA
| | - Krishnamurthy Malathi
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| |
Collapse
|
7
|
Pan F, Ma X, Tang X, Xing J, Sheng X, Chi H, Zhan W. Genome characterization of Hirame novirhabdovirus (HIRRV) isolate CNPo2015 and transcriptome analysis of Hirame natural embryo (HINAE) cells infected with CNPo2015. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108493. [PMID: 36509411 DOI: 10.1016/j.fsi.2022.108493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hirame novirhabdovirus (HIRRV) is a fish rhabdovirus belonging to family Rhabdoviridae, genus Novirhabdovirus, which is highly contagious and virulent, and causes hemorrhagic disease in many fish species. In the present work, the whole genome sequence of HIRRV strain CNPo2015 that previously isolated from cultured flounders was obtained using high-throughput sequencing. It consists of 10,998 nucleotides and encodes six viral proteins arranged in order of 3'-N-P-M-G-NV-L-5'. Among Novirhabdovirus, L protein of CNPo2015 possessed the lowest amino acid sequence divergence with HIRRV isolate CA 9703 and HIRRV 080113, and the highest with Snakehead rhabdovirus. Furthermore, the immune response of Hirame natural embryo (HINAE) cell line to HIRRV infection was characterized by RNA-seq, and the results showed that 1976 differentially expressed genes (DEGs) including 1219 up-regulated and 727 down-regulated genes were identified in the HINAE cells infected with HIRRV at 48 h post infection (hpi). Several KEGG pathways were significantly enriched in the viral infected cells, such as cytokine-cytokine receptor interaction, JAK-STAT signaling pathway, cell cycle, apoptosis, RIG-I-like receptors signaling pathway and P13K-AKT signaling pathway. Post viral infection, the flow cytometric Annexin V/PI assay found that apoptotic rate of HINAE cells showed a slight increase within 3 days and then the early and late apoptotic rate were significantly increased to 41 ± 2.65% and 12.37 ± 2.61% at day 4, respectively. Meanwhile, qRT-PCR results also showed that six apoptosis-related genes (BCL2L1, CASPASE 3, CASPASE 10, FAS, AKT and CDK1) were significantly upregulated. This investigation has not only enriched our knowledge of sequence difference characteristics between CNPo2015 and other Novirhabdoviruses, but also provided a data basis for deeper understanding of immune responses in flounder cells post viral infection.
Collapse
Affiliation(s)
- Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
8
|
Zhao JZ, Xu LM, Ren GM, Shao YZ, Lu TY. Identification and characterization of DEAD-box RNA helicase DDX3 in rainbow trout (Oncorhynchus mykiss) and its relationship with infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104493. [PMID: 35840014 DOI: 10.1016/j.dci.2022.104493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
DDX3, a member of the DEAD-box RNA helicase family and has highly conserved ATP-dependent RNA helicase activity, has important roles in RNA metabolism and innate anti-viral immune responses. In this study, five transcript variants of the DDX3 gene were cloned and characterized from rainbow trout (Oncorhynchus mykiss). These five transcript variants of DDX3 encoded proteins were 74.2 kDa (686 aa), 76.4 kDa (709 aa), 77.8 kDa (711 aa), 78.0 kDa (718 aa), and 78.8 kDa (729 aa) and the predicted isoelectric points were 6.91, 7.63, 7.63, 7.18, and 7.23, respectively. All rainbow trout DDX3 proteins contained two conserved RecA-like domains that were similar to the DDX3 protein reported in mammals. Phylogenetic analysis showed that the five cloned rainbow trout DDX3 were separate from mammals but clustered with fish, especially Northern pike (Esox lucius) and Nile tilapia (Oreochromis niloticus). RT-qPCR analysis showed that the DDX3 gene was broadly expressed in all tissues studied. The expression of DDX3 after infectious hematopoietic necrosis virus (IHNV) infection increased gradually after the early stage of IHNV infection, decreased gradually with the proliferation of IHNV in vivo (liver, spleen, and kidney), and was significantly decreased after the in vitro infection of epithelioma papulosum cyprini (EPC) and rainbow trout gonad cell line-2 (RTG-2) cell lines. We also found that rainbow trout DDX3 was significantly increased by a time-dependent mechanism after the poly I:C treatment of EPC and RTG cells; however no significant changes were observed with lipopolysaccharide (LPS) treatment. Knockdown of DDX3 by siRNA showed significantly increased IHNV replication in infected RTG cells. This study suggests that DDX3 has an important role in host defense against IHNV infection and these results may provide new insights into IHNV pathogenesis and antiviral drug research.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Guang-Ming Ren
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Yi-Zhi Shao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| |
Collapse
|
9
|
Abdellaoui N, Kim SY, Kim KH, Kim MS. Effects of Non-Virion Gene Expression Level and Viral
Genome Length on the Replication and Pathogenicity of Viral Hemorrhagic Septicemia Virus. Viruses 2022; 14:v14091886. [PMID: 36146693 PMCID: PMC9505938 DOI: 10.3390/v14091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Fish novirhabdoviruses, including viral hemorrhagic septicemia virus (VHSV), hirame rhabdovirus (HIRRV), and infectious hematopoietic necrosis virus (IHNV), harbor a unique non-virion (NV) gene that is crucial for efficient replication and pathogenicity. The effective levels and the function of the N-terminal region of the NV protein, however, remain poorly understood. In the present study, several recombinant VHSVs, which completely lack (rVHSV-ΔNV) or harbor an additional (rVHSV-dNV) NV gene, were generated using reverse genetics. To confirm the function of the N-terminal region of the NV protein, recombinant VHSVs with the NV gene that gradually mutated from the start codon (ATG) to the stop codon (TGA), expressed as N-terminally truncated NV proteins (rVHSV-NV1, -NV2, and -NV3), were generated. CPE progression and viral growth analyses showed that epithelioma papulosum cyprini (EPC) cells infected with rVHSV-ΔNV or rVHSV-NV3—which did not express NV protein—rarely showed CPE and viral replication as opposed to EPC cells infected with rVHSV-wild. Interestingly, regardless of the presence of two NV genes in the rVHSV-dNV genome, EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP (control) failed to induce CPE and viral replication. In EPC cells infected with rVHSV-dNV or rVHSV-A-EGFP, which harbored a longer VHSV genome than the wild-type, Mx gene expression levels, which were detected by luciferase activity assay, were particularly high; Mx gene expression levels were higher in EPC cells infected with rVHSV-ΔNV, -NV2, or -NV3 than in those infected with rVHSV-wild or rVHSV-NV1. The total amount of NV transcript produced in EPC cells infected with rVHSV-wild was much higher than that in EPC cells infected with rVHSV-dNV. However, the expression levels of the NV gene per viral particle were significantly higher in EPC cells infected with rVHSV-dNV than in cells infected with rVHSV-wild. These results suggest that the NV protein is an essential component in the inhibition of host type-I interferon (IFN) and the induction of viral replication. Most importantly, viral genome length might affect viral replication efficiency to a greater extent than does NV gene expression. In in vivo pathogenicity experiments, the cumulative mortality rates of olive flounder fingerlings infected with rVHSV-dNV or rVHSV-wild were similar (60–70%), while those of fingerlings infected with rVHSV-A-EGFP were lower. Moreover, the virulence of rVHSV-ΔNV and rVHSV, both harboring a truncated NV gene (rVHSV-NV1, -NV2, and -NV3), was completely attenuated in the olive flounder. These results suggest that viral pathogenicity is affected by the viral replication rate and NV gene expression. In conclusion, the genome length and NV gene (particularly the N-terminal region) expression of VHSVs are closely associated with viral replication in host type-I IFN response and the viral pathogenicity.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Seon Young Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea
