1
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Liu B, Zhou J, Jiang B, Tang B, Liu T, Lei P. The role of ACER2 in intestinal sphingolipid metabolism and gastrointestinal cancers. Front Immunol 2024; 15:1511283. [PMID: 39650647 PMCID: PMC11621088 DOI: 10.3389/fimmu.2024.1511283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Sphingolipids, particularly sphingosine-1-phosphate (S1P), are bioactive lipids involved in regulating cellular processes such as proliferation, apoptosis, inflammation, and tumor progression. Alkaline ceramidase 2 (ACER2) plays a critical role in sphingolipid metabolism by catalyzing the hydrolysis of ceramide to sphingosine, which is subsequently converted to S1P. Dysregulation of ACER2 has been implicated in various gastrointestinal cancers, including colorectal cancer, gastric cancer, and hepatocellular carcinoma. ACER2-mediated sphingolipid signaling, particularly through the SphK/S1P pathway, influences cancer development by modulating immune responses, inflammation, and the balance between cell survival and death. This review examines the physiological functions of ACER2, and its role in sphingolipid metabolism, and its contribution to the pathogenesis of gastrointestinal cancers. Understanding the mechanisms by which ACER2 regulates tumor progression and immune modulation may open new avenues for targeted therapies in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Binggang Liu
- Department of Gastrointestinal Surgery, the Central Hospital of Yongzhou, Yongzhou, China
| | | | | | | | | | | |
Collapse
|
3
|
Song B, Jiang Y, Lin Y, Liu J, Jiang Y. Contribution of sphingomyelin phosphodiesterase acid-like 3B to the proliferation, migration, and invasion of ovarian cancer cells. Transl Cancer Res 2024; 13:1954-1968. [PMID: 38737677 PMCID: PMC11082662 DOI: 10.21037/tcr-24-309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Background Cancer has the highest mortality rate among gynecological cancers and poses a serious threat to women's lives. However, the treatment options for ovarian cancer are still limited, and exploring effective targeted biomarkers is particularly important for predicting and treating ovarian cancer. Therefore, it is necessary to explore the molecular mechanisms of the occurrence and development of ovarian cancer. Methods This investigation encompassed the analysis of gene expression profiles, measurement of transcription levels of potential target genes in peripheral blood samples from ovarian cancer patients and characterization of the ovarian cancer-related secretory protein sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Through bioinformatics analysis, potential target genes were identified, and their association with overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients was assessed utilizing relevant databases. Subsequently, differences in target gene expression in ovarian cancer tissue samples were validated through protein blotting and quantitative real-time PCR (qRT-qPCR). Cell proliferation assays using the cell count kit-8 (CCK-8) method, as well as transwell chamber assay and pre coated matrix gel chamber assay were employed to elucidate the role of SMPDL3B in ovarian cancer cell migration and invasion. Results This study revealed a substantial upregulation of SMPDL3B in the serum of ovarian cancer patients, correlating with an unfavorable prognosis. High SMPDL3B expression was linked not only to increased proliferation of ovarian cancer cells, but also enhanced migration and invasion. Remarkably, the knockdown the human alkaline ceramidase 2 (ACER2) gene in cancer cells with heightened SMPDL3B expression significantly inhibited cell proliferation, migration, and invasion induced by SMPDL3B activation (P<0.05), highlighting the functional interplay between ACER2 and SMPDL3B in ovarian cancer. Conclusions In summary, this study proposes SMPDL3B as a prognostic marker for ovarian cancer, with implications for potential therapeutic intervention targeting the ACER2-SMPDL3B axis.
