1
|
Zhang Y, Zhang W, Wang S, Lin N, Yu Y, He Y, Wang B, Jiang H, Lin P, Xu X, Qi X, Wang Z, Zhang X, Shang D, Liu Q, Cheng KT, Liu M. Semantic memory-based dynamic neural network using memristive ternary CIM and CAM for 2D and 3D vision. SCIENCE ADVANCES 2024; 10:eado1058. [PMID: 39141720 PMCID: PMC11323881 DOI: 10.1126/sciadv.ado1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
The brain is dynamic, associative, and efficient. It reconfigures by associating the inputs with past experiences, with fused memory and processing. In contrast, AI models are static, unable to associate inputs with past experiences, and run on digital computers with physically separated memory and processing. We propose a hardware-software co-design, a semantic memory-based dynamic neural network using a memristor. The network associates incoming data with the past experience stored as semantic vectors. The network and the semantic memory are physically implemented on noise-robust ternary memristor-based computing-in-memory (CIM) and content-addressable memory (CAM) circuits, respectively. We validate our co-designs, using a 40-nm memristor macro, on ResNet and PointNet++ for classifying images and three-dimensional points from the MNIST and ModelNet datasets, which achieves not only accuracy on par with software but also a 48.1 and 15.9% reduction in computational budget. Moreover, it delivers a 77.6 and 93.3% reduction in energy consumption.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Woyu Zhang
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100049, China
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaocong Wang
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Ning Lin
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Yifei Yu
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Yangu He
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Bo Wang
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Hao Jiang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Peng Lin
- College of Computer Science and Technology, Zhejiang University, Zhejiang 310027, China
| | - Xiaoxin Xu
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100049, China
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojuan Qi
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, the University of Hong Kong, Hong Kong, China
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Institute of the Mind, the University of Hong Kong, Hong Kong, China
| | - Xumeng Zhang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Dashan Shang
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100049, China
- Key Lab of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Liu
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Kwang-Ting Cheng
- ACCESS - AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
- Department of Electronic and Computer Engineering, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Ming Liu
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Wang Y, Becker B, Wang J, Wang Y, Zhang L, Mei Y, Li H, Lei Y. Exaggerated sensitivity to threat and reduced medial prefrontal engagement during threat generalization in reactive aggressive adolescents. Neuroimage 2024; 294:120645. [PMID: 38734156 DOI: 10.1016/j.neuroimage.2024.120645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Aggressive adolescents tend to exhibit abnormal fear acquisition and extinction, and reactive aggressive adolescents are often more anxious. However, the relationship between fear generalization and reactive aggression (RA) remains unknown. According to Reactive-Proactive Aggression Questionnaire (RPQ) scores, 61 adolescents were divided into two groups, namely, a high RA group (N = 30) and a low aggression (LA) group (N = 31). All participants underwent three consecutive phases of the Pavlovian conditioning paradigm (i.e., habituation, acquisition, and generalization), and neural activation of the medial prefrontal cortex (mPFC) was assessed by functional near-infrared spectroscopy (fNIRS). The stimuli were ten circles with varying sizes, including two conditioned stimuli (CSs) and eight generalization stimuli (GSs). A scream at 85 dB served as the auditory unconditioned stimulus (US). The US expectancy ratings of both CSs and GSs were higher in the RA group than in the LA group. The fNIRS results showed that CSs and GSs evoked lower mPFC activation in the RA group compared to the LA group during fear generalization. These findings suggest that abnormalities in fear acquisition and generalization are prototypical dysregulations in adolescents with RA. They provide neurocognitive evidence for dysregulated fear learning in the mechanisms underlying adolescents with RA, highlighting the need to develop emotional regulation interventions for these individuals.
Collapse
Affiliation(s)
- Yizhen Wang
- School of Psychology, South China Normal University, Guangzhou, Guangdong, China; Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Jinxia Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China; Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Yuanyuan Wang
- School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Liangyou Zhang
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - Ying Mei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China; Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Hong Li
- School of Psychology, South China Normal University, Guangzhou, Guangdong, China; Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Yi Lei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Labuschagne I, Dominguez JF, Grace S, Mizzi S, Henry JD, Peters C, Rabinak CA, Sinclair E, Lorenzetti V, Terrett G, Rendell PG, Pedersen M, Hocking DR, Heinrichs M. Specialization of amygdala subregions in emotion processing. Hum Brain Mapp 2024; 45:e26673. [PMID: 38590248 PMCID: PMC11002533 DOI: 10.1002/hbm.26673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The amygdala is important for human fear processing. However, recent research has failed to reveal specificity, with evidence that the amygdala also responds to other emotions. A more nuanced understanding of the amygdala's role in emotion processing, particularly relating to fear, is needed given the importance of effective emotional functioning for everyday function and mental health. We studied 86 healthy participants (44 females), aged 18-49 (mean 26.12 ± 6.6) years, who underwent multiband functional magnetic resonance imaging. We specifically examined the reactivity of four amygdala subregions (using regions of interest analysis) and related brain connectivity networks (using generalized psycho-physiological interaction) to fear, angry, and happy facial stimuli using an emotional face-matching task. All amygdala subregions responded to all stimuli (p-FDR < .05), with this reactivity strongly driven by the superficial and centromedial amygdala (p-FDR < .001). Yet amygdala subregions selectively showed strong functional connectivity with other occipitotemporal and inferior frontal brain regions with particular sensitivity to fear recognition and strongly driven by the basolateral amygdala (p-FDR < .05). These findings suggest that amygdala specialization to fear may not be reflected in its local activity but in its connectivity with other brain regions within a specific face-processing network.
Collapse
Affiliation(s)
- Izelle Labuschagne
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Sally Grace
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Simone Mizzi
- School of Health and Biomedical ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Julie D. Henry
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig Peters
- Department of Pharmacy PracticeWayne State UniversityDetroitMichiganUSA
| | | | - Erin Sinclair
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Valentina Lorenzetti
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Gill Terrett
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Peter G. Rendell
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Mangor Pedersen
- Department of Psychology and NeuroscienceAuckland University of TechnologyAucklandNew Zealand
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darren R. Hocking
- Institute for Health & SportVictoria UniversityMelbourneVictoriaAustralia
| | - Markus Heinrichs
- Department of PsychologyAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
- Freiburg Brain Imaging CenterUniversity Medical Center, Albert‐Ludwigs University of FreiburgFreiburg im BreisgauGermany
| |
Collapse
|
4
|
Vásquez CE, Knak Guerra KT, Renner J, Rasia-Filho AA. Morphological heterogeneity of neurons in the human central amygdaloid nucleus. J Neurosci Res 2024; 102:e25319. [PMID: 38629777 DOI: 10.1002/jnr.25319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
The central amygdaloid nucleus (CeA) has an ancient phylogenetic development and functions relevant for animal survival. Local cells receive intrinsic amygdaloidal information that codes emotional stimuli of fear, integrate them, and send cortical and subcortical output projections that prompt rapid visceral and social behavior responses. We aimed to describe the morphology of the neurons that compose the human CeA (N = 8 adult men). Cells within CeA coronal borders were identified using the thionine staining and were further analyzed using the "single-section" Golgi method followed by open-source software procedures for two-dimensional and three-dimensional image reconstructions. Our results evidenced varied neuronal cell body features, number and thickness of primary shafts, dendritic branching patterns, and density and shape of dendritic spines. Based on these criteria, we propose the existence of 12 morphologically different spiny neurons in the human CeA and discuss the variability in the dendritic architecture within cellular types, including likely interneurons. Some dendritic shafts were long and straight, displayed few collaterals, and had planar radiation within the coronal neuropil volume. Most of the sampled neurons showed a few to moderate density of small stubby/wide spines. Long spines (thin and mushroom) were observed occasionally. These novel data address the synaptic processing and plasticity in the human CeA. Our morphological description can be combined with further transcriptomic, immunohistochemical, and electrophysiological/connectional approaches. It serves also to investigate how neurons are altered in neurological and psychiatric disorders with hindered emotional perception, in anxiety, following atrophy in schizophrenia, and along different stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Carlos E Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
5
|
Bramson B, Toni I, Roelofs K. Emotion regulation from an action-control perspective. Neurosci Biobehav Rev 2023; 153:105397. [PMID: 37739325 DOI: 10.1016/j.neubiorev.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite increasing interest in emotional processes in cognitive science, theories on emotion regulation have remained rather isolated, predominantly focused on cognitive regulation strategies such as reappraisal. However, recent neurocognitive evidence suggests that early emotion regulation may involve sensorimotor control in addition to other emotion-regulation processes. We propose an action-oriented view of emotion regulation, in which feedforward predictions develop from action-selection mechanisms. Those can account for acute emotional-action control as well as more abstract instances of emotion regulation such as cognitive reappraisal. We argue the latter occurs in absence of overt motor output, yet in the presence of full-blown autonomic, visceral, and subjective changes. This provides an integrated framework with testable neuro-computational predictions and concrete starting points for intervention to improve emotion control in affective disorders.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands.