- Correspondence:
| |
Collapse
|
10
|
Zhang J, Man Wu X, Fang Q, Bi YH, Nie P, Chang MX. Grass Carp Reovirus Nonstructural Proteins Avoid Host Antiviral Immune Response by Targeting the RLR Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:707-719. [PMID: 35022273 DOI: 10.4049/jimmunol.2100723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/20/2021] [Indexed: 01/17/2023]
Abstract
Grass carp reovirus (GCRV) is a highly virulent RNA virus that mainly infects grass carp and causes hemorrhagic disease. The roles of nonstructural proteins NS38 and NS80 of GCRV-873 in the viral replication cycle and viral inclusion bodies have been established. However, the strategies that NS38 and NS80 used to avoid host antiviral immune response are still unknown. In this study, we report the negative regulations of NS38 and NS80 on the RIG-I-like receptors (RLRs) antiviral signaling pathway and the production of IFNs and IFN-stimulated genes. First, both in the case of overexpression and GCRV infection, NS38 and NS80 inhibited the IFN promoter activation induced by RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7 and mRNA abundance of key antiviral genes involved in the RLR-mediated signaling. Second, both in the case of overexpression and GCRV infection, NS38 interacted with piscine TBK1 and IRF3, but not with piscine RIG-I, MDA5, MAVS, and TNF receptor-associated factor (TRAF) 3. Whereas NS80 interacted with piscine MAVS, TRAF3, and TBK1, but not with piscine RIG-I, MDA5, and IRF3. Finally, both in the case of overexpression and GCRV infection, NS38 inhibited the formation of the TBK1-IRF3 complex, but NS80 inhibited the formation of the TBK1-TRAF3 complex. Most importantly, NS38 and NS80 could hijack piscine TBK1 and IRF3 into the cytoplasmic viral inclusion bodies and inhibit the translocation of IRF3 into the nucleus. Collectively, all of these data demonstrate that GCRV nonstructural proteins can avoid host antiviral immune response by targeting the RLR signaling pathway, which prevents IFN-stimulated gene production and facilitates GCRV replication.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qin Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yong Hong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; .,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China; and.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. J Virol 2021; 95:e0115521. [PMID: 34523969 DOI: 10.1128/jvi.01155-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.
Collapse
|
12
|
Sun Y, Wang Y, Zhao Y, Zou M, Peng X. Exosomal miR-181a-5p reduce Mycoplasma gallisepticum (HS strain) infection in chicken by targeting PPM1B and activating the TLR2-mediated MyD88/NF-κB signaling pathway. Mol Immunol 2021; 140:144-157. [PMID: 34715577 DOI: 10.1016/j.molimm.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
Mycoplasma gallisepticum (MG) is one of the most important pathogens that causes chronic respiratory disease (CRD) in chickens. Exosomes secreted from cells have been well demonstrated to deliver miRNAs to recipient cells to modulate cellular functions. The purpose of this study is to explore the underlying functions and mechanisms of exosomal miR-181a-5p in MG-HS infection. In this study, we found that miR-181a-5p expression in vivo and in vitro was significantly up-regulated after MG-HS infection. It was also upregulated in exosomes, which were derived from MG-HS-infected type-II pneumocytes cells (CP-II). In addition, exosomes secreted by MG-HS-infected CP-II were able to transfer miR-181a-5p to recipient chicken embryo fibroblast cells (DF-1), resulting in a significant upregulation of miR-181a-5p expression in recipient DF-1 cells. We further identified that Mg2+/Mn2+-dependent protein phosphatase 1B (PPM1B) was the target gene of miR-181a-5p. Overexpression of miR-181a-5p or knockdown of PPM1B activated the nuclear factor-κB (NF-κB) signaling pathway, whereas inhibition of miR-181a-5p and overexpression of PPM1B led to the opposite results. Besides, up-regulation of miR-181a-5p significantly increased the expression of toll-like receptor 2 (TLR2), myeloid differentiation factor 88 (MyD88), tumor necrosis factors alpha (TNF-α) and interleukin-1β (IL-1β), whereas inhibition of miR-181a-5p showed a contrary result. Up-regulation of miR-181a-5p promoted cell proliferation, cell cycle progression and inhibited apoptosis to resist MG-HS infection. Moreover, overexpression of miR-181a-5p significantly negative regulated the expression of Mycoplasma gallisepticum adhesin protein (pMGA1.2) by directly inhibiting PPM1B. Thus, we concluded that exosomal miR-181a-5p from CP-II cells activated the TLR2-mediated MyD88/NF-κB signaling pathways by directly targeting PPM1B to promote the expression of pro-inflammatory cytokines for defending against MG-HS infection in recipient DF-1 cells.
Collapse
Affiliation(s)
- Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
13
|
Effect of NV gene deletion in the genome of hirame rhabdovirus (HIRRV) on viral replication and the type I interferon response of the host cell. Arch Virol 2021; 167:77-84. [PMID: 34709467 DOI: 10.1007/s00705-021-05286-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Hirame rhabdovirus (HIRRV), a member of the genus Novirhabdovirus, causes morbidity and mortality in farmed olive flounder (Paralichthys olivaceus). As no information is available on the role of the NV gene of HIRRV, we produced a recombinant HIRRV with the NV gene deleted (rHIRRV-ΔNV) using reverse genetic technology and investigated whether the NV gene knockout affected HIRRV replication and the type I interferon response of the host cell. The rescue of rHIRRV-ΔNV was successful only when IRF9-gene-knockout Epithelioma papulosum cyprini (ΔIRF9-EPC) cells were used, suggesting that the NV protein of HIRRV might be involved in inhibition of the type I interferon response of the host cell. This conclusion was also supported by the significantly higher level of Mx gene induction in EPC cells infected with rHIRRV-ΔNV than in cells infected with recombinant HIRRV without the deletion. When cells were coinfected with rHIRRV-ΔNV and either wild-type HIRRV or wild-type viral hemorrhagic septicemia virus (VHSV), there was a decrease in the growth rate of not only wild-type HIRRV but also wild-type VHSV in a concentration-dependent manner. Further studies are required to investigate the role of HIRRV NV in virulence and its possible importance for the development of attenuated vaccines.