Collapse
Affiliation(s)
- Baozhi Song
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Yu Jiang
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Jiahua Liu
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Yatao Jiang
- Department of Obstetrics, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Zhong S, Borlak J. Sex differences in the tumor promoting effects of tobacco smoke in a cRaf transgenic lung cancer disease model. Arch Toxicol 2024; 98:957-983. [PMID: 38245882 PMCID: PMC10861769 DOI: 10.1007/s00204-023-03671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Yu H, Niu Y, Lei X, Xie C, Yan X. Multi-Omics Analysis Reveals Sphingomyelin Accumulation, Glycerolipids Loss, and Disorders of Lipid Metabolism Regulated by Leucine Deprivation in the Liver of Mice. Mol Nutr Food Res 2024; 68:e2300567. [PMID: 38059795 DOI: 10.1002/mnfr.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Branched-chain amino acids, especially leucine, have been reported to play a role in regulating lipid metabolism. This study aims to examine the effects of leucine deprivation on hepatic lipid metabolism. METHODS AND RESULTS C57BL/6 mice are fed with a chow diet (control group, n = 8) or a leucine-free diet (-Leu group, n = 8) for 7 days. Histology, lipidomics, targeted metabolomics, and transcriptomics are performed to analyze the liver tissue. Compared to control group, -Leu group exhibits a notably reduced liver weight, accompanied by hepatic injury, and disorders of lipid metabolism. The level of sphingomyelin (SM) is significantly increased in the liver of -Leu group, while the glycerolipids (GL) level is significantly decreased. The expression of sphingomyelin synthase 1 (SGMS1) is upregulated by leucine deprivation in a time-dependent manner, leading to hepatic SM accumulation. Moreover, leucine deprivation results in hepatic GL loss via suppressing fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) expression. CONCLUSION The findings demonstrate that leucine deprivation results in abnormal lipid metabolism in the liver, mainly manifested as SM accumulation and GL loss. These results provide insights into the role of leucine in regulating lipid metabolism.
Collapse
Affiliation(s)
- Haonan Yu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Yaorong Niu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Xinyu Lei
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Chunlin Xie
- National Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, Guangdong, 510640, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
6
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
7
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
8
|
Liu J, Cheng C, Qi T, Xiao J, Zhou W, Deng D, Dai Y. ACER2 forms a cold tumor microenvironment and predicts the molecular subtype in bladder cancer: Results from real-world cohorts. Front Genet 2023; 14:1148437. [PMID: 36936425 PMCID: PMC10014737 DOI: 10.3389/fgene.2023.1148437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background: ACER2 is a critical gene regulating cancer cell growth and migration, whereas the immunological role of ACER2 in the tumor microenvironment (TME) is scarcely reported. Thus, we lucubrate the potential performance of ACER2 in bladder cancer (BLCA). Methods: We initially compared ACER2 expressions in BLCA with normal urothelium tissues based on data gathered from the Cancer Genome Atlas (TCGA) and our Xiangya cohort. Subsequently, we systematically explored correlations between ACER2 with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the T-cell inflamed score (TIS) to further confirm its immunological role in BLCA TME. In addition, we performed ROC analysis to illustrate the accuracy of ACER2 in predicting BLCA molecular subtypes and explored the response to several cancer-related treatments. Finally, we validated results in an immunotherapy cohort and Xiangya cohort to ensure the stability of our study. Results: Compared with normal urinary epithelium, ACER2 was significantly overexpressed in several cell lines and the tumor tissue of BLCA. ACER2 can contribute to the formation of non-inflamed BLCA TME supported by its negative correlations with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the TIS. Moreover, BLCA patients with high ACER2 expression were inclined to the luminal subtype, which were characterized by insensitivity to neoadjuvant chemotherapy, chemotherapy and radiotherapy but not to immunotherapy. Results in the IMvigor210 and Xiangya cohort were consistent. Conclusion: ACER2 could accurately predict the TME and clinical outcomes for BLCA. It would be served as a promising target for precision treatment in the future.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunliang Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tiezheng Qi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weimin Zhou
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dingshan Deng, ; Yuanqing Dai,
| | - Yuanqing Dai
- Department of Urology, Xiangya Hospital, Central South University, Changsha City, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dingshan Deng, ; Yuanqing Dai,
| |
Collapse
|
9
|
miR-196a-5p Correlates with Chronic Atrophic Gastritis Progression to Gastric Cancer and Induces Malignant Biological Behaviors of Gastric Cancer Cells by Targeting ACER2. Mol Biotechnol 2022:10.1007/s12033-022-00589-8. [PMID: 36513872 DOI: 10.1007/s12033-022-00589-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND As the prognosis of early gastric cancer (EGC) is significantly better than that of advanced gastric cancer (AGC), the development of biomarkers to monitor the progression of chronic atrophic gastritis (CAG) to gastric cancer (GC) is essential. METHODS Stomach tissue miRNA and mRNA sequences from patients with chronic non-atrophic gastritis (CNAG), CAG, precancerous lesions of gastric cancer (PLGC), and GC were analyzed. A publicly available GC-related miRNA microarray dataset was obtained from the Gene Expression Omnibus database. Spearman's correlation and differential gene analyses, and clinical validation were used to identify novel miRNAs correlating with CAG progression to GC. miRNA targets were predicted using weighted gene co-expression analysis and databases. A dual-luciferase reporter assay was performed to check for direct interaction between miR-196a-5p and ACER2. The CCK-8 and wound healing assays, and flow cytometry were performed to evaluate cell proliferation, migration, and apoptosis. RESULTS miR-196a-5p was correlated with CAG progression to GC. Overexpression of miR-196a-5p promoted GC cell proliferation and migration and inhibited apoptosis, whereas suppression of miR-196a-5p exerted the opposite effect. Based on the prediction and luciferase assays, ACER2 was identified as the target of miR-196a-5p. ACER2 was downregulated in GC cell lines. Knockdown of ACER2 increased GC cell proliferation rates and migration ability and inhibited apoptosis, while ACER2 overexpression led to the opposite effect. CONCLUSIONS miR-196a-5p correlated with CAG progression to GC and induced malignant biological behaviors of GC cells by targeting ACER2, providing a novel monitoring biomarker and target for GC prevention.