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| |
Collapse
|
6
|
Emotional face expression recognition in problematic Internet use and excessive smartphone use: task-based fMRI study. Sci Rep 2023; 13:354. [PMID: 36611073 PMCID: PMC9825579 DOI: 10.1038/s41598-022-27172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Growing literature indicates that problematic Internet use (PIU) and excessive smartphone use (ESU) are associated with breakdown of functional brain networks. The effects of PIU&ESU on emotional face expression (EFE) recognition are not well understood, however behavioural investigations and fMRI studies of different addiction forms indicated the impairment of this function. The Facial Emotion Recognition Paradigm was used to probe cortico-limbic responses during EFE recognition. Combined fMRI and psychophysiological analysis were implemented to measure EFE-related functional brain changes in PIU&ESU. Self-reported questionnaires were used to assess PIU&ESU. Positive associations were found between the extent of PIU&ESU and functional connections related to emotional cognitive control and social brain networks. Our findings highlight the involvement of social functioning, especially EFE recognition in PIU&ESU. Therefore, we emphasize that besides the brain's executive and reward systems, the social brain network might be the next candidate to be involved in the pathogenesis of PIU&ESU.
Collapse
|
7
|
Tonnaer F, van Zutphen L, Raine A, Cima M. Amygdala connectivity and aggression. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:87-106. [PMID: 37633721 DOI: 10.1016/b978-0-12-821375-9.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Neurobiological models propose that reactive aggression is predicated on impairments in amygdala-prefrontal connectivity that subserves moral decision-making and emotion regulation. The amygdala is a key component within this neural network that modulates reactive aggression. We provide a review of amygdala dysfunctional brain networks leading to reactive aggressive behavior. We elaborate on key concepts, focusing on moral decision-making and emotion regulation in a developmental context, and brain network connectivity factors relating to amygdala (dys)function-factors which we suggest predispose to reactive aggression. We additionally discuss insights into the latest treatment interventions, providing the utilization of the scientific findings for practice.
Collapse
Affiliation(s)
- Franca Tonnaer
- Department of Research, Ventio Crime Prevention Science Institute, Rijckholt, The Netherlands
| | - Linda van Zutphen
- Department of Conditions for LifeLong Learning, Educational Sciences, Open University, Heerlen, The Netherlands
| | - Adrian Raine
- Department of Criminology, Richard Perry University, Berkeley, CA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Maaike Cima
- Department of Research, Ventio Crime Prevention Science Institute, Rijckholt, The Netherlands; Department of Developmental Psychopathology, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands; Department of Research, VIGO Groep, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Rafee S, Hutchinson M, Reilly R. The Collicular-Pulvinar-Amygdala Axis and Adult-Onset Idiopathic Focal Dystonias. ADVANCES IN NEUROBIOLOGY 2023; 31:195-210. [PMID: 37338703 DOI: 10.1007/978-3-031-26220-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adult-onset idiopathic focal dystonias (AOIFD) are the most common type of dystonia. It has varied expression including multiple motor (depending on body part affected) and non-motor symptoms (psychiatric, cognitive and sensory). The motor symptoms are usually the main reason for presentation and are most often treated with botulinum toxin. However, non-motor symptoms are the main predictors of quality of life and should be addressed appropriately, as well as treating the motor disorder. Rather than considering AOIFD as a movement disorder, a syndromic approach should be taken, one that accommodates all the symptoms. Dysfunction of the collicular-pulvinar-amygdala axis, with the superior colliculus as a central node, can explain the diverse expression of this syndrome.
Collapse
Affiliation(s)
- Shameer Rafee
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Richard Reilly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
9
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Antezana L, Coffman MC, DiCriscio AS, Richey JA. Effects of nonsocial and circumscribed interest images on neural mechanisms of emotion regulation in autistic adults. Front Behav Neurosci 2022; 16:1057736. [PMID: 36570705 PMCID: PMC9771392 DOI: 10.3389/fnbeh.2022.1057736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Emotion dysregulation is commonly reported among autistic individuals. Prior work investigating the neurofunctional mechanisms of emotion regulation (ER) in autistic adults has illustrated alterations in dorsolateral prefrontal cortex (dlPFC) activity, as well as concurrent atypical patterns of activation in subcortical regions related to affect during cognitive reappraisal of social images. Whereas most research examining ER in autism has focused on regulation of negative emotions, the effects of regulating positive emotions has been generally understudied. This is surprising given the relevance of positive motivational states to understanding circumscribed interests (CI) in autism. Methods Accordingly, the purpose of this study was to use fMRI with simultaneous eye-tracking and pupillometry to investigate the neural mechanisms of ER during passive viewing and cognitive reappraisal of a standardized set of nonsocial images and personalized (self-selected) CI images. Results The autistic group demonstrated comparatively reduced modulation of posterior cingulate cortex (PCC) activation during cognitive reappraisal of CI images compared to viewing of CI, although no eye-tracking/pupillometry differences emerged between-groups. Further, the autistic group demonstrated increased PCC connectivity with left lateral occipital and right supramarginal areas when engaging in cognitive reappraisal vs. viewing CI. Discussion In autistic adults, CI may be differentially modulated via PCC. Considering the documented role of the PCC as a core hub of the default mode network, we further postulate that ER of CI could potentially be related to self-referential cognition.
Collapse
Affiliation(s)
- Ligia Antezana
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marika C. Coffman
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States
| | | | - John A. Richey
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Méndez CA, Celeghin A, Diano M, Orsenigo D, Ocak B, Tamietto M. A deep neural network model of the primate superior colliculus for emotion recognition. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210512. [PMID: 36126660 PMCID: PMC9489290 DOI: 10.1098/rstb.2021.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Although sensory processing is pivotal to nearly every theory of emotion, the evaluation of the visual input as 'emotional' (e.g. a smile as signalling happiness) has been traditionally assumed to take place in supramodal 'limbic' brain regions. Accordingly, subcortical structures of ancient evolutionary origin that receive direct input from the retina, such as the superior colliculus (SC), are traditionally conceptualized as passive relay centres. However, mounting evidence suggests that the SC is endowed with the necessary infrastructure and computational capabilities for the innate recognition and initial categorization of emotionally salient features from retinal information. Here, we built a neurobiologically inspired convolutional deep neural network (DNN) model that approximates physiological, anatomical and connectional properties of the retino-collicular circuit. This enabled us to characterize and isolate the initial computations and discriminations that the DNN model of the SC can perform on facial expressions, based uniquely on the information it directly receives from the virtual retina. Trained to discriminate facial expressions of basic emotions, our model matches human error patterns and above chance, yet suboptimal, classification accuracy analogous to that reported in patients with V1 damage, who rely on retino-collicular pathways for non-conscious vision of emotional attributes. When presented with gratings of different spatial frequencies and orientations never 'seen' before, the SC model exhibits spontaneous tuning to low spatial frequencies and reduced orientation discrimination, as can be expected from the prevalence of the magnocellular (M) over parvocellular (P) projections. Likewise, face manipulation that biases processing towards the M or P pathway affects expression recognition in the SC model accordingly, an effect that dovetails with variations of activity in the human SC purposely measured with ultra-high field functional magnetic resonance imaging. Lastly, the DNN generates saliency maps and extracts visual features, demonstrating that certain face parts, like the mouth or the eyes, provide higher discriminative information than other parts as a function of emotional expressions like happiness and sadness. The present findings support the contention that the SC possesses the necessary infrastructure to analyse the visual features that define facial emotional stimuli also without additional processing stages in the visual cortex or in 'limbic' areas. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Carlos Andrés Méndez
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Alessia Celeghin
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Matteo Diano
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Davide Orsenigo
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
| | - Brian Ocak
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
- Section of Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Marco Tamietto
- Department of Psychology, University of Torino, Via Verdi 10, Torino 10124, Italy
- Department of Medical and Clinical Psychology, and CoRPS - Center of Research on Psychology in Somatic diseases, Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
| |
Collapse
|
12
|
Sappok T, Hassiotis A, Bertelli M, Dziobek I, Sterkenburg P. Developmental Delays in Socio-Emotional Brain Functions in Persons with an Intellectual Disability: Impact on Treatment and Support. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13109. [PMID: 36293690 PMCID: PMC9603789 DOI: 10.3390/ijerph192013109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 05/06/2023]
Abstract
Intellectual disability is a neurodevelopmental disorder with a related co-occurrence of mental health issues and challenging behaviors. In addition to purely cognitive functions, socio-emotional competencies may also be affected. In this paper, the lens of developmental social neuroscience is used to better understand the origins of mental disorders and challenging behaviors in people with an intellectual disability. The current concept of intelligence is broadened by socio-emotional brain functions. The emergence of these socio-emotional brain functions is linked to the formation of the respective neuronal networks located within the different parts of the limbic system. Thus, high order networks build on circuits that process more basic information. The socio-emotional skills can be assessed and complement the results of a standardized IQ-test. Disturbances of the brain cytoarchitecture and function that occur at a certain developmental period may increase the susceptibility to certain mental disorders. Insights into the current mental and socio-emotional functioning of a person may support clinicians in the calibration of treatment and support. Acknowledging the trajectories of the socio-emotional brain development may result in a more comprehensive understanding of behaviors and mental health in people with developmental delays and thus underpin supports for promotion of good mental health in this highly vulnerable population.