Collapse
|
14
|
He M, Ding NZ, He CQ. Novirhabdoviruses versus fish innate immunity: A review. Virus Res 2021; 304:198525. [PMID: 34339774 DOI: 10.1016/j.virusres.2021.198525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
Novirhabdoviruses belong to the Rhabdoviridae family of RNA viruses. All of the four members are pathogenic for bony fish. Particularly, Infectious hematopoietic necrosis virus (IHNV) and Viral hemorrhagic septicemia virus (VHSV) often cause mass animal deaths and huge economic losses, representing major obstacles to fish farming industry worldwide. The interactions between fish and novirhabdoviruses are becoming better understood. In this review, we will present our current knowledge of fish innate immunity, particularly type I interferon (IFN-I) response, against novirhabdoviral infection, and the evasion strategies exploited by novirhabdoviruses. Members of Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) appear to be involved in novirhabdovirus surveillance. NF-κB activation and IFN-I induction are primarily triggered for antiviral defense. Autophagy can also be induced by viral glycoprotein (G). Although sensitive to IFN-I, novirhabdoviruses have nucleoprotein (N), matrix protein (M), and non-virion protein (NV) to interfere with host signal transduction and gene expression steps toward antiviral state establishment. Moreover, novirhabdoviruses may exploit some microRNAs for immunosuppression.
Collapse
Affiliation(s)
- Mei He
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Cheng-Qiang He
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
15
|
Cano I, Santos EM, Moore K, Farbos A, van Aerle R. Evidence of Transcriptional Shutoff by Pathogenic Viral Haemorrhagic Septicaemia Virus in Rainbow Trout. Viruses 2021; 13:v13061129. [PMID: 34208332 PMCID: PMC8231187 DOI: 10.3390/v13061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
The basis of pathogenicity of viral haemorrhagic septicaemia virus (VHSV) was analysed in the transcriptome of a rainbow trout cell line inoculated with pathogenic and non-pathogenic VHSV isolates. Although both VHSV isolates showed similar viral replication patterns, the number of differentially expressed genes was 42-fold higher in cells inoculated with the non-pathogenic VHSV at 3 h post inoculation (hpi). Infection with the non-pathogenic isolate resulted in Gene Ontologies (GO) enrichment of terms such as immune response, cytokine-mediated signalling pathway, regulation of translational initiation, unfolded protein binding, and protein folding, and induced an over-representation of the p53, PPAR, and TGF-β signalling pathways. Inoculation with the pathogenic isolate resulted in the GO enrichment of terms related to lipid metabolism and the salmonella infection KEGG pathway involved in the rearrangement of the cytoskeleton. Antiviral response was evident at 12hpi in cells infected with the pathogenic isolate. Overall, the data showed a delay in the response of genes involved in immune responses and viral sensing in cells inoculated with the pathogenic isolate and suggest transcriptional shutoff and immune avoidance as a critical mechanism of pathogenicity in VHSV. These pathways offer opportunities to further understand and manage VHSV pathogenicity in rainbow trout.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, Dorset, UK;
- Correspondence:
| | - Eduarda M. Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, Devon, UK;
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, Devon, UK
| | - Karen Moore
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, Devon, UK; (K.M.); (A.F.)
| | - Audrey Farbos
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, Devon, UK; (K.M.); (A.F.)
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, Dorset, UK;
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, Devon, UK
| |
Collapse
|
16
|
Deng H, Zeng L, Chang K, Lv Y, Du H, Lu S, Liu Y, Zhou P, Mao H, Hu C. Grass carp (Ctenopharyngodon idellus) Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:104014. [PMID: 33460677 DOI: 10.1016/j.dci.2021.104014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
In vertebrates, TANK Binding Kinase 1 (TBK1) plays an important role in innate immunity, mainly because it can mediate production of interferon to resist the invasion of pathogens. In mammals, cell division cycle-25a (Cdc25a) is a member of the Cdc25 family of cell division cycle proteins. It is a phosphatase that plays an important role in cell cycle regulation by dephosphorylating its substrate proteins. Currently, many phosphatases are reported to play a role in innate immunity. This is because the phosphatases can shut down or reduce immune signaling pathways by down-regulating phosphorylation signals. However, there are no reports on fish Cdc25a in innate immunity. In this paper, we conducted a preliminary study on the involvement of grass carp Cdc25a in innate immunity. First, we cloned the full-length cDNA of grass carp Cdc25a (CiCdc25a), and found that it shares the highest genetic relationship with that of Anabarilius grahami through phylogenetic tree comparison. In grass carp tissues and CIK cells, the expression of CiCdc25a mRNA was up-regulated under poly (I:C) stimulation. Therefore, CiCdc25a can respond to poly (I:C). The subcellular localization results showed that CiCdc25a is distributed both in the cytoplasm and nucleus. We also found that CiCdc25a can down-regulate the expression of IFN 1 with or without poly (I:C) stimulation. In other words, the down-regulation of IFN1 by CiCdc25a is independent of poly (I:C) stimulation. Further functional studies have shown that the inhibition of IFN1 expression by CiCdc25a may be related to decrease of TBK1 activity. We also confirmed that the phosphorylation of TBK1 at Ser172 is essential for production of IFN 1. In short, CiCdc25a can interact with TBK1 and subsequently inhibits the phosphorylation of TBK1, thereby weakens TBK1 activity. These results indicated that grass carp Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation.
Collapse
Affiliation(s)
- Hang Deng
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Nanchang, 330038, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shina Lu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yapeng Liu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
17
|
Jami R, Mérour E, Lamoureux A, Bernard J, Millet JK, Biacchesi S. Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Front Immunol 2021; 12:679242. [PMID: 33995423 PMCID: PMC8113963 DOI: 10.3389/fimmu.2021.679242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Interferons are the first lines of defense against viral pathogen invasion during the early stages of infection. Their synthesis is tightly regulated to prevent excessive immune responses and possible deleterious effects on the host organism itself. The RIG-I-like receptor signaling cascade is one of the major pathways leading to the production of interferons. This pathway amplifies danger signals and mounts an appropriate innate response but also needs to be finely regulated to allow a rapid return to immune homeostasis. Recent advances have characterized different cellular factors involved in the control of the RIG-I pathway. This has been most extensively studied in mammalian species; however, some inconsistencies remain to be resolved. The IFN system is remarkably well conserved in vertebrates and teleost fish possess all functional orthologs of mammalian RIG-I-like receptors as well as most downstream signaling molecules. Orthologs of almost all mammalian regulatory components described to date exist in teleost fish, such as the widely used zebrafish, making fish attractive and powerful models to study in detail the regulation and evolution of the RIG-I pathway.