Collapse
|
10
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
11
|
Manifold Roles of Ceramide Metabolism in Non-Alcoholic Fatty Liver Disease and Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:157-168. [DOI: 10.1007/978-981-19-0394-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wu SE, Chen WL. A Genome-Wide Association Study Identifies Novel Risk Loci for Sarcopenia in a Taiwanese Population. J Inflamm Res 2021; 14:5969-5980. [PMID: 34815687 PMCID: PMC8605878 DOI: 10.2147/jir.s338724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/31/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose A genome-wide association study (GWAS) of sarcopenia unraveled the importance of genetic contribution to decline in muscle. The current study investigated sarcopenia-related single nucleotide polymorphisms (SNPs) in Asian older adults, and further constructed a genotype score that tests the combined effect of these SNPs on risk of sarcopenia. Patients and Methods Ninety-six subjects aged 60 or above were recruited from the database of annual geriatric health examination at Tri-Service General Hospital during 2020. Eligible criteria included: 1) not having severe comorbidities; 2) agreed to join the Taiwan Precision Medicine Initiative project; and 3) having sufficient information of required sarcopenic measurements. Genotype–phenotype association analysis was performed to find SNPs that were significantly associated with each of three sarcopenic indices (low muscle mass, muscle strength, and physical performance). Subsequently, these SNPs comprised a sarcopenia-related genotype score that summed up the number of SNPs carrying unfavorable allele(s). Results Twelve SNPs revealed suggestive genome-wide significance with the three sarcopenic indices, and eight of them revealed a relationship with more than one index. Low muscle strength was the item that had the most (eight) related SNPs. Among them, rs10282247 affects cholesterol binding and rs7022373 participates in cellular apoptosis. In addition, higher genotype score demonstrated higher risk of sarcopenia (≥4 points: OR=630.6; 2–3 points: OR=408, p-value<0.001). Conclusion Several newly discovered SNPs suggest that genetic contribution plays a part in the pathogenesis of sarcopenia. Further studies are warranted to verify the underlying mechanisms. Moreover, a genotype score provides an estimate of the combined effect of genetic association with sarcopenia, which may modestly improve clinical risk classification.
Collapse
Affiliation(s)
- Shou-En Wu
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
13
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
14
|
Alkaline ceramidase family: The first two decades. Cell Signal 2020; 78:109860. [PMID: 33271224 DOI: 10.1016/j.cellsig.2020.109860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
Ceramidases are a group of enzymes that catalyze the hydrolysis of ceramide, dihydroceramide, and phytoceramide into sphingosine (SPH), dihydrosphingosine (DHS), and phytosphingosine (PHS), respectively, along with a free fatty acid. Ceramidases are classified into the acid, neutral, and alkaline ceramidase subtypes according to the pH optima for their catalytic activity. YPC1 and YDC1 were the first alkaline ceramidase genes to be identified and cloned from the yeast Saccharomyces cerevisiae two decades ago. Subsequently, alkaline ceramidase genes were identified from other species, including one Drosophila melanogaster ACER gene (Dacer), one Arabidopsis thaliana ACER gene (AtACER), three Mus musculus ACER genes (Acer1, Acer2, and Acer3), and three Homo sapiens ACER genes (ACER1, ACER2, and ACER3). The protein products of these genes constitute a large protein family, termed the alkaline ceramidase (ACER) family. All the biochemically characterized members of the ACER family are integral membrane proteins with seven transmembrane segments in the Golgi complex or endoplasmic reticulum, and they each have unique substrate specificity. An increasing number of studies suggest that the ACER family has diverse roles in regulating sphingolipid metabolism and biological processes. Here we discuss the discovery of the ACER family, the biochemical properties, structures, and catalytic mechanisms of its members, and its role in regulating sphingolipid metabolism and biological processes in yeast, insects, plants, and mammals.