Collapse
Affiliation(s)
- Tanja Sappok
- Berlin Center for Mental Health in Developmental Disabilities, Ev. Krankenhaus Königin Elisabeth Herzberge, 10365 Berlin, Germany
| | - Angela Hassiotis
- Division of Psychiatry, University College London, London W1T 7BN, UK
- Camden and Islington NHS Foundation Trust, London NW1 0PE, UK
| | - Marco Bertelli
- CREA (Research and Clinical Centre), San Sebastiano Foundation, Misericordia di Firenze, 50142 Florence, Italy
| | - Isabel Dziobek
- Clinical Psychology of Social Interaction, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Paula Sterkenburg
- Bartiméus, 3941 XM Doorn, The Netherlands
- Department of Clinical Child and Family Studies, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
13
|
Starita F, Garofalo S, Dalbagno D, Degni LAE, di Pellegrino G. Pavlovian threat learning shapes the kinematics of action. Front Psychol 2022; 13:1005656. [PMID: 36304859 PMCID: PMC9592852 DOI: 10.3389/fpsyg.2022.1005656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Prompt response to environmental threats is critical to survival. Previous research has revealed mechanisms underlying threat-conditioned physiological responses, but little is known about how threats shape action. Here we tested if threat learning shapes the kinematics of reaching in human adults. In two different experiments conducted on independent samples of participants, after Pavlovian threat learning, in which a stimulus anticipated the delivery of an aversive shock, whereas another did not, the peak velocity and acceleration of reaching increased for the shocked-paired stimulus, relative to the unpaired one. These kinematic changes appeared as a direct consequence of learning, emerging even in absence of an actual threat to body integrity, as no shock occurred during reaching. Additionally, they correlated with the strength of sympathetic response during threat learning, establishing a direct relationship between previous learning and subsequent changes in action. The increase in velocity and acceleration of action following threat learning may be adaptive to facilitate the implementation of defensive responses. Enhanced action invigoration may be maladaptive, however, when defensive responses are inappropriately enacted in safe contexts, as exemplified in a number of anxiety-related disorders.
Collapse
Affiliation(s)
- Francesca Starita
- Motivation, Decision and Learning Laboratory, Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari,” University of Bologna, Cesena, Italy
| | | | | | | | | |
Collapse
|
14
|
Posterior-prefrontal and medial orbitofrontal regions play crucial roles in happiness and sadness recognition. Neuroimage Clin 2022; 35:103072. [PMID: 35689975 PMCID: PMC9192961 DOI: 10.1016/j.nicl.2022.103072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
Brain areas underlying trade-off relations between emotions were identified. Damage to the PPF area reduces accuracy of happiness recognition. Damage to the PPF increases accuracy of sadness recognition. A similar tendency was observed in orbitofrontal regions for sadness recognition. Only a deficit in sadness, but not happiness, persisted in the chronic phase.
The core brain regions responsible for basic human emotions are not yet fully understood. We investigated the key areas responsible for emotion recognition of facial expressions of happiness and sadness using data obtained from patients who underwent local brain resection. A total of 44 patients with right cerebral hemispheric brain tumors and 33 healthy volunteers were enrolled and subjected to a facial expression recognition test. Voxel-based lesion-symptom mapping was performed to investigate the relationship between the accuracy of emotion recognition and the resected regions. Consequently, trade-off relationships were discovered: the posterior-prefrontal region was related to a low score of happiness recognition and a high score of sadness recognition (disorder-of-happiness group), whereas the medial orbitofrontal region was related to a low score of sadness recognition and a high score of happiness recognition (disorder-of-sadness group). The emotion recognition score in both the happiness and sadness disorder groups was significantly lower than that in the control group (p = 0.0009 and p = 0.021, respectively). Interestingly, the deficit in happiness recognition was temporary, whereas the deficit in sadness recognition persisted during the chronic phase. Using graph theoretical analysis, we identified structural connectivity between the posterior-prefrontal and medial orbitofrontal regions. When either of these regions was damaged, the tract volume connecting them was significantly reduced (p = 0.013). These results indicate that the posterior-prefrontal and medial orbitofrontal regions may be crucial for maintaining a balance between happiness and sadness recognition in humans. Investigating the clinical impact of certain area resections using lesion studies combined with connectivity analysis is a useful neuroimaging method for understanding neural networks.
Collapse
|
15
|
Ye S, Li W, Zhu B, Lv Y, Yang Q, Krueger F. Altered effective connectivity from the posterior insula to the amygdala mediates the relationship between psychopathic traits and endorsement of the Harm foundation. Neuropsychologia 2022; 170:108216. [PMID: 35339504 DOI: 10.1016/j.neuropsychologia.2022.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Psychopathic traits have been demonstrated to be associated with different moral foundations. However, the neuropsychological mechanism underlying the relationship between psychopathic traits and moral foundations remains obscure. Our study examined the effective connectivity (EC) of psychopathy-related brain regions and its association with endorsement to moral foundations (Harm, Fairness, Loyalty, Authority, and Purity)-combining questionnaire measures, resting-state fMRI (RS-fMRI), and Granger causality analysis. We administered the Levenson Self-Report Psychopathy Scale and Moral Foundation Questionnaire to 78 college students after RS-fMRI scanning. Our results showed that total and primary psychopathy negatively predicted endorsement of the Harm foundation. The EC from the posterior insula to the amygdala was negatively associated with primary psychopathy but positively associated with endorsement of the Harm foundation. Altered posterior insula-amygdala EC partially mediated the relationship between primary psychopathy and endorsement of the Harm foundation. Our findings demonstrated that individuals with elevated psychopathic traits may have atypical processes in recognizing and integrating bodily state information into emotional responses -leading to less concern for harm-related morality. Our findings deepen the understanding of the neuropsychological mechanism underlying the relationship between psychopathic traits and morality, providing potential neurobiological explanations for increased moral transgressions, especially those harm-related transgressions, committed by psychopathic individuals.
Collapse
Affiliation(s)
- Shuer Ye
- Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Wei Li
- Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Bing Zhu
- School of Marxism, Zhejiang Yuexiu University, China
| | - Yating Lv
- Centre for Cognition and Brain Disorder, The Affiliated Hospital of Hangzhou Normal University, China.
| | - Qun Yang
- Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
16
|
Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The Neurobiological Correlates of Gaze Perception in Healthy Individuals and Neurologic Patients. Biomedicines 2022; 10:627. [PMID: 35327431 PMCID: PMC8945205 DOI: 10.3390/biomedicines10030627] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/15/2023] Open
Abstract
The ability to adaptively follow conspecific eye movements is crucial for establishing shared attention and survival. Indeed, in humans, interacting with the gaze direction of others causes the reflexive orienting of attention and the faster object detection of the signaled spatial location. The behavioral evidence of this phenomenon is called gaze-cueing. Although this effect can be conceived as automatic and reflexive, gaze-cueing is often susceptible to context. In fact, gaze-cueing was shown to interact with other factors that characterize facial stimulus, such as the kind of cue that induces attention orienting (i.e., gaze or non-symbolic cues) or the emotional expression conveyed by the gaze cues. Here, we address neuroimaging evidence, investigating the neural bases of gaze-cueing and the perception of gaze direction and how contextual factors interact with the gaze shift of attention. Evidence from neuroimaging, as well as the fields of non-invasive brain stimulation and neurologic patients, highlights the involvement of the amygdala and the superior temporal lobe (especially the superior temporal sulcus (STS)) in gaze perception. However, in this review, we also emphasized the discrepancies of the attempts to characterize the distinct functional roles of the regions in the processing of gaze. Finally, we conclude by presenting the notion of invariant representation and underline its value as a conceptual framework for the future characterization of the perceptual processing of gaze within the STS.
Collapse
Affiliation(s)
- Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
| | - Jasper H. Fabius
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Katarina Moravkova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK; (J.H.F.); (K.M.); (A.F.)