Collapse
Affiliation(s)
- Raphaël Jami
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Emilie Mérour
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Annie Lamoureux
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Julie Bernard
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean K Millet
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | |
Collapse
|
18
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
19
|
Hwang JY, Lee UH, Heo MJ, Kim MS, Jeong JM, Kim SY, Kwon MG, Jee BY, Kim KH, Park CI, Park JW. Naturally occurring substitution in one amino acid in VHSV phosphoprotein enhances viral virulence in flounder. PLoS Pathog 2021; 17:e1009213. [PMID: 33465148 PMCID: PMC7845975 DOI: 10.1371/journal.ppat.1009213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/29/2021] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Naturally occurring VHSV strains vary greatly in virulence. Until now, little has been known about genetic alterations that affect the virulence of VHSV in flounder. We recently reported the full-genome sequences of 18 VHSV strains. In this study, we determined the virulence of these 18 VHSV strains in flounder and then the assessed relationships between differences in the amino acid sequences of the 18 VHSV strains and their virulence to flounder. We identified one amino acid substitution in the phosphoprotein (P) (Pro55-to-Leu substitution in the P protein; PP55L) that is specific to highly virulent strains. This PP55L substitution was maintained stably after 30 cell passages. To investigate the effects of the PP55L substitution on VHSV virulence in flounder, we generated a recombinant VHSV carrying PP55L (rVHSV-P) from rVHSV carrying P55 in the P protein (rVHSV-wild). The rVHSV-P produced high level of viral RNA in cells and showed increased growth in cultured cells and virulence in flounder compared to the rVHSV-wild. In addition, rVHSV-P significantly inhibited the induction of the IFN1 gene in both cells and fish at 6 h post-infection. An RNA-seq analysis confirmed that rVHSV-P infection blocked the induction of several IFN-related genes in virus-infected cells at 6 h post-infection compared to rVHSV-wild. Ectopic expression of PP55L protein resulted in a decrease in IFN induction and an increase in viral RNA synthesis in rVHSV-wild-infected cells. Taken together, our results are the first to identify that the P55L substitution in the P protein enhances VHSV virulence in flounder. The data from this study add to the knowledge of VHSV virulence in flounder and could benefit VHSV surveillance efforts and the generation of a VHSV vaccine. Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes huge economic losses to the fish culture industry throughout the world. Virulence among naturally occurring VHSV strains varies widely. However, little is known about the viral factors that determine VHSV virulence. Here, we identify a naturally-occurring, single-amino-acid substitution in the VHSV P protein that enhances VHSV virulence in flounder. This amino acid substitution in the P protein was detected only in highly virulent VHSV strains, and it enhances viral RNA synthesis and inhibits the interferon response of host cells early after virus infection. Recombinant VHSV containing this amino acid substitution caused increased mortality in flounder compared with the wild type. This is the first study to identify a naturally occurring amino acid substitution in VHSV that determines its virulence in flounder. We expect that our result can be applied to other fish species, and this finding will provide new opportunities to generate an effective VHSV vaccine.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Jin Heo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, Korea
| | - Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, Korea
| | - Ji Min Jeong
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - So Yeon Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Mun Gyeong Kwon
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
- * E-mail: (KHK); (CIP); (JWP)
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, Korea
- * E-mail: (KHK); (CIP); (JWP)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- * E-mail: (KHK); (CIP); (JWP)
| |
Collapse
|
20
|
López-Vázquez C, Bandín I, Panzarin V, Toffan A, Cuenca A, Olesen NJ, Dopazo CP. Steps of the Replication Cycle of the Viral Haemorrhagic Septicaemia Virus (VHSV) Affecting Its Virulence on Fish. Animals (Basel) 2020; 10:E2264. [PMID: 33271890 PMCID: PMC7761041 DOI: 10.3390/ani10122264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
The viral haemorrhagic septicaemia virus (VHSV), a single-stranded negative-sense RNA novirhabdovirus affecting a wide range of marine and freshwater fish species, is a main concern for European rainbow trout (Oncorhynchus mykiss) fish farmers. Its genome is constituted by six genes, codifying five structural and one nonstructural proteins. Many studies have been carried out to determine the participation of each gene in the VHSV virulence, most of them based on genome sequence analysis and/or reverse genetics to construct specific mutants and to evaluate their virulence phenotype. In the present study, we have used a different approach with a similar aim: hypothesizing that a failure in any step of the replication cycle can reduce the virulence in vivo, we studied in depth the in vitro replication of VHSV in different cell lines, using sets of strains from different origins, with high, low and moderate levels of virulence for fish. The results demonstrated that several steps in the viral replication cycle could affect VHSV virulence in fish, including adsorption, RNA synthesis and morphogenesis (including viral release). Notably, differences among strains in any step of the replication cycle were mostly strain-specific and reflected only in part the in vivo phenotype (high and low virulent). Our data, therefore, support the need for further studies aimed to construct completely avirulent VHSV recombinants targeting a combination of genes rather than a single one in order to study the mechanisms of genes interplay and their effect on viral phenotype in vitro and in vivo.
Collapse
Affiliation(s)
- Carmen López-Vázquez
- Instituto de Acuicultura-Dpt Microbiología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.L.-V.); (I.B.)
| | - Isabel Bandín
- Instituto de Acuicultura-Dpt Microbiología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.L.-V.); (I.B.)
| | - Valentina Panzarin
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020 Legnaro, Padova, Italy; (V.P.); (A.T.)
| | - Anna Toffan
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020 Legnaro, Padova, Italy; (V.P.); (A.T.)
| | - Argelia Cuenca
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800 Kgs Lyngby, Denmark; (A.C.); (N.J.O.)
| | - Niels J. Olesen
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet 202, 2800 Kgs Lyngby, Denmark; (A.C.); (N.J.O.)
| | - Carlos P. Dopazo
- Instituto de Acuicultura-Dpt Microbiología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (C.L.-V.); (I.B.)
| |
Collapse
|
21
|
Baillon L, Mérour E, Cabon J, Louboutin L, Vigouroux E, Alencar ALF, Cuenca A, Blanchard Y, Olesen NJ, Panzarin V, Morin T, Brémont M, Biacchesi S. The Viral Hemorrhagic Septicemia Virus (VHSV) Markers of Virulence in Rainbow Trout ( Oncorhynchus mykiss). Front Microbiol 2020; 11:574231. [PMID: 33193184 PMCID: PMC7606196 DOI: 10.3389/fmicb.2020.574231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a highly contagious virus leading to high mortality in a large panel of freshwater and marine fish species. VHSV isolates originating from marine fish show low pathogenicity in rainbow trout. The analysis of several nearly complete genome sequences from marine and freshwater isolates displaying varying levels of virulence in rainbow trout suggested that only a limited number of amino acid residues might be involved in regulating the level of virulence. Based on a recent analysis of 55 VHSV strains, which were entirely sequenced and phenotyped in vivo in rainbow trout, several amino acid changes putatively involved in virulence were identified. In the present study, these amino acid changes were introduced, alone or in combination, in a highly-virulent VHSV 23–75 genome backbone by reverse genetics. A total of 35 recombinant VHSV variants were recovered and characterized for virulence in trout by bath immersion. Results confirmed the important role of the NV protein (R116S) and highlighted a major contribution of the nucleoprotein N (K46G and A241E) in regulating virulence. Single amino acid changes in these two proteins drastically affect virus pathogenicity in rainbow trout. This is particularly intriguing for the N variant (K46G) which is unable to establish an active infection in the fins of infected trout, the main portal of entry of VHSV in this species, allowing further spread in its host. In addition, salmonid cell lines were selected to assess the kinetics of replication and cytopathic effect of recombinant VHSV and discriminate virulent and avirulent variants. In conclusion, three major virulence markers were identified in the NV and N proteins. These markers explain almost all phenotypes (92.7%) observed in trout for the 55 VHSV strains analyzed in the present study and herein used for the backward validation of virulence markers. The identification of VHSV specific virulence markers in this species is of importance both to predict the in vivo phenotype of viral isolates with targeted diagnostic tests and to improve prophylactic methods such as the development of safer live-attenuated vaccines.