Collapse
|
15
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
16
|
Hu S, Cheng L, Wang J, Li L, He H, Hu B, Ren X, Hu J. Genome-wide transcriptome profiling reveals the mechanisms underlying muscle group-specific phenotypic changes under different raising systems in ducks. Poult Sci 2020; 99:6723-6736. [PMID: 33248588 PMCID: PMC7704955 DOI: 10.1016/j.psj.2020.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022] Open
Abstract
Although a number of nongenetic factors have been reported to be able to modulate skeletal muscle phenotypes in meat-type birds, neither the underlying mechanisms nor the muscle group–specific phenotypic and molecular responses have been fully understood. In the present study, a total of 240 broiler ducks were used to compare the effects of floor raising system (FRS) and net raising system (NRS) on the physicochemical properties and global gene expression profiles of both breast and thigh muscles at the posthatching week 4 (W4), W8, and W13. Our results showed that compared with FRS, NRS generally induced higher pH, lower lightness (L∗) and yellowness (b∗), lower drip loss and cooking loss, and lower shear force in either breast or thigh muscles during early posthatching stages but subsequently showed less pronounced or even reverse effects. Meanwhile, it was observed that the raising system differently changed the myofiber characteristics depending on the muscle group and the developmental stage. Genome-wide transcriptome analysis showed that compared with FRS, NRS induced the most extensive gene expression changes in breast muscle (BM) at W4 but in thigh muscle (TM) at W13, suggesting the asynchronous molecular responses of BM and TM to the raising system and period. Most of differentially expressed genes in either BM or TM between NRS and FRS were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms associated with regulation of muscle cellular functions, metabolic and contractile activities, and tissue remodeling, indicating similar molecular mechanisms principally responsible for the raising system-caused phenotypic changes in both muscle groups. Nevertheless, several crucial pathways (e.g., adipocytokine signaling, AGE-RAGE signaling, and apoptosis) and genes (e.g., ANO6, ACER2, UCP3, DTL, and TMEM120A) were tightly related to the muscle group–specific adaptive remodeling on different raising systems. These data could not only contribute to a better understanding of the molecular mechanisms behind meat quality but also provide novel insights into the molecular causes of the muscle group–specific adaptive remodeling in response to environmental stimuli.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Lumin Cheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Xufang Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University 611130, Chengdu, China
| |
Collapse
|
17
|
Sun M, He L, Fan Z, Tang R, Du J. Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials 2020; 257:120252. [PMID: 32738659 DOI: 10.1016/j.biomaterials.2020.120252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Cisplatin resistance is a daunting obstacle in cancer therapy and one of the major causes for treatment failure due to the inadequate drug activity and apoptosis induction. To overcome cisplatin resistance, we proposed a multifunctional nanogel (designated as Valproate-D-Nanogel) capable of reactivating cisplatin and enhancing early apoptosis. This Valproate-D-Nanogel was prepared through copolymerizing carboxymethyl chitosan with diallyl disulfide and subsequent grafting with valproate to reverse the drug-resistance in cisplatin-resistant human lung adenocarcinoma cancer. It can significantly increase the proportion of G2/M phase (up to 3.2-fold enhancement) to reactivate cisplatin via high level of G2/M arrest induced by valproate. Meanwhile, the intracellular ROS-P53 crosstalk can be upregulated by diallyl disulfide (up to 8-fold increase of ROS) and valproate (up to 18-fold increase of P53) to enhance early apoptosis. The synchronization of enhanced G2/M arrest and ROS-P53 crosstalk devotes to reverse the cisplatin resistance with a high level of resistance reversion index (50.22). As a result, improved in vivo tumor inhibition (up to 15-fold higher compared to free cisplatin) and decreased systemic toxicity was observed after treatment with Valproate-D-Nanogels. Overall, this nanogel can effectively inhibit cisplatin-resistance cancer through combined pathways and provides an effective approach for overcoming cisplatin-resistance in cancer treatment.
Collapse
Affiliation(s)
- Min Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China; Engineering Research Center for Biomedical Materials, School of Life Science, Anhui, Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, China
| | - Le He
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui, Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, China
| | - Zhen Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui, Key Laboratory of Modern Biomanufacturing, Anhui University, 111 Jiulong Road, Hefei, Anhui Province, 230601, China.