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
17
|
Murray T, O’Brien J, Sagiv N, Kumari V. Changes in functional connectivity associated with facial expression processing over the working adult lifespan. Cortex 2022; 151:211-223. [DOI: 10.1016/j.cortex.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
|
18
|
Rasia-Filho AA. Unraveling Brain Microcircuits, Dendritic Spines, and Synaptic Processing Using Multiple Complementary Approaches. Front Physiol 2022; 13:831568. [PMID: 35295578 PMCID: PMC8918670 DOI: 10.3389/fphys.2022.831568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology, Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Pugh ZH, Choo S, Leshin JC, Lindquist KA, Nam CS. Emotion depends on context, culture and their interaction: evidence from effective connectivity. Soc Cogn Affect Neurosci 2022; 17:206-217. [PMID: 34282842 PMCID: PMC8847905 DOI: 10.1093/scan/nsab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Situated models of emotion hypothesize that emotions are optimized for the context at hand, but most neuroimaging approaches ignore context. For the first time, we applied Granger causality (GC) analysis to determine how an emotion is affected by a person's cultural background and situation. Electroencephalographic recordings were obtained from mainland Chinese (CHN) and US participants as they viewed and rated fearful and neutral images displaying either social or non-social contexts. Independent component analysis and GC analysis were applied to determine the epoch of peak effect for each condition and to identify sources and sinks among brain regions of interest. We found that source-sink couplings differed across culture, situation and culture × situation. Mainland CHN participants alone showed preference for an early-onset source-sink pairing with the supramarginal gyrus as a causal source, suggesting that, relative to US participants, CHN participants more strongly prioritized a scene's social aspects in their response to fearful scenes. Our findings suggest that the neural representation of fear indeed varies according to both culture and situation and their interaction in ways that are consistent with norms instilled by cultural background.
Collapse
Affiliation(s)
- Zachary H Pugh
- Department of Psychology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sanghyun Choo
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Joseph C Leshin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chang S Nam
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
20
|
|
21
|
Riegel M, Wierzba M, Wypych M, Ritchey M, Jednoróg K, Grabowska A, Vuilleumier P, Marchewka A. Distinct medial-tempora lobe mechanisms of encoding and amygdala-mediated memory reinstatement for disgust and fear. Neuroimage 2022; 251:118889. [PMID: 35065268 DOI: 10.1016/j.neuroimage.2022.118889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Current models of episodic memory posit that retrieval involves the reenactment of encoding processes. Recent evidence has shown that this reinstatement process - indexed by subsequent encoding-retrieval similarity of brain activity patterns - is related to the activity in the hippocampus during encoding. However, we tend to re-experience emotional events in memory more richly than dull events. The role of amygdala - a critical hub of emotion processing - in reinstatement of emotional events was poorly understood. To investigate it, we leveraged a previously overlooked divergence in the role of amygdala in memory modulation by distinct emotions - disgust and fear. Here we used a novel paradigm in which participants encoded complex events (word pairs) and their memory was tested after 3 weeks, both phases during fMRI scanning. Using representational similarity analysis and univariate analyses, we show that the strength of amygdala activation during encoding was correlated with memory reinstatement of individual event representations in emotion-specific regions. Critically, amygdala modulated reinstatement more for disgust than fear. This was in line with other differences observed at the level of memory performance and neural mechanisms of encoding. Specifically, amygdala and perirhinal cortex were more involved during encoding of disgust-related events, whereas hippocampus and parahippocampal gyrus during encoding of fear-related events. Together, these findings shed a new light on the role of the amygdala and medial temporal lobe regions in encoding and reinstatement of specific emotional memories.
Collapse
Affiliation(s)
- Monika Riegel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland; Department of Psychology, Columbia University, New York 10027, United States of America; Centre interfacultaire de gérontologie et d'études des vulnerabilities, University of Geneva, CH-Geneva 1211, Switzerland.
| | - Małgorzata Wierzba
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, United States of America
| | - Katarzyna Jednoróg
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Grabowska
- SWPS University of Social Sciences and Humanities, Warsaw 03-815, Poland
| | - Patrik Vuilleumier
- Department of Neuroscience, University Medical Center, Geneva CH-1211, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-Geneva 1211, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva CH-1211, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
22
|
Topography of Emotions in Cerebellum as Appraised by Functional Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:77-86. [DOI: 10.1007/978-3-030-99550-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Jamieson AJ, Harrison BJ, Davey CG. Altered effective connectivity of the extended face processing system in depression and its association with treatment response: findings from the YoDA-C randomized controlled trial. Psychol Med 2021; 51:2933-2944. [PMID: 37676047 DOI: 10.1017/s0033291721002567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is commonly associated with fronto-amygdala dysfunction during the processing of emotional face expressions. Interactions between these regions are hypothesized to contribute to negative emotional processing biases and as such have been highlighted as potential biomarkers of treatment response. This study aimed to investigate depression associated alterations to directional connectivity and assess the utility of these parameters as predictors of treatment response. METHODS Ninety-two unmedicated adolescents and young adults (mean age 20.1; 56.5% female) with moderate-to-severe major depressive disorder and 88 healthy controls (mean age 19.8; 61.4% female) completed an implicit emotional face processing fMRI task. Patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or placebo. Using dynamic causal modelling, we examined functional relationships between six brain regions implicated in emotional face processing, comparing both patients and controls and treatment responders and non-responders. RESULTS Depressed patients demonstrated reduced inhibition from the dlPFC to vmPFC and reduced excitation from the dlPFC to amygdala during sad expression processing. During fearful expression processing patients showed reduced inhibition from the vmPFC to amygdala and reduced excitation from the amygdala to dlPFC. Response was associated with connectivity from the amygdala to dlPFC during sad expression processing and amygdala to vmPFC connectivity during fearful expression processing. CONCLUSIONS Our study clarifies the nature of face processing network alterations in adolescents and young adults with depression, highlighting key interactions between the amygdala and prefrontal cortex. Moreover, these findings highlight the potential utility of these interactions in predicting treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Australia
| |
Collapse
|
24
|
Hernández-Avalos I, Mota-Rojas D, Mendoza-Flores JE, Casas-Alvarado A, Flores-Padilla K, Miranda-Cortes AE, Torres-Bernal F, Gómez-Prado J, Mora-Medina P. Nociceptive pain and anxiety in equines: Physiological and behavioral alterations. Vet World 2021; 14:2984-2995. [PMID: 35017848 PMCID: PMC8743789 DOI: 10.14202/vetworld.2021.2984-2995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Pain and anxiety are two of the most important concerns in clinical veterinary medicine because they arise as consequences of multiple factors that can severely affect animal welfare. The aim of the present review was to provide a description and interpretation of the physiological and behavioral alterations associated with pain and anxiety in equines. To this end, we conducted an extensive review of diverse sources on the topic. The article begins by describing the neurophysiological pathway of pain, followed by a discussion of the importance of the limbic system in responses to pain and anxiety, since prolonged exposure to situations that cause stress and pain generates such physiological changes as tachycardia, tachypnea, hypertension, hyperthermia, and heart rate variability (HRV), often accompanied by altered emotional states, deficient rest, and even aggressiveness. In the long term, animals may show deficiencies in their ability to deal with changes in the environment due to alterations in the functioning of their immune, nervous, and endocrinologic systems. In conclusion, pain and anxiety directly impact the homeostasis of organisms, so it is necessary to conduct objective evaluations of both sensations using behavioral scales, like the horse grimace scale, complemented by assessments of blood biomarkers to analyze their correlation with physiological parameters: Heart rate, respiratory rate, HRV, theparasympathetic tone activity index, lactate and glucose levels, and temperature. Additional tools - infrared thermography, for example - can also be used in these efforts to improve the quality of life and welfare of horses.
Collapse
Affiliation(s)
- I. Hernández-Avalos
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - D. Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - J. E. Mendoza-Flores
- Equine Hospital Faculty of Higher Studies Cuautitlán FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - A. Casas-Alvarado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - K. Flores-Padilla
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - A. E. Miranda-Cortes
- Department of Biological Sciences, Clinical Pharmacology and Veterinary Anesthesia, Faculty of Higher Studies Cuautitlán FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| | - F. Torres-Bernal
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - J. Gómez-Prado
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - P. Mora-Medina
- Department of Livestock Sciences, Animal Welfare, FESC, Universidad Nacional Autónoma de México, State of Mexico 54714, Mexico
| |
Collapse
|
25
|
Liu P, Sutherland M, Pollick FE. Incongruence effects in cross-modal emotional processing in autistic traits: An fMRI study. Neuropsychologia 2021; 161:107997. [PMID: 34425144 DOI: 10.1016/j.neuropsychologia.2021.107997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
In everyday life, emotional information is often conveyed by both the face and the voice. Consequently, information presented by one source can alter the way in which information from the other source is perceived, leading to emotional incongruence. Here, we used functional magnetic resonance imaging (fMRI) to examine neutral correlates of two different types of emotional incongruence in audiovisual processing, namely incongruence of emotion-valence and incongruence of emotion-presence. Participants were in two groups, one group with a low Autism Quotient score (LAQ) and one with a high score (HAQ). Each participant experienced emotional (happy, fearful) or neutral faces or voices while concurrently being exposed to emotional (happy, fearful) or neutral voices or faces. They were instructed to attend to either the visual or auditory track. The incongruence effect of emotion-valence was characterized by activation in a wide range of brain regions in both hemispheres involving the inferior frontal gyrus, cuneus, superior temporal gyrus, and middle frontal gyrus. The incongruence effect of emotion-presence was characterized by activation in a set of temporal and occipital regions in both hemispheres, including the middle occipital gyrus, middle temporal gyrus and inferior temporal gyrus. In addition, the present study identified greater recruitment of the right inferior parietal lobule in perceiving audio-visual emotional expressions in HAQ individuals, as compared to the LAQ individuals. Depending on face or voice-to-be attended, different patterns of emotional incongruence were found between the two groups. Specifically, the HAQ group tend to show more incidental processing to visual information whilst the LAQ group tend to show more incidental processing to auditory information during the crossmodal emotional incongruence decoding. These differences might be attributed to different attentional demands and different processing strategies between the two groups.