Collapse
Affiliation(s)
- Laury Baillon
- Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Versailles Saint-Quentin-en-Yvelines, Jouy-en-Josas, France
| | - Emilie Mérour
- Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Versailles Saint-Quentin-en-Yvelines, Jouy-en-Josas, France
| | - Joëlle Cabon
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Lénaïg Louboutin
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Estelle Vigouroux
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Anna Luiza Farias Alencar
- Unit for Fish and Shellfish Diseases, EURL for Fish and Crustacean Diseases, National Institute of Aquatic Resources, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Argelia Cuenca
- Unit for Fish and Shellfish Diseases, EURL for Fish and Crustacean Diseases, National Institute of Aquatic Resources, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Yannick Blanchard
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Génétique Virale et Biosécurité, Ploufragan, France
| | - Niels Jørgen Olesen
- Unit for Fish and Shellfish Diseases, EURL for Fish and Crustacean Diseases, National Institute of Aquatic Resources, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Valentina Panzarin
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - Thierry Morin
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Michel Brémont
- Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Versailles Saint-Quentin-en-Yvelines, Jouy-en-Josas, France
| | - Stéphane Biacchesi
- Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Versailles Saint-Quentin-en-Yvelines, Jouy-en-Josas, France
| |
Collapse
|
22
|
Mojzesz M, Klak K, Wojtal P, Adamek M, Podlasz P, Chmielewska-Krzesinska M, Matras M, Reichert M, Chadzinska M, Rakus K. Viral infection-induced changes in the expression profile of non-RLR DExD/H-box RNA helicases (DDX1, DDX3, DHX9, DDX21 and DHX36) in zebrafish and common carp. FISH & SHELLFISH IMMUNOLOGY 2020; 104:62-73. [PMID: 32526283 DOI: 10.1016/j.fsi.2020.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In mammals, several non-RLR DExD/H-box RNA helicases are involve in sensing of viral nucleic acids and activation of antiviral immune response, however their role in the immune defense of fish is much less known. In this study, the expression profile of non-RLR DExD/H-box RNA helicase genes: ddx1, ddx3, dhx9, ddx21 and dhx36, was studied in zebrafish (Danio rerio) and common carp (Cyprinus carpio L.) during infection with two RNA viruses: spring viremia of carp virus (SVCV) and Chum salmon reovirus (CSV). Bioinformatic analysis of the amino acid sequences of the core helicase of DDX1, DDX3, DHX9, DDX21 and DHX36 in zebrafish and common carp revealed presence of all conserved motifs found amongst all other species, with the exception of common carp DHX9 which do not possess motif V. The transcripts of studied DExD/H-box RNA helicases were found in zebrafish ZF4 cell line as well as in all studied organs from zebrafish and common carp. The expression study demonstrated the up-regulation of the expression of selected non-RLR DExD/H-box RNA helicases during viral infections in ZF4 cell line (in vitro study) and in zebrafish and common carp organs (in vivo study). DDX1 was the only DExD/H-box RNA helicase which expression was repetitively up-regulated during in vivo infections with SVCV and CSV in zebrafish and SVCV in common carp. In ZF4 cells and kidney of common carp, viral infection-induced up-regulation of DExD/H-box RNA helicases preceded the up-regulation of type I IFN gene. Our results suggest that studied non-RLR DExD/H-box RNA helicases might be involved in antiviral immune response in fish.
Collapse
Affiliation(s)
- Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Wojtal
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Michała Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Malgorzata Chmielewska-Krzesinska
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Michała Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Marek Matras
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Michal Reichert
- Department of Fish Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
23
|
Panzarin V, Cuenca A, Gastaldelli M, Alencar ALF, Pascoli F, Morin T, Blanchard Y, Cabon J, Louboutin L, Ryder D, Abbadi M, Toffan A, Dopazo CP, Biacchesi S, Brémont M, Olesen NJ. VHSV Single Amino Acid Polymorphisms (SAPs) Associated With Virulence in Rainbow Trout. Front Microbiol 2020; 11:1984. [PMID: 32983011 PMCID: PMC7493562 DOI: 10.3389/fmicb.2020.01984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
The Viral Hemorrhagic Septicemia Virus (VHSV) is an OIE notifiable pathogen widespread in the Northern Hemisphere that encompasses four genotypes and nine subtypes. In Europe, subtype Ia impairs predominantly the rainbow trout industry causing severe rates of mortality, while other VHSV genotypes and subtypes affect a number of marine and freshwater species, both farmed and wild. VHSV has repeatedly proved to be able to jump to rainbow trout from the marine reservoir, causing mortality episodes. The molecular mechanisms regulating VHSV virulence and host tropism are not fully understood, mainly due to the scarce availability of complete genome sequences and information on the virulence phenotype. With the scope of identifying in silico molecular markers for VHSV virulence, we generated an extensive dataset of 55 viral genomes and related mortality data obtained from rainbow trout experimental challenges. Using statistical association analyses that combined genetic and mortality data, we found 38 single amino acid polymorphisms scattered throughout the complete coding regions of the viral genome that were putatively involved in virulence of VHSV in trout. Specific amino acid signatures were recognized as being associated with either low or high virulence phenotypes. The phylogenetic analysis of VHSV coding regions supported the evolution toward greater virulence in rainbow trout within subtype Ia, and identified several other subtypes which may be prone to be virulent for this species. This study sheds light on the molecular basis for VHSV virulence, and provides an extensive list of putative virulence markers for their subsequent validation.