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| |
Collapse
|
18
|
Patel H, Sheikh MS, Huang Y. ECRG2, a novel transcriptional target of p53, modulates cancer cell sensitivity to DNA damage. Cell Death Dis 2020; 11:543. [PMID: 32681017 PMCID: PMC7367829 DOI: 10.1038/s41419-020-2728-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Esophageal Cancer-Related Gene 2 (ECRG2) is a recently identified tumor suppressor, its regulation and involvement in DNA damage response are unknown. Here, we show that DNA damage-induced ECRG2 upregulation coincided with p53 activation and occurred in a p53-dependent manner. We identified two p53-binding sites within ECRG2 promoter and found the promoter activity, mRNA, and protein expression to be regulated by p53. We show that DNA damage significantly enhanced p53 binding to ECRG2 promoter at the anticipated p53-binding sites. We identified a novel natural ECRG2 promoter variant harboring a small deletion that exists in the genomes of ~38.5% of world population and showed this variant to be defective in responding to p53 and DNA-damage. ECRG2 overexpression induced cancer cell death; ECRG2 gene disruption enhanced cell survival following anticancer drug treatments even when p53 was induced. We showed that lower expression of ECRG2 in multiple human malignancies correlated with reduced disease-free survival in patients. Collectively, our novel findings indicate that ECRG2 is an important target of p53 during DNA damage-induced response and plays a critical role in influencing cancer cell sensitivity to DNA damage-inducing cancer therapeutics.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - M Saeed Sheikh
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Ying Huang
- Department of Pharmacology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| |
Collapse
|
19
|
Gallagher KM, Roderick JE, Tan SH, Tan TK, Murphy L, Yu J, Li R, O'Connor KW, Zhu J, Green MR, Sanda T, Kelliher MA. ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia. Blood Adv 2020; 4:3154-3168. [PMID: 32658986 PMCID: PMC7362368 DOI: 10.1182/bloodadvances.2020001555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Synthetic glucocorticoids (GCs), such as dexamethasone and prednisone, remain key components of therapy for patients with lymphoid malignancies. For pediatric patients with acute lymphoblastic leukemia (ALL), response to GCs remains the most reliable prognostic indicator; failure to respond to GC correlates with poor event-free survival. To uncover GC resistance mechanisms, we performed a genome-wide, survival-based short hairpin RNA screen and identified the orphan nuclear receptor estrogen-related receptor-β (ESRRB) as a critical transcription factor that cooperates with the GC receptor (GR) to mediate the GC gene expression signature in mouse and human ALL cells. Esrrb knockdown interfered with the expression of genes that were induced and repressed by GR and resulted in GC resistance in vitro and in vivo. Dexamethasone treatment stimulated ESRRB binding to estrogen-related receptor elements (ERREs) in canonical GC-regulated genes, and H3K27Ac Hi-chromatin immunoprecipitation revealed increased interactions between GR- and ERRE-containing regulatory regions in dexamethasone-treated human T-ALL cells. Furthermore, ESRRB agonists enhanced GC target gene expression and synergized with dexamethasone to induce leukemic cell death, indicating that ESRRB agonists may overcome GC resistance in ALL, and potentially, in other lymphoid malignancies.
Collapse
Affiliation(s)
- Kayleigh M Gallagher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Justine E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore
| | - Leonard Murphy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Kevin W O'Connor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| |
Collapse
|
20
|
Duarte C, Akkaoui J, Yamada C, Ho A, Mao C, Movila A. Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration. Cells 2020; 9:cells9061379. [PMID: 32498325 PMCID: PMC7349419 DOI: 10.3390/cells9061379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases—named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3—have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer’s disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed.
Collapse
Affiliation(s)
- Carolina Duarte
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| | - Juliet Akkaoui
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Chiaki Yamada
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Anny Ho
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
| | - Cungui Mao
- Department of Medicine, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA;
- Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Alexandru Movila
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA; (J.A.); (C.Y.); (A.H.)