Collapse
Affiliation(s)
- Peipei Liu
- Department of Psychology, Sun Yat-Sen University, Guangzhou, 510006, China; School of Psychology, University of Glasgow, Glasgow, G12 8QB, UK; School of Education, University of Glasgow, Glasgow, G3 6NH, UK
| | | | - Frank E Pollick
- School of Psychology, University of Glasgow, Glasgow, G12 8QB, UK.
| |
Collapse
|
26
|
Kroczek LOH, Lingnau A, Schwind V, Wolff C, Mühlberger A. Angry facial expressions bias towards aversive actions. PLoS One 2021; 16:e0256912. [PMID: 34469494 PMCID: PMC8409676 DOI: 10.1371/journal.pone.0256912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
Social interaction requires fast and efficient processing of another person's intentions. In face-to-face interactions, aversive or appetitive actions typically co-occur with emotional expressions, allowing an observer to anticipate action intentions. In the present study, we investigated the influence of facial emotions on the processing of action intentions. Thirty-two participants were presented with video clips showing virtual agents displaying a facial emotion (angry vs. happy) while performing an action (punch vs. fist-bump) directed towards the observer. During each trial, video clips stopped at varying durations of the unfolding action, and participants had to recognize the presented action. Naturally, participants' recognition accuracy improved with increasing duration of the unfolding actions. Interestingly, while facial emotions did not influence accuracy, there was a significant influence on participants' action judgements. Participants were more likely to judge a presented action as a punch when agents showed an angry compared to a happy facial emotion. This effect was more pronounced in short video clips, showing only the beginning of an unfolding action, than in long video clips, showing near-complete actions. These results suggest that facial emotions influence anticipatory processing of action intentions allowing for fast and adaptive responses in social interactions.
Collapse
Affiliation(s)
- Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
- * E-mail:
| | - Angelika Lingnau
- Department of Psychology, Cognitive Neuroscience, University of Regensburg, Regensburg, Germany
| | - Valentin Schwind
- Human Computer Interaction, University of Applied Sciences in Frankfurt a. M, Frankfurt a. M., Germany
- Department of Media Informatics, University of Regensburg, Regensburg, Germany
| | - Christian Wolff
- Department of Media Informatics, University of Regensburg, Regensburg, Germany
| | - Andreas Mühlberger
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Chaari N, Akdağ HC, Rekik I. Estimation of gender-specific connectional brain templates using joint multi-view cortical morphological network integration. Brain Imaging Behav 2021; 15:2081-2100. [PMID: 33089469 PMCID: PMC8413178 DOI: 10.1007/s11682-020-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/02/2022]
Abstract
The estimation of a connectional brain template (CBT) integrating a population of brain networks while capturing shared and differential connectional patterns across individuals remains unexplored in gender fingerprinting. This paper presents the first study to estimate gender-specific CBTs using multi-view cortical morphological networks (CMNs) estimated from conventional T1-weighted magnetic resonance imaging (MRI). Specifically, each CMN view is derived from a specific cortical attribute (e.g. thickness), encoded in a network quantifying the dissimilarity in morphology between pairs of cortical brain regions. To this aim, we propose Multi-View Clustering and Fusion Network (MVCF-Net), a novel multi-view network fusion method, which can jointly identify consistent and differential clusters of multi-view datasets in order to capture simultaneously similar and distinct connectional traits of samples. Our MVCF-Net method estimates a representative and well-centered CBTs for male and female populations, independently, to eventually identify their fingerprinting regions of interest (ROIs) in four main steps. First, we perform multi-view network clustering model based on manifold optimization which groups CMNs into shared and differential clusters while preserving their alignment across views. Second, for each view, we linearly fuse CMNs belonging to each cluster, producing local CBTs. Third, for each cluster, we non-linearly integrate the local CBTs across views, producing a cluster-specific CBT. Finally, by linearly fusing the cluster-specific centers we estimate a final CBT of the input population. MVCF-Net produced the most centered and representative CBTs for male and female populations and identified the most discriminative ROIs marking gender differences. The most two gender-discriminative ROIs involved the lateral occipital cortex and pars opercularis in the left hemisphere and the middle temporal gyrus and lingual gyrus in the right hemisphere.
Collapse
Affiliation(s)
- Nada Chaari
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey
| | | | - Islem Rekik
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.
- Computing, School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
28
|
Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev 2021; 127:820-836. [PMID: 34052280 DOI: 10.1016/j.neubiorev.2021.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
Discrimination of facial expressions is an elementary function of the human brain. While the way emotions are represented in the brain has long been debated, common and specific neural representations in recognition of facial expressions are also complicated. To examine brain organizations and asymmetry on discrete and dimensional facial emotions, we conducted an activation likelihood estimation meta-analysis and meta-analytic connectivity modelling on 141 studies with a total of 3138 participants. We found consistent engagement of the amygdala and a common set of brain networks across discrete and dimensional emotions. The left-hemisphere dominance of the amygdala and AI across categories of facial expression, but category-specific lateralization of the vmPFC, suggesting a flexibly asymmetrical neural representations of facial expression recognition. These results converge to characteristic activation and connectivity patterns across discrete and dimensional emotion categories in recognition of facial expressions. Our findings provide the first quantitatively meta-analytic brain network-based evidence supportive of the psychological constructionist hypothesis in facial expression recognition.
Collapse
|
29
|
Bonassi A, Ghilardi T, Gabrieli G, Truzzi A, Doi H, Borelli JL, Lepri B, Shinohara K, Esposito G. The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample. Behav Sci (Basel) 2021; 11:bs11050059. [PMID: 33922502 PMCID: PMC8146535 DOI: 10.3390/bs11050059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Human faces convey a range of emotions and psychobiological signals that support social interactions. Multiple factors potentially mediate the facial expressions of emotions across cultures. To further determine the mechanisms underlying human emotion recognition in a complex and ecological environment, we hypothesized that both behavioral and neurophysiological measures would be influenced by stimuli ethnicity (Japanese, Caucasian) in the context of ambiguous emotional expressions (mid-happy, angry). We assessed the neurophysiological and behavioral responses of neurotypical Japanese adults (N = 27, 13 males) involved in a facial expression recognition task. Results uncover an interaction between universal and culturally-driven mechanisms. No differences in behavioral responses are found between male and female participants, male and female faces, and neutral Japanese versus Caucasian faces. However, Caucasian ambiguous emotional expressions which require more energy-consuming processing, as highlighted by neurophysiological results of the Arousal Index, were judged more accurately than Japanese ones. Additionally, a differential Frontal Asymmetry Index in neuronal activation, the signature of an approach versus avoidance response, is found in male participants according to the gender and emotional valence of the stimuli.
Collapse
Affiliation(s)
- Andrea Bonassi
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy;
- Mobile and Social Computing Lab, Fondazione Bruno Kessler, 38122 Trento, Italy;
| | - Tommaso Ghilardi
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands;
| | - Giulio Gabrieli
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore;
| | - Anna Truzzi
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland;
| | - Hirokazu Doi
- Medical Engineering Department, Kokushikan University, Tokyo 154-8515, Japan;
| | - Jessica L. Borelli
- Department of Psychological Science, University of California, Irvine, CA 92697-7085, USA;
| | - Bruno Lepri
- Mobile and Social Computing Lab, Fondazione Bruno Kessler, 38122 Trento, Italy;
| | - Kazuyuki Shinohara
- Department of Neurology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy;
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308222, Singapore
- Correspondence: or
| |
Collapse
|
30
|
Abstract
Cortical morphological networks (CMN), where each network models the relationship in morphology between different cortical brain regions quantified using a specific measurement (e.g., cortical thickness), have not been investigated with respect to gender differences in the human brain. Cortical processes are expected to involve complex interactions between different brain regions, univariate methods thus might overlook informative gender markers. Hence, by leveraging machine learning techniques with the potential to highlight multivariate interacting effects, we found that the most discriminative CMN connections between males and females were derived from the left hemisphere using the mean sulcal depth as measurement. However, for both left and right hemispheres, the first most discriminative morphological connection revealed across all cortical attributes involved (entorhinal cortex ↔ caudal anterior cingulate cortex) and (entorhinal cortex ↔ transverse temporal cortex) respectively, which gives us new insights into behavioral gender differences from an omics perspective and might explain why males and females learn differently.