Collapse
Affiliation(s)
- Valentina Panzarin
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - Argelia Cuenca
- Unit for Fish and Shellfish Diseases, EURL for Fish and Crustacean Diseases, National Institute of Aquatic Resources, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Michele Gastaldelli
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - Anna L F Alencar
- Unit for Fish and Shellfish Diseases, EURL for Fish and Crustacean Diseases, National Institute of Aquatic Resources, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Francesco Pascoli
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - Thierry Morin
- Unit of Viral Diseases in Fish, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Plouzané, France
| | - Yannick Blanchard
- Unit of Viral Genetics and Biosafety, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Joëlle Cabon
- Unit of Viral Diseases in Fish, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Plouzané, France
| | - Lénaïg Louboutin
- Unit of Viral Diseases in Fish, Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Plouzané, France
| | - David Ryder
- International Centre of Excellence for Aquatic Animal Health, CEFAS Weymouth Laboratory, Weymouth, United Kingdom
| | - Miriam Abbadi
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - Anna Toffan
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Padua, Italy
| | - Carlos P Dopazo
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Stéphane Biacchesi
- Virologie et Immunologie Moléculaires, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Versailles Saint-Quentin-en-Yvelines, Jouy-en-Josas, France
| | - Michel Brémont
- Virologie et Immunologie Moléculaires, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Versailles Saint-Quentin-en-Yvelines, Jouy-en-Josas, France
| | - Niels J Olesen
- Unit for Fish and Shellfish Diseases, EURL for Fish and Crustacean Diseases, National Institute of Aquatic Resources, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Gorgoglione B, Ringiesn JL, Pham LH, Shepherd BS, Leaman DW. Comparative effects of Novirhabdovirus genes on modulating constitutive transcription and innate antiviral responses, in different teleost host cell types. Virol J 2020; 17:110. [PMID: 32690033 PMCID: PMC7369537 DOI: 10.1186/s12985-020-01372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are highly contagious, pathogenic Novirhabdoviruses affecting fish and are thusly notifiable diseases with the World Organization for Animal Health. This study assessed the relative capacities of IHNV and VHSV genes to modulate host general transcription and explores the abilities of specific IHNV genes to interfere with the interferon pathway in heterogenous teleost cell-lines. METHODS Optimized protocols allowed for efficient transient transfections in EPC, BF-2, RTG-2 and RTgill-W1 cell lines of plasmids encoding IHNV (M genogroup) and VHSV (-IVb genotype) genes, including N, P, M, G and NV. Their impact on general cellular transcription was measured 48 hours post transfection (hpt) with luciferase constructs driven by a modified β-Actin promoter (pCAG). Their modulation of the innate antiviral immune response was characterized 72 hpt, using luciferase constructs measuring rainbow trout Type I IFN or MX-1 promoter augmentation, upon MAVS co-transfection. RESULTS M was generally confirmed as the strongest constitutive transcriptional suppressor while IHNV P, but not VHSV P, augmented constitutive transcription in fibroblastic cell types. Cell-specific effects were observed for viral G gene, with VHSV G exhibiting suppression of basal transcription in EPC and BF-2 but not in trout cells; while IHNV G was stimulatory in RTG-2, but inhibitory in RTgill-W1. NV consistently stimulated constitutive transcription, with higher augmentation patterns seen in fibroblastic compared to epithelial cells, and for IHNV NV compared to VHSV NV. The innate antiviral immune response, focusing on the IFN pathway, was silenced by IHNV M in all cell lines tested. IHNV N showed a dose-dependent suppression of type I IFN, but with minor effects on MX-1. IHNV P and G played minor IFN-inhibitory roles, consistent and dose-dependent only for G in rainbow trout cells. IHNV NV mediated a consistent stimulatory effect on either Type I IFN or MX-1, but much less pronounced in RTgill-W1. CONCLUSIONS This study extends our understanding of Novirhabdoviruses-host interaction, showing differential innate immune responses in heterogenous cell types. Viral regulators of innate immune signaling are identified, either as dose-dependent suppressors (such as M and N) or stimulators (mainly NV), indicating novel targets for the design of more efficient vaccination strategies.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Aquatic Animal Health Laboratory, Department of Pathobiology and Diagnostic Investigation, CVM & Department of Fisheries and Wildlife, CANR - Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA.
| | - Jeffery L Ringiesn
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Loc H Pham
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA
| | - Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI, 53204, USA
| | - Douglas W Leaman
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA.
| |
Collapse
|
25
|
Effect of the Viral Hemorrhagic Septicemia Virus Nonvirion Protein on Translation via PERK-eIF2α Pathway. Viruses 2020; 12:v12050499. [PMID: 32365817 PMCID: PMC7290495 DOI: 10.3390/v12050499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.
Collapse
|
26
|
Wang ZX, Zhou Y, Lu LF, Lu XB, Ni B, Liu MX, Guan HX, Li S, Zhang YA, Ouyang S. Infectious hematopoietic necrosis virus N protein suppresses fish IFN1 production by targeting the MITA. FISH & SHELLFISH IMMUNOLOGY 2020; 97:523-530. [PMID: 31881328 DOI: 10.1016/j.fsi.2019.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Interferon (IFN) is a vital antiviral factor in host in the early stages after the viral invasion. Meanwhile, viruses have to survive by taking advantage of the cellular machinery and complete their replication. As a result, viruses evolved several immune escape mechanisms to inhibit host IFN expression. However, the mechanisms used to escape the host's IFN system are still unclear for infectious hematopoietic necrosis virus (IHNV). In this study, we report that the N protein of IHNV inhibits IFN1 production in rainbow trout by degrading the MITA. Firstly, the upregulation of IFN1 promoter activity stimulated by poly I:C was suppressed by IHNV infection. Consistent with this result, the overexpression of the N protein of IHNV blocked the IFN1 transcription that was activated by poly I:C and MITA. Secondly, MITA was remarkably decreased by the overexpression of N protein at the protein level. Further analysis demonstrated that the N protein targeted MITA and promoted the ubiquitination of MITA. Taken together, these data suggested that the production of rainbow trout IFN1 could be suppressed by the N protein of IHNV via degrading MITA.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; University of Chinese Academy of Science, Beijing, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Science, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Ni
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Meng-Xi Liu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Hong-Xin Guan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; State Key Laboratory of Aquaculture Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| | - Songying Ouyang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
27
|
Zhang W, Li Z, Xiang Y, Jia P, Liu W, Yi M, Jia K. Isolation and identification of a viral haemorrhagic septicaemia virus (VHSV) isolate from wild largemouth bass Micropterus salmoides in China. JOURNAL OF FISH DISEASES 2019; 42:1563-1572. [PMID: 31441949 DOI: 10.1111/jfd.13078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Fish rhabdoviruses are a family of viruses responsible for large-scale fish die-offs worldwide. Here, we reported the isolation and identification of a member of rhabdoviruses from wild largemouth bass (Micropterus salmoides) in the coastal area of the Pearl River Estuary, China. This virus isolate was identified as viral haemorrhagic septicaemia virus (VHSV) by specific RT-PCR. Furthermore, the virus (VHSVLB2018) was isolated by cell culture using fathead minnow cells and confirmed by RT-PCR. Electron microscopy showed the presence of bullet-shaped viral particles in the cytoplasm of infected cells. The complete sequencing of VHSVLB2018 confirmed that it was genome configuration typical of rhabdoviruses. Phylogenetic analysis based on whole-genome sequences and G gene nucleotides sequences revealed that VHSVLB2018 was assigned to VHSV genogroup Ⅳa. The pathogenicity of VHSVLB2018 was determined in infection experiments using specific pathogen-free largemouth bass juveniles. VHSVLB2018-infected fish showed typical clinical signs of VHSV disease, including darkened skin, petechial haemorrhages and pale enlarged livers, with the cumulative mortalities reached 63.3%-93.3% by 7 days post-infection. VHSVLB2018 was re-isolated from dead fish and confirmed by RT-PCR. Together, this is the first report of isolation and identification of a VHSV isolate from wild largemouth bass in China.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zelin Li
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
28
|
Poynter SJ, Herrington-Krause S, DeWitte-Orr SJ. Two DExD/H-box helicases, DDX3 and DHX9, identified in rainbow trout are able to bind dsRNA. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1056-1066. [PMID: 31340170 DOI: 10.1016/j.fsi.2019.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
In mammals, the multifunctional DExH/D-box helicases, DDX3 and DHX9, are nucleic acid sensors with a role in antiviral immunity; their role in innate immunity in fish is not yet understood. In the present study, full-length DDX3 and DHX9 coding sequences were identified in rainbow trout (Oncorhynchus mykiss). Bioinformatic analysis demonstrated both deduced proteins were similar to those of other species, with ~80% identity to other fish species and ~70-75% identity to mammals, and both protein sequences had conserved domains found amongst all species. Phylogenetic analysis revealed clustering of DDX3 and DHX9 with corresponding proteins from other fish. Cellular localization of overexpressed DDX3 and DHX9 was performed using GFP-tagged proteins, and endogenous DDX3 localization was measured using immunocytochemistry. In the rainbow trout gonadal cell line, RTG-2, DHX9 localized mostly to the nucleus, while DDX3 was found mainly in the cytoplasm. Tissue distribution from healthy juvenile rainbow trout revealed ubiquitous constitutive expression, highest levels of DDX3 expression were seen in the liver and DHX9 levels were fairly consistent among all tissues tested. Stimulation of RTG-2 cells revealed that DDX3 and DHX9 transcripts were both significantly upregulated by treatment with the dsRNA molecule, poly I:C. A pull-down assay suggested both proteins were able to bind dsRNA. In addition to their roles in RNA metabolism, the conserved common domains found between the rainbow trout proteins and other species having defined antiviral roles, combined with the ability for the proteins to bind to dsRNA, suggest these proteins may play an important role in fish innate antiviral immunity. Future studies on both DDX3 and DHX9 function will contribute to a better understanding of teleost immunity.