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33324, USA
- Correspondence: (C.D.); (A.M.); Tel.: +1-954-262-7306 (A.M.)
| |
Collapse
|
21
|
Liu B, Xiao J, Dong M, Qiu Z, Jin J. Human alkaline ceramidase 2 promotes the growth, invasion, and migration of hepatocellular carcinoma cells via sphingomyelin phosphodiesterase acid-like 3B. Cancer Sci 2020; 111:2259-2274. [PMID: 32391585 PMCID: PMC7385342 DOI: 10.1111/cas.14453] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. It has a poor prognosis because it is often diagnosed at the advanced stage when treatments are limited. In addition, HCC pathogenesis is not fully understood, and this has affected early diagnosis and treatment of this disease. Human alkaline ceramidase 2 (ACER2), a key enzyme that regulates hydrolysis of cellular ceramides, affects cancer cell survival, however its role in HCC has not been well characterized. Our results showed that ACER2 is overexpressed in HCC tissues and cell lines. In addition, high ACER2 protein expression was associated with tumor growth; ACER2 knockdown resulted in decreased cell growth and migration. Sphingomyelin phosphodiesterase acid‐like 3B (SMPDL3B) promoted HCC cell growth, invasion, and migration; SMPDL3B knockdown had a significant inhibitory effect on HCC tumor growth in vivo. Moreover, ACER2 positively regulated the protein level of SMPDL3B. Of note, ACER2/SMPDL3B promoted ceramide hydrolysis and S1P production. This axis induced HCC survival and could be blocked by inhibition of S1P formation. In conclusion, ACER2 promoted HCC cell survival and migration, possibly via SMPDL3B. Thus, inhibition of ACER2/SMPDL3B may be a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Binggang Liu
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Juan Xiao
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Mingjun Dong
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhidong Qiu
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi, China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
22
|
Geng W, Long SL, Chang YJ, Saxton AM, Joyce SA, Lin J. Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Sci Rep 2020; 10:4941. [PMID: 32188876 PMCID: PMC7080769 DOI: 10.1038/s41598-020-61723-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Gut microbial enzymes, bile salt hydrolases (BSHs) are the gateway enzymes for bile acid (BA) modification in the gut. This activity is a promising target for developing innovative non-antibiotic growth promoters to enhance animal production and health. Compelling evidence has shown that inhibition of BSH activity should enhance weight gain by altering the BA pool, host signalling and lipid metabolism. We recently identified a panel of promising BSH inhibitors. Here, we address the potential of them as alternative, effective, non-antibiotic feed additives, for commercial application, to promote animal growth using a chicken model. In this study, the in vivo efficacy of three BSH inhibitors (caffeic acid phenethylester, riboflavin, carnosic acid) were evaluated. 7-day old chicks (10 birds/group) were either untreated or they received one of the specific BSH inhibitors (25 mg/kg body weight) via oral gavage for 17 days. The chicks in treatment groups consistently displayed higher body weight gain than the untreated chicks. Metabolomic analysis demonstrated that BSH inhibitor treatment led to significant changes in both circulating and intestinal BA signatures in support of blunted intestinal BSH activity. Consistent with this finding, liver and intestinal tissue RNA-Seq analysis showed that carnosic acid treatment significantly altered expression of genes involved in lipid and bile acid metabolism. Taken together, this study validates microbial BSH activity inhibition as an alternative target and strategy to antibiotic treatment for animal growth promotion.
Collapse
Affiliation(s)
- Wenjing Geng
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Sarah L Long
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Yun-Juan Chang
- Department of High Performance Computing and Research, University of Rutgers, Newark, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA.
| |
Collapse
|
23
|
Zhang N, Jiang T, Wang Y, Hu L, Bu Y. BTG4 is A Novel p53 Target Gene That Inhibits Cell Growth and Induces Apoptosis. Genes (Basel) 2020; 11:genes11020217. [PMID: 32093041 PMCID: PMC7074044 DOI: 10.3390/genes11020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
BTG4 is the last cloned and poorly studied member of BTG/Tob family. Studies have suggested that BTG4 is critical for the degradation of maternal mRNAs in mice during the process of maternal-to-zygotic transition, and downregulated in cancers, such as gastric cancer. However, the regulatory mechanism of BTG4 and its function in cancers remain elusive. In this study, we have for the first time identified the promoter region of the human BTG4 gene. Serial luciferase reporter assay demonstrated that the core promoter of BTG4 is mainly located within the 388 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the BTG4 promoter contains binding sites for canonical transcription factors, such as Sp1, whereas its first intron contains two overlapped consensus p53 binding sites. However, overexpression of Sp1 has negligible effects on BTG4 promoter activity, and site-directed mutagenesis assay further suggested that Sp1 is not a critical transcription factor for the transcriptional regulation of BTG4. Of note, luciferase assay revealed that one of the intronic p53 binding sites is highly responsive to p53. Both exogenous p53 overexpression and adriamycin-mediated endogenous p53 activation result in the transcriptional upregulation of BTG4. In addition, BTG4 is downregulated in lung and colorectal cancers, and overexpression of BTG4 inhibits cell growth and induces apoptosis in cancer cells. Taken together, our results strongly suggest that BTG4 is a novel p53-regulated gene and probably functions as a tumor suppressor in lung and colorectal cancers.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Tinghui Jiang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lanyue Hu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; (N.Z.); (T.J.); (Y.W.); (L.H.)