Collapse
Affiliation(s)
- Ahmed Nebli
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.,Higher Institute of Applied Science and Technologies (ISSAT), University of Sousse, Sousse, Tunisia
| | - Islem Rekik
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey. .,Computing, School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
31
|
Halls D, Leslie M, Leppanen J, Sedgewick F, Surguladze S, Fonville L, Lang K, Simic M, Nicholls D, Williams S, Tchanturia K. The emotional face of anorexia nervosa: The neural correlates of emotional processing. Hum Brain Mapp 2021; 42:3077-3087. [PMID: 33739540 PMCID: PMC8193512 DOI: 10.1002/hbm.25417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Social-emotional processing difficulties have been reported in Anorexia Nervosa (AN), yet the neural correlates remain unclear. Previous neuroimaging work is sparse and has not used functional connectivity paradigms to more fully explore the neural correlates of emotional difficulties. Fifty-seven acutely unwell AN (AAN) women, 60 weight-recovered AN (WR) women and 69 healthy control (HC) women categorised the gender of a series of emotional faces while undergoing Functional Magnetic Resonance Imaging. The mean age of the AAN group was 19.40 (2.83), WR 18.37 (3.59) and HC 19.37 (3.36). A whole brain and psychophysical interaction connectivity approach was used. Parameter estimates from significant clusters were extracted and correlated with clinical symptoms. Whilst no group level differences in whole brain activation were demonstrated, significant group level functional connectivity differences emerged. WR participants showed increased connectivity between the bilateral occipital face area and the cingulate, precentral gyri, superior, middle, medial and inferior frontal gyri compared to AAN and HC when viewing happy valenced faces. Eating disorder symptoms and parameter estimates were positively correlated. Our findings characterise the neural basis of social-emotional processing in a large sample of individuals with AN.
Collapse
Affiliation(s)
- Daniel Halls
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Psychological Medicine, King's College London (KCL), London, UK
| | - Monica Leslie
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Psychological Medicine, King's College London (KCL), London, UK.,Centre for Contextual Behavioural Science, University of Chester, Chester, UK
| | - Jenni Leppanen
- Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Felicity Sedgewick
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Psychological Medicine, King's College London (KCL), London, UK.,School of Education, University of Bristol, Bristol, UK
| | - Simon Surguladze
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Psychological Medicine, King's College London (KCL), London, UK
| | - Leon Fonville
- Division of Brain Sciences, Imperial College London, London, UK
| | - Katie Lang
- King's College London (KCL), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Department of Psychology, London, UK
| | - Mima Simic
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Dasha Nicholls
- Division of Brain Sciences, Imperial College London, London, UK
| | - Steven Williams
- Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Kate Tchanturia
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Psychological Medicine, King's College London (KCL), London, UK.,South London and Maudsley NHS Foundation Trust, London, UK.,Psychology Department, Illia State University, Tbilisi, Georgia
| |
Collapse
|
32
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Nakajima R, Kinoshita M, Okita H, Liu Z, Nakada M. Preserving Right Pre-motor and Posterior Prefrontal Cortices Contribute to Maintaining Overall Basic Emotion. Front Hum Neurosci 2021; 15:612890. [PMID: 33664659 PMCID: PMC7920969 DOI: 10.3389/fnhum.2021.612890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Basic emotions such as happiness, sadness, and anger are universal, regardless of the human species, and are governed by specific brain regions. A recent report revealed that mentalizing, which is the ability to estimate other individuals’ emotional states via facial expressions, can be preserved with the help of awake surgery. However, it is still questionable whether we can maintain the ability to understand others’ emotions by preserving the positive mapping sites of intraoperative assessment. Here, we demonstrated the cortical regions related to basic emotions via awake surgery for patients with frontal glioma and investigated the usefulness of functional mapping in preserving basic emotion. Of the 56 consecutive patients with right cerebral hemispheric glioma who underwent awake surgery at our hospital, intraoperative assessment of basic emotion could be successfully performed in 22 patients with frontal glioma and were included in our study. During surgery, positive responses were found in 18 points in 12 patients (54.5%). Of these, 15 points from 11 patients were found at the cortical level, mainly the premotor and posterior part of the prefrontal cortices. Then, we focused on cortical 15 positive mappings with 40 stimulations and investigated the types of emotions that showed errors by every stimulation. There was no specific rule for the region-emotional type, which was beyond our expectations. In the postoperative acute phase, the test score of basic emotion declined in nine patients, and of these, it decreased under the cut-off value (Z-score ≤ −1.65) in three patients. Although the total score declined significantly just after surgery (p = 0.022), it recovered within 3 months postoperatively. Our study revealed that through direct electrical stimulation (DES), the premotor and posterior parts of the prefrontal cortices are related to various kinds of basic emotion, but not a single one. When the region with a positive mapping site is preserved during operation, basic emotion function might be maintained although it declines transiently after surgery.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Zhanwen Liu
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
34
|
Saarinen A, Keltikangas-Järvinen L, Jääskeläinen E, Huhtaniska S, Pudas J, Tovar-Perdomo S, Penttilä M, Miettunen J, Lieslehto J. Early Adversity and Emotion Processing From Faces: A Meta-analysis on Behavioral and Neurophysiological Responses. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:692-705. [PMID: 33486133 DOI: 10.1016/j.bpsc.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Although the link between early adversity (EA) and later-life psychiatric disorders is well established, it has yet to be elucidated whether EA is related to distortions in the processing of different facial expressions. We conducted a meta-analysis to investigate whether exposure to EA relates to distortions in responses to different facial emotions at three levels: 1) event-related potentials of the P100 and N170, 2) amygdala functional magnetic resonance imaging responses, and 3) accuracy rate or reaction time in behavioral data. METHODS The systematic literature search (PubMed and Web of Science) up to April 2020 resulted in 29 behavioral studies (n = 8555), 32 functional magnetic resonance imaging studies (n = 2771), and 3 electroencephalography studies (n = 197) for random-effect meta-analyses. RESULTS EA was related to heightened bilateral amygdala reactivity to sad faces (but not other facial emotions). Exposure to EA was related to faster reaction time but a normal accuracy rate in response to angry and sad faces. In response to fearful and happy faces, EA was related to a lower accuracy rate only in individuals with recent EA exposure. This effect was more pronounced in individuals with exposure to EA before (vs. after) the age of 3 years. These findings were independent of psychiatric diagnoses. Because of the low number of eligible electroencephalography studies, no conclusions could be reached regarding the effect of EA on the event-related potentials. CONCLUSIONS EA relates to alterations in behavioral and neurophysiological processing of facial emotions. Our study stresses the importance of assessing age at exposure and time since EA because these factors mediate some EA-related perturbations.
Collapse
Affiliation(s)
- Aino Saarinen
- Research Unit of Psychology, Department of Psychiatry, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Erika Jääskeläinen
- Center for Life Course Health Research, Department of Psychiatry, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Sanna Huhtaniska
- Center for Life Course Health Research, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Radiology, Vaasa Central Hospital, Vaasa, Finland
| | - Juho Pudas
- Research Unit of Clinical Neuroscience, Department of Psychiatry, University of Oulu, Oulu, Finland
| | - Santiago Tovar-Perdomo
- International Max Planck Research School for Translational Psychiatry, Munich, Germany; PRONIA Research Group, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Matti Penttilä
- Center for Life Course Health Research, Department of Psychiatry, University of Oulu, Oulu, Finland
| | - Jouko Miettunen
- Center for Life Course Health Research, Department of Psychiatry, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johannes Lieslehto
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland.
| |
Collapse
|
35
|
Bagnis A, Celeghin A, Diano M, Mendez CA, Spadaro G, Mosso CO, Avenanti A, Tamietto M. Functional neuroanatomy of racial categorization from visual perception: A meta-analytic study. Neuroimage 2020; 217:116939. [DOI: 10.1016/j.neuroimage.2020.116939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 01/30/2023] Open
|
36
|
Effects of Subthalamic Nucleus Deep Brain Stimulation on Facial Emotion Recognition in Parkinson's Disease: A Critical Literature Review. Behav Neurol 2020; 2020:4329297. [PMID: 32724481 PMCID: PMC7382738 DOI: 10.1155/2020/4329297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for Parkinson's disease (PD). Nevertheless, DBS has been associated with certain nonmotor, neuropsychiatric effects such as worsening of emotion recognition from facial expressions. In order to investigate facial emotion recognition (FER) after STN DBS, we conducted a literature search of the electronic databases MEDLINE and Web of science. In this review, we analyze studies assessing FER after STN DBS in PD patients and summarize the current knowledge of the effects of STN DBS on FER. The majority of studies, which had clinical and methodological heterogeneity, showed that FER is worsening after STN DBS in PD patients, particularly for negative emotions (sadness, fear, anger, and tendency for disgust). FER worsening after STN DBS can be attributed to the functional role of the STN in limbic circuits and the interference of STN stimulation with neural networks involved in FER, including the connections of the STN with the limbic part of the basal ganglia and pre- and frontal areas. These outcomes improve our understanding of the role of the STN in the integration of motor, cognitive, and emotional aspects of behaviour in the growing field of affective neuroscience. Further studies using standardized neuropsychological measures of FER assessment and including larger cohorts are needed, in order to draw definite conclusions about the effect of STN DBS on emotional recognition and its impact on patients' quality of life.