Collapse
Affiliation(s)
- Sarah J Poynter
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Shanee Herrington-Krause
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - Stephanie J DeWitte-Orr
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada; Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
29
|
Kim MS, Kim KH. Effect of CRISPR/Cas9-mediated knockout of either Mx1 or ISG15 gene in EPC cells on resistance against VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1041-1046. [PMID: 31465870 DOI: 10.1016/j.fsi.2019.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Although the type I interferon-mediated increase of Mx1 and ISG15 gene expression in Epithelioma papulosum cyprini (EPC) cells has been reported, the antiviral role of Mx1 and ISG15 in EPC cells has not been investigated. In this study, to know the anti-viral hemorrhagic septicemia virus (VHSV) role of Mx1 and ISG15 of EPC cells, either Mx1 or ISG15 gene was knocked-out using a CRISPR/Cas9 system, and the progression of cytopathic effects (CPE) and viral growth were analyzed. Mx1 gene and ISG15 gene knockout EPC cells were successfully produced via CRISPR/Cas9 coupled with a single-cell cloning. Through the sequence analysis, one clone showing two heterozygous indel patterns in Mx1 gene and a clone showing three heterozygous indel patterns in ISG15 gene were selected for further analyses. Mx1 knockout EPC cells did not show any differences in VHSV-mediated CPE progression, even when pre-treated with polyinosinic:polycytidylic acid (poly I:C), compared to control EPC cells. These results suggest that Mx1 in EPC cells may be unfunctional to cytoplasmic RNA viruses. In contrast to Mx1, ISG15 knockout cells showed clearly hampered anti-VHSV activity even when pre-treated with poly I:C, indicating that ISG15 plays an important role in type I interferon-mediated anti-viral activity in EPC cells, which allowed VHSV to replicate more efficiently in ISG15 knockout cells than Mx1 knockout and control cells.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, 05006, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
30
|
Yong CY, Ong HK, Tang HC, Yeap SK, Omar AR, Ho KL, Tan WS. Infectious hematopoietic necrosis virus: advances in diagnosis and vaccine development. PeerJ 2019; 7:e7151. [PMID: 31341728 PMCID: PMC6640626 DOI: 10.7717/peerj.7151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
The aquaculture of salmonid fishes is a multi-billion dollar industry with production over 3 million tons annually. However, infectious hematopoietic necrosis virus (IHNV), which infects and kills salmon and trout, significantly reduces the revenue of the salmon farming industry. Currently, there is no effective treatment for IHNV infected fishes; therefore, early detection and depopulation of the infected fishes remain the most common practices to contain the spread of IHNV. Apart from hygiene practices in aquaculture and isolation of infected fishes, loss of fishes due to IHNV infection can also be significantly reduced through vaccination programs. In the current review, some of the diagnostic methods for IHNV, spanning from clinical diagnosis to cell culture, serological and molecular methods are discussed in detail. In addition, some of the most significant candidate vaccines for IHNV are also extensively discussed, particularly the DNA vaccines.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hooi Chia Tang
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
32
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
33
|
Mérour E, Jami R, Lamoureux A, Bernard J, Brémont M, Biacchesi S. A20 (tnfaip3) is a negative feedback regulator of RIG-I-Mediated IFN induction in teleost. FISH & SHELLFISH IMMUNOLOGY 2019; 84:857-864. [PMID: 30385247 DOI: 10.1016/j.fsi.2018.10.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Interferon production is tightly regulated in order to prevent excessive immune responses. The RIG-I signaling pathway, which is one of the major pathways inducing the production of interferon, is therefore finely regulated through the participation of different molecules such as A20 (TNFAIP3). A20 is a negative key regulatory factor of the immune response. Although A20 has been identified and actively studied in mammals, nothing is known about its putative function in lower vertebrates. In this study, we sought to define the involvement of fish A20 orthologs in the regulation of RIG-I signaling. We showed that A20 completely blocked the activation of IFN and ISG promoters mediated by RIG-I. Furthermore, A20 expression in fish cells was sufficient to reverse the antiviral state induced by the expression of a constitutively active form of RIG-I, thus allowing the efficient replication of a fish rhabdovirus, the viral hemorrhagic septicemia virus (VHSV). We brought evidence that A20 interrupted RIG-I signaling at the level of TBK1 kinase, a critical point of convergence for many different pathways that activates important transcription factors involved in the expression of many cytokines. Finally, we showed that A20 expression was directly induced by the RIG-I pathway demonstrating that fish A20 acts as a negative feedback regulator of this key pathway for the establishment of an antiviral state.