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-68485991
| |
Collapse
|
24
|
Abdelrahman RS, Abdelmageed ME. Renoprotective effect of celecoxib against gentamicin-induced nephrotoxicity through suppressing NFκB and caspase-3 signaling pathways in rats. Chem Biol Interact 2020; 315:108863. [DOI: 10.1016/j.cbi.2019.108863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/28/2019] [Accepted: 10/12/2019] [Indexed: 12/26/2022]
|
25
|
Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019; 8:cells8121573. [PMID: 31817238 PMCID: PMC6952831 DOI: 10.3390/cells8121573] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Human pathologies such as Alzheimer’s disease, type 2 diabetes-induced insulin resistance, cancer, and cardiovascular diseases have altered lipid homeostasis. Among these imbalanced lipids, the bioactive sphingolipids ceramide and sphingosine-1 phosphate (S1P) are pivotal in the pathophysiology of these diseases. Several enzymes within the sphingolipid pathway contribute to the homeostasis of ceramide and S1P. Ceramidase is key in the degradation of ceramide into sphingosine and free fatty acids. In humans, five different ceramidases are known—acid ceramidase, neutral ceramidase, and alkaline ceramidase 1, 2, and 3—which are encoded by five different genes (ASAH1, ASAH2, ACER1, ACER2, and ACER3, respectively). Notably, the neutral ceramidase N-acylsphingosine amidohydrolase 2 (ASAH2) shows considerable differences between humans and animals in terms of tissue expression levels. Besides, the subcellular localization of ASAH2 remains controversial. In this review, we sum up the results obtained for identifying gene divergence, structure, subcellular localization, and manipulating factors and address the role of ASAH2 along with other ceramidases in human diseases.
Collapse
|
26
|
Yang Q, Zhou Y, Yin H, Li H, Zhou M, Sun G, Cao Z, Man R, Wang H, Li J. PINK1 Protects Against Gentamicin-Induced Sensory Hair Cell Damage: Possible Relation to Induction of Autophagy and Inhibition of p53 Signal Pathway. Front Mol Neurosci 2018; 11:403. [PMID: 30483050 PMCID: PMC6240688 DOI: 10.3389/fnmol.2018.00403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is a gatekeeper of mitochondrial quality control. The present study was aimed to examine whether PINK1 possesses a protective function against gentamicin (GM)-induced sensory hair cell (HC) damage in vitro. The formation of parkin particles (a marker revealing the activation of PINK1 pathway which is a substrate of PINK1 and could signal depolarized mitochondria for clearance) and autophagy were determined by immunofluorescence staining. The expressions of PINK1, LC3B, cleaved-caspase 3 and p53 were measured by Western blotting. The levels of reactive oxygen species (ROS) and apoptosis were respectively evaluated by DCFH-DA staining, Annexin V Apoptosis Detection Kit and TUNEL staining. Cell viability was tested by a CCK8 kit. We found that treatment of 400 μM GM elicited the formation of ROS, which, in turn, led to PINK1 degradation, parkin recruitment, autophagy formation, an increase of p53 and cleaved-caspase 3 in HEI-OC1 cells and murine HCs. In contrast, co-treatment with ROS scavenger N-acetyl-L-cysteine (NAC) inhibited parkin recruitment, alleviated autophagy and p53 pathway-related damaged-cell elimination. Moreover, PINK1 interference contributed to a decrease of autophagy but an increase of p53 level in HEI-OC1 cells in response to GM stimulus. Findings from this work indicate that PINK1 alleviates the GM-elicited ototoxicity via induction of autophagy and resistance the increase of p53 in HCs.