Collapse
|
37
|
Dotterer HL, Waller R, Hein TC, Pardon A, Mitchell C, Lopez-Duran N, Monk CS, Hyde LW. Clarifying the Link Between Amygdala Functioning During Emotion Processing and Antisocial Behaviors Versus Callous-Unemotional Traits Within a Population-Based Community Sample. Clin Psychol Sci 2020; 8:918-935. [PMID: 34367738 DOI: 10.1177/2167702620922829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prominent theories suggest that disruptions in amygdala reactivity and connectivity when processing emotional cues are key to the etiology of youth antisocial behavior (AB) and that these associations may be dependent on co-occurring levels of callous-unemotional (CU) traits. We examined the associations among AB, CU traits, and amygdala reactivity and functional connectivity while viewing emotional faces (fearful, angry, sad, happy) in 165 adolescents (46% male; 73.3% African American) from a representative, predominantly low-income community sample. AB was associated with increased amygdala activation in response to all emotions and was associated with greater amygdala reactivity to emotion only at low levels of CU traits. AB and CU traits were also associated with distinct patterns of amygdala connectivity. These findings demonstrate that AB-related deficits in amygdala functioning may extend across all emotions and highlight the need for further research on amygdala connectivity during emotion processing in relation to AB and CU traits within community populations.
Collapse
Affiliation(s)
| | - Rebecca Waller
- Department of Psychiatry, University of Michigan.,Department of Psychology, University of Pennsylvania
| | - Tyler C Hein
- Department of Psychology, University of Michigan
| | | | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan.,Population Studies Center of the Institute for Social Research, University of Michigan
| | | | - Christopher S Monk
- Department of Psychology, University of Michigan.,Department of Psychiatry, University of Michigan.,Survey Research Center of the Institute for Social Research, University of Michigan.,Center for Human Growth and Development, University of Michigan.,Neuroscience Graduate Program, University of Michigan
| | - Luke W Hyde
- Department of Psychology, University of Michigan.,Center for Human Growth and Development, University of Michigan
| |
Collapse
|
38
|
Moss RA. Psychotherapy in pain management: New viewpoints and treatment targets based on a brain theory. AIMS Neurosci 2020; 7:194-207. [PMID: 32995484 PMCID: PMC7519970 DOI: 10.3934/neuroscience.2020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/30/2020] [Indexed: 11/24/2022] Open
Abstract
The current paper provides an explanation of neurophysiological pain processing based the Dimensional Systems Model (DSM), a theory of higher cortical functions in which the cortical column is considered the binary digit for all cortical functions. Within the discussion, novel views on the roles of the basal ganglia, cerebellum, and cingulate cortex are presented. Additionally, an applied Clinical Biopsychological Model (CBM) based on the DSM will be discussed as related to psychological treatment with chronic pain patients. Three specific areas that have not been adequately addressed in the psychological treatment of chronic pain patients will be discussed based on the CBM. The treatment approaches have been effectively used in a clinical setting. Conclusions focus on a call for researchers and clinicians to fully evaluate the value of both the DSM and CBM.
Collapse
Affiliation(s)
- Robert A. Moss
- North Mississippi Regional Pain Consultants, 4381 Eason Blvd., Tupelo, MS 38801 USA
| |
Collapse
|
39
|
Sonkusare S, Nguyen VT, Moran R, van der Meer J, Ren Y, Koussis N, Dionisio S, Breakspear M, Guo C. Intracranial-EEG evidence for medial temporal pole driving amygdala activity induced by multi-modal emotional stimuli. Cortex 2020; 130:32-48. [PMID: 32640373 DOI: 10.1016/j.cortex.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The temporal pole (TP) is an associative cortical region required for complex cognitive functions such as social and emotional cognition. However, mapping the TP with functional magnetic resonance imaging is technically challenging and thus understanding its interaction with other key emotional circuitry, such as the amygdala, remains elusive. We exploited the unique advantages of stereo-electroencephalography (sEEG) to assess the responses of the TP and the amygdala during the perception of emotionally salient stimuli of pictures, music and movies. These stimuli consistently elicited high gamma responses (70-140 Hz) in both the TP and the amygdala, accompanied by functional connectivity in the low frequency range (2-12 Hz). Computational analyses suggested that the TP drove this effect in the theta frequency range, modulated by the emotional valence of the stimuli. Notably, cross-frequency analysis indicated the phase of theta oscillations in the TP modulated the amplitude of high gamma activity in the amygdala. These results were reproducible across three types of sensory inputs including naturalistic stimuli. Our results suggest that multimodal emotional stimuli induce a hierarchical influence of the TP over the amygdala.
Collapse
Affiliation(s)
- Saurabh Sonkusare
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Medicine, The University of Queensland, Brisbane, Australia.
| | - Vinh T Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Yudan Ren
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Information Science and Technology, Northwest University, Xi'an, China
| | - Nikitas Koussis
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sasha Dionisio
- Mater Advanced Epilepsy Unit, Mater Hospital, Brisbane, Australia
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.
| | - Christine Guo
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
40
|
Palagi E, Celeghin A, Tamietto M, Winkielman P, Norscia I. The neuroethology of spontaneous mimicry and emotional contagion in human and non-human animals. Neurosci Biobehav Rev 2020; 111:149-165. [DOI: 10.1016/j.neubiorev.2020.01.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/27/2019] [Accepted: 01/18/2020] [Indexed: 01/30/2023]
|
41
|
Santamaria L, Noreika V, Georgieva S, Clackson K, Wass S, Leong V. Emotional valence modulates the topology of the parent-infant inter-brain network. Neuroimage 2020; 207:116341. [DOI: 10.1016/j.neuroimage.2019.116341] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
|
42
|
Siep N, Tonnaer F, van de Ven V, Arntz A, Raine A, Cima M. Anger provocation increases limbic and decreases medial prefrontal cortex connectivity with the left amygdala in reactive aggressive violent offenders. Brain Imaging Behav 2020; 13:1311-1323. [PMID: 30145716 PMCID: PMC6732149 DOI: 10.1007/s11682-018-9945-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurobiological models propose reactive aggression as a failure in emotion regulation, caused by an imbalance between prefrontal cortical control and excessive bottom-up signals of negative affect by limbic regions, including the amygdala. Therefore, we hypothesize a negative correlation between PFC and amygdala activity (pre/post resting-state scans) in violent offenders. In this study resting-state fMRI was administered before and after an emotion (anger and happiness) provocation or engagement task within 18 male violent offenders scoring high on reactive aggression, and 18 male non-offender controls. Research in emotional pre/post resting-state showed altered connectivity by task performance. Therefore, bilateral amygdala region of interest (ROI) whole brain functional connectivity analysis tested dynamic change differences between pre and post resting-state connectivity between groups. Self-reported anger showed a positive significant relationship with medial prefrontal cortex activity in the pre-task scan and significantly increased during the emotion task in both the violent and control group. Imaging results showed a significant decrease in amygdala – medial prefrontal functional connectivity in the violent offenders and an increase in the non-offender controls after the emotion task. The opposite pattern was found for amygdala connectivity with the (para) limbic regions: violent offenders showed increased connectivity and non-offender controls showed decreased connectivity. The present results indicate that reactive aggression might stem from a focus on emotion processing, as indicated by an increase in limbic functional connectivity. The combination of a focus on emotion, along with a lack of medial prefrontal cortex regulation, has the potential to grow out of control e.g. in reactive aggression.