Collapse
Affiliation(s)
- Emilie Mérour
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Raphaël Jami
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Annie Lamoureux
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Julie Bernard
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel Brémont
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
34
|
Cao Y, Wang D, Li S, Xu L, Zhao J, Liu H, Lu T, Zhang Q. Identification and analysis of differentially expressed microRNAs in rainbow trout (Oncorhynchus mykiss) responding to infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:28-36. [PMID: 29990507 DOI: 10.1016/j.dci.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of regulators essential for numerous biological processes. Infectious hematopoietic necrosis virus (IHNV) is one of the most important viral pathogens in salmon and trout. In this study, the miRNA expression profiles of rainbow trout upon IHNV infection were explored. In total, 392 known miRNAs and 936 novel miRNAs were identified. Twelve known and 13 novel miRNAs were differentially expressed between infected and uninfected fish. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that certain miRNA target genes were associated with biological regulation, the immune system, and signal transduction. In addition, over- and suppressed expression of miR-146a-3p, miR-155-5p, miR-216a-5p, and miR-499b-5p could respectively increase and decrease viral gene expression in cells and viral titers. MiR-146a-3p and miR-216a-5p inhibited the expression of type-I IFN and the Mx1 gene induced by IHNV. These results provide preliminary insights into the IHNV-host interactions mediated by miRNAs.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Di Wang
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Shaowu Li
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Liming Xu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Hongbai Liu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Tongyan Lu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
35
|
Wu Y, Wang L, Guo T, Jiang Y, Qiao X, Sun L, Liu M, Tang L, Xu Y, Li Y. Identification of amino acid residues in infectious hematopoietic necrosis virus (IHNV) NV protein necessary for viral replication and pathogenicity. FISH & SHELLFISH IMMUNOLOGY 2018; 79:294-302. [PMID: 29782916 DOI: 10.1016/j.fsi.2018.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Our previous studies demonstrated that the nonstructural NV protein of infectious hematopoietic necrosis virus (IHNV) was essential for efficient viral replication and pathogenicity, and that the amino acid residues 32EGDL35 of the NV protein were responsible for nuclear localization, and played important roles in suppressing IFN and inhibiting NF-κB activity. However, little is known about the influence of 32EGDL35 on IHNV replication and pathogenicity. In the present study, two recombinant IHNV strains with deletions of NV 32EGDL35 were generated and the effect on IHNV replication and pathogenicity was explored. Our results showed that both mutants stably replicated in Chinook salmon embryo cells for 15 consecutive passages, and had similar host-tropism as wild-type (wt) IHNV; however, titers of the mutants were lower than those of wt IHNV in CHSE-214 cells. Infection of rainbow trout showed wt IHNV produced 90% cumulative mortality, while the mutants produced 55% and 60% cumulative mortality, respectively. Histopathological evaluation showed that tissues from the liver, brain, kidney, and heart of fish infected with wt IHNV exhibited pathological changes, but significant lesions were found only in the liver and heart of fish infected with the recombinant viruses. In addition, the recombinant viruses induced higher expression levels of IFN1, Mx-1, and IL-6 compared with those induced by wt IHNV. These results indicated that the 32EGDL35 residues were essential for the efficient anti-IFN and NF-κB-inhibiting activity of NV. Our results provide a basis for understanding the roles of 32EGDL35 in IHNV replication and pathogenicity, and may prove beneficial in the prevention and control of IHNV infections of fish.
Collapse
Affiliation(s)
- Yang Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Li Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China.
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, China.
| |
Collapse
|
36
|
Immune Ecosystem of Virus-Infected Host Tissues. Int J Mol Sci 2018; 19:ijms19051379. [PMID: 29734779 PMCID: PMC5983771 DOI: 10.3390/ijms19051379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Collapse
|
37
|
Chinchilla B, Gomez-Casado E. Identification of the functional regions of the viral haemorrhagic septicaemia virus (VHSV) NV protein: Variants that improve function. FISH & SHELLFISH IMMUNOLOGY 2017; 70:343-350. [PMID: 28882802 DOI: 10.1016/j.fsi.2017.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Non-virion (NV) protein is essential for an efficient replication increasing the pathogenicity of the Salmonid novirhabdovirus (formerly IHNV), Piscine novirhabdovirus (formerly VHSV), and Hirame novirhabdovirus (HIRV). The interferon system, apoptosis, and other immune-related genes are modulated by NV to finally induce a deficient antiviral state in the cell. However, little is known about the VHSV NV regions involved in function and location. Here, eight different NV 07.71 fragments and eleven NV 07.71 mutants derived from the region between the two first α-helices have been studied in order to establish the mx and il8 transcript levels in ZF4 cells and the subcellular location. As a result, we determined that the N-terminal part of NV preserves the same ability as the wild-type (wt) NV in mx/il8 modulation and it also shares the subcellular location. Among NV mutants, some induced mx upregulation (N34A, C35A, D38A, and S40A) but maintained the il8 levels stable when compared to wt-NV in ZF4. Four NV mutants (D28A, N31A, L33A, and F37A) were not affected by the mutation and showed mx and il8 transcript levels similar to wt-NV. Surprisingly, mutants D36A, R39A, and D41A induced a stronger downregulation of both mx and il8 transcript levels than wt-NV, suggesting that a more stable structure and an improved interaction with ligands could be achieved through these mutations. Amino acids at positions 36 and 39 are conserved among known VHSV NV proteins whereas at position 41 two different amino acids have been described. To date, no natural NV proteins with alanine at positions 36, 39, and 41 have been found. In addition, wt-NV, all NV mutants, and one N-terminal NV fragment were located at cytoplasm with a characteristic pattern, which might support that cytoplasm is the site for interaction with candidate ligands such as PPM1Bb. Taken together, the data presented in this work indicated that NV function relies on the first part of the molecule and is dependent on tertiary structure rather than on the linear one. This study could lead to a better knowledge of VHSV escape from fish antiviral mechanisms as well as to future studies on immune targets.
Collapse
Affiliation(s)
- Blanca Chinchilla
- Department of Biotechnology, INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain
| | - Eduardo Gomez-Casado
- Department of Biotechnology, INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain.
| |
Collapse
|
38
|
Baillon L, Mérour E, Cabon J, Louboutin L, Quenault H, Touzain F, Morin T, Blanchard Y, Biacchesi S, Brémont M. A single amino acid change in the non-structural NV protein impacts the virulence phenotype of Viral hemorrhagic septicemia virus in trout. J Gen Virol 2017. [PMID: 28640747 DOI: 10.1099/jgv.0.000830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novirhabdoviruses like the Viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses infecting fish. In the current study, RNA genomes of different VHSV field isolates classified as high, medium or low virulent phenotypes have been sequenced by next-generation sequencing and compared. Various amino acid changes, depending on the VHSV phenotype, have been identified in all the VHSV proteins. As a starting point, we focused our study on the non-virion (NV) non-structural protein in which an arginine residue (R116) is present in all the virulent isolates and replaced by a serine/asparagine residue S/N116 in the attenuated isolates. A recombinant virus derived from a virulent VHSV strain in which the NV R116 residue has been replaced by a serine, rVHSVNVR116S, was generated by reverse genetics and used to infect juvenile trout. We showed that rVHSVNVR116S was highly attenuated and that surviving fish were almost completely protected from a challenge with the wild-type VHSV.
Collapse
Affiliation(s)
- Laury Baillon
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emilie Mérour
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joëlle Cabon
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Lénaïg Louboutin
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Hélène Quenault
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France
| | - Fabrice Touzain
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France
| | - Thierry Morin
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Pathologies Virales des Poissons, Plouzané, France
| | - Yannick Blanchard
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France
| | | | - Michel Brémont
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|