Collapse
Affiliation(s)
- Qianqian Yang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China
| | - Yiwei Zhou
- Weifang Nursing Vocational College, Weifang, China
| | - Haiyan Yin
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China
| | - Hongrui Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Meijuan Zhou
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Gaoying Sun
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rongjun Man
- Department of Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Jianfeng Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| |
Collapse
|
27
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
28
|
Azuma MM, Balani P, Boisvert H, Gil M, Egashira K, Yamaguchi T, Hasturk H, Duncan M, Kawai T, Movila A. Endogenous acid ceramidase protects epithelial cells from Porphyromonas gingivalis-induced inflammation in vitro. Biochem Biophys Res Commun 2018; 495:2383-2389. [PMID: 29278706 PMCID: PMC5765770 DOI: 10.1016/j.bbrc.2017.12.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
Ceramidases are a group of enzymes that degrade pro-inflammatory ceramide by cleaving a fatty acid to form anti-inflammatory sphingosine lipid. Thus far, acid, neutral and alkaline ceramidase isozymes have been described. However, the expression patterns of ceramidase isoforms as well as their role in periodontal disease pathogenesis remain unknown. In this study, expression patterns of ceramidase isoforms were quantified by real-time PCR and immunohistochemistry in gingival samples of patients with periodontitis and healthy subjects, as well as in EpiGingivalTM-3D culture and OBA-9 gingival epithelial cells both of which were stimulated with or without the presence of live Porphyromonas gingivalis (ATCC 33277 strain). A significantly lower level of acid ceramidase expression was detected in gingival tissues from periodontal patients compared to those from healthy subjects. In addition, acid-ceramidase expression in EpiGingival™ 3D culture and OBA-9 cells was suppressed by stimulation with P. gingivalis in vitro. No significant fluctuation was detected for neutral or alkaline ceramidases in either gingival samples or cell cultures. Next, to elucidate the role of acid ceramidase in P. gingivalis-induced inflammation in vitro, OBA-9 cells were transduced with adenoviral vector expressing the human acid ceramidase (Ad-ASAH1) gene or control adenoviral vector (Ad-control). In response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells showed significantly lower mRNA expressions of caspase-3 as well as the percentage of Annexin V-positive cells, when compared with OBA-9 cells transduced with Ad-control vector. Furthermore, in response to stimulation with P. gingivalis, ASAH1-over-expressing OBA-9 cells produced less TNF-α, IL-6, and IL1β pro-inflammatory cytokines than observed in OBA-9 cells transduced with Ad-control vector. Collectively, our data show the novel discovery of anti-inflammatory and anti-apoptotic effects of acid ceramidase in host cells exposed to periodontal bacteria, and the attenuation of the expression of host-protective acid ceramidase in periodontal lesions.
Collapse
Affiliation(s)
| | - Pooja Balani
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | | | - Mindy Gil
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | - Kenji Egashira
- The Forsyth Institute, Cambridge, MA, USA; Lion Corporation, Research & Development Headquarter, Odawara, Kanagawa, Japan
| | - Tsuguno Yamaguchi
- The Forsyth Institute, Cambridge, MA, USA; Lion Corporation, Research & Development Headquarter, Odawara, Kanagawa, Japan
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA
| | | | - Toshihisa Kawai
- NOVA Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Alexandru Movila
- The Forsyth Institute, Cambridge, MA, USA; Harvard University School of Dental Medicine, Boston, MA, USA; NOVA Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA.
| |
Collapse
|
29
|
Zhang L, Lei Y, Zhang Y, Li Y, Bu Y, Song F, Zhang C. Silencing of PRR11 suppresses cell proliferation and induces autophagy in NSCLC cells. Genes Dis 2017; 5:158-166. [PMID: 30258945 PMCID: PMC6150120 DOI: 10.1016/j.gendis.2017.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Our previous studies have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene and implicates in regulating the proliferation in lung cancer. However, its precise role in cell cycle progression remains unclear. Our recent evidences show that PRR11 silencing has an effect on autophagy in non-small-cell lung cancer (NSCLC) cells. Two human NSCLC cell lines, H1299 and A549 were transiently transfected with against PRR11 siRNA. The Cell Counting Kit-8 and plate clone formation assay showed that downregulation of PRR11 inhibited the cell proliferation associated with cell cycle related genes reduced. And our data suggested that PRR11 depletion expression enhanced the autophagosomes formation, followed with downregulation of P62 and upregulation of LC3-II protein. Furthermore, the immunoblotting results indicated that silencing of PRR11 inactivated the Akt/mTOR signaling pathway. Collectively, these results demonstrated PRR11 had an effective role in autophagy in NSCLC cells through Akt/mTOR autophagy signaling pathways. Therefore, it is helpful to clarify the function of PRR11 in tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|