Collapse
Affiliation(s)
- Nicolette Siep
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Franca Tonnaer
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Research, Forensic Psychiatric Centre de Rooyse Wissel, Venray, The Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Arnoud Arntz
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Pennsylvania, PA USA
| | - Maaike Cima
- Department of Developmental Psychopathology, Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Conrisq Group, Juvenile Youth Institutions (YouthCarePLUS), BJ Brabant, OGH Zetten & Pactum, Zetten, The Netherlands
| |
Collapse
|
43
|
Sato W, Kochiyama T, Uono S, Yoshimura S, Kubota Y, Sawada R, Sakihama M, Toichi M. Atypical Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing in Autism Spectrum Disorder. Front Hum Neurosci 2019; 13:351. [PMID: 31680906 PMCID: PMC6813184 DOI: 10.3389/fnhum.2019.00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Atypical reciprocal social interactions involving emotional facial expressions are a core clinical feature of autism spectrum disorder (ASD). Previous functional magnetic resonance imaging (fMRI) studies have demonstrated that some social brain regions, including subcortical (e.g., amygdala) and neocortical regions (e.g., fusiform gyrus, FG) are less activated during the processing of facial expression stimuli in individuals with ASD. However, the functional networking patterns between the subcortical and cortical regions in processing emotional facial expressions remain unclear. We investigated this issue in ASD (n = 31) and typically developing (TD; n = 31) individuals using fMRI. Participants viewed dynamic facial expressions of anger and happiness and their corresponding mosaic images. Regional brain activity analysis revealed reduced activation of several social brain regions, including the amygdala, in the ASD group compared with the TD group in response to dynamic facial expressions vs. dynamic mosaics (p < 0.05, ηp2 = 0.19). Dynamic causal modeling (DCM) analyses were then used to compare models with forward, backward, and bi-directional effective connectivity between the amygdala and neocortical networks. The results revealed that: (1) the model with effective connectivity from the amygdala to the neocortex best fit the data of both groups; and (2) the same model best accounted for group differences. Coupling parameter (i.e., effective connectivity) analyses showed that the modulatory effects of dynamic facial processing were substantially weaker in the ASD group than in the TD group. These findings suggest that atypical modulation from the amygdala to the neocortex underlies impairment in social interaction involving dynamic facial expressions in individuals with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Japan
| | - Reiko Sawada
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Organization for Promoting Developmental Disorder Research, Kyoto, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Organization for Promoting Developmental Disorder Research, Kyoto, Japan
| |
Collapse
|
44
|
King JL, Kaimal G, Konopka L, Belkofer C, Strang CE. Practical Applications of Neuroscience-Informed Art Therapy. ART THERAPY 2019. [DOI: 10.1080/07421656.2019.1649549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Coundouris SP, Adams AG, Grainger SA, Henry JD. Social perceptual function in parkinson's disease: A meta-analysis. Neurosci Biobehav Rev 2019; 104:255-267. [PMID: 31336113 DOI: 10.1016/j.neubiorev.2019.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
Social perceptual impairment is a common presenting feature of Parkinson's disease (PD) that has the potential to contribute considerably to disease burden. The current study reports a meta-analytic integration of 79 studies which shows that, relative to controls, PD is associated with a moderate emotion recognition deficit (g = -0.57, K = 73), and that this deficit is robust and almost identical across facial and prosodic modalities. However, the magnitude of this impairment does appear to vary as a function of task and emotion type, with deficits generally greatest for identification tasks (g = -0.65, K = 54), and for negative relative to other basic emotions. With respect to clinical variables, dopaminergic medication, deep brain stimulation, and a predominant left side onset of motor symptoms are each associated with greater social perceptual difficulties. However, the magnitude of social perceptual impairment seen for the four atypical parkinsonian conditions is broadly comparable to that associated with PD. The theoretical and practical implications of these findings are discussed.
Collapse
Affiliation(s)
| | | | - Sarah A Grainger
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Julie D Henry
- School of Psychology, University of Queensland, Brisbane, Australia
| |
Collapse
|
46
|
Bagnis A, Celeghin A, Mosso CO, Tamietto M. Toward an integrative science of social vision in intergroup bias. Neurosci Biobehav Rev 2019; 102:318-326. [DOI: 10.1016/j.neubiorev.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/12/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022]
|
47
|
Abstract
Advances in the study of brain networks can be applied to our understanding of anxiety disorders (eg, generalized anxiety, obsessive-compulsive, and posttraumatic stress disorders) to enable us to create targeted treatments. These disorders have in common an inability to control thoughts, emotions, and behaviors related to a perceived threat. Here we review animal and human imaging studies that have revealed separate brain networks related to various negative emotions. Research has supported the idea that brain networks of attention serve to control emotion networks as well as the thoughts and behaviors related to them. We discuss how attention networks can modulate both positive and negative affect. Disorders arise from both abnormal activation of negative affect and a lack of attentional control. Training attention has been one way to foster improved attentional control. We review attention training studies as well as efforts to generally improve attention networks through stimulation in self-regulation.
Collapse
|
48
|
Functional neuroanatomy of blindsight revealed by activation likelihood estimation meta-analysis. Neuropsychologia 2019; 128:109-118. [DOI: 10.1016/j.neuropsychologia.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/03/2018] [Accepted: 06/08/2018] [Indexed: 11/21/2022]
|
49
|
Kang J, Derva D, Kwon DY, Wallraven C. Voluntary and spontaneous facial mimicry toward other's emotional expression in patients with Parkinson's disease. PLoS One 2019; 14:e0214957. [PMID: 30973893 PMCID: PMC6459535 DOI: 10.1371/journal.pone.0214957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/23/2019] [Indexed: 01/31/2023] Open
Abstract
A "masked face", that is, decreased facial expression is considered as one of the cardinal symptoms among individuals with Parkinson's disease (PD). Both spontaneous and voluntary mimicry toward others' emotional expressions is essential for both social communication and emotional sharing with others. Despite many studies showing impairments in facial movements in PD in general, it is still unclear whether voluntary, spontaneous, or both types of mimicry are affected and how the impairments affect the patients' quality of life. We investigated to verify whether impairments in facial movements happen for spontaneous as well as for voluntary expressions by quantitatively comparing muscle activations using surface electromyography. Dynamic facial expressions of Neutral, Anger, Joy, and Sad were presented during recordings in corrugator and zygomatic areas. In the spontaneous condition, participants were instructed to simply watch clips, whereas in the voluntary condition they were instructed to actively mimic the stimuli. We found that PD patients showed decreased mimicry in both spontaneous and voluntary conditions compared to a matched control group, although movement patterns in each emotion were similar in the two groups. Moreover, whereas the decrease in mimicry correlated with the decrease not in a health-related quality of life index (PDQ), it did so in a more subjective measurement of general quality of life index (SWB). The correlation between facial mimicry and subjective well-being index suggests that the 'masked face' symptom deteriorates patients' quality of life in a complex way affecting social and psychological aspects, which in turn may be linked to the increased depression risk among individuals with PD.
Collapse
Affiliation(s)
- June Kang
- Korea University, Department of Brain and Cognitive Engineering, Seoul, South Korea
- Empathy Research Institute, Seoul, South Korea
| | - Dilara Derva
- Korea University, Department of Brain and Cognitive Engineering, Seoul, South Korea
| | - Do-Young Kwon
- Korea University Ansan hospital, Department of Neurology, Ansan City, South Korea
| | - Christian Wallraven
- Korea University, Department of Brain and Cognitive Engineering, Seoul, South Korea
| |
Collapse
|
50
|
Emotion Recognition in Low-Spatial Frequencies Is Partly Preserved following Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9562935. [PMID: 30809551 PMCID: PMC6369464 DOI: 10.1155/2019/9562935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/13/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023]
Abstract
After a Traumatic Brain Injury (TBI), emotion recognition is typically impaired. This is commonly attributed to widespread multifocal damage in cortical areas involved in emotion processing as well as to Diffuse Axonal Injury (DAI). However, current models suggest that emotional recognition is subserved by a distributed network cantered on the amygdala, which involves both cortical and subcortical structures. While the cortical system is preferentially tuned to process high spatial frequencies, the subcortical networks are more sensitive to low-spatial frequencies. The aim of this study was to evaluate whether emotion perception from low-spatial frequencies underpinning the subcortical system is relatively preserved in TBI patients. We tested a group of 14 subjects with severe TBI and 20 matched healthy controls. Each participant was asked to recognize the emotion expressed by each stimulus that consisted of happy and fearful faces, filtered for their low and high spatial frequencies components. Results in TBI patients' performances showed that low-spatial frequency expressions were recognized with higher accuracy and faster reaction times when compared to high spatial frequency stimuli. On the contrary, healthy controls did not show any effect in the two conditions, neither for response accuracy nor for reaction times. The outcomes of this study indicate that emotion perception from low-spatial frequencies is relatively preserved in TBI, thereby suggesting spare of functioning in the subcortical system in mediating emotion recognition.
Collapse
|