1
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024; 47:3397-3408. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Szymczak M, Heidecke H, Żabińska M, Rukasz D, Wiśnicki K, Kujawa K, Kościelska-Kasprzak K, Krajewska M, Banasik M. Angiotensin II Type 2 Receptor Antibodies in Glomerular Diseases. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0017. [PMID: 39166802 DOI: 10.2478/aite-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
We evaluated the concentration of AT2R antibodies in 136 patients with primary and secondary glomerular diseases: membranous nephropathy (n = 18), focal and segmental glomerulosclerosis (n = 25), systemic lupus erythematosus (n = 17), immunoglobulin A (IgA) nephropathy (n = 14), mesangial (non-IgA) proliferative nephropathy (n = 6), c-ANCA vasculitis (n = 40), perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) vasculitis (n = 16), and compared it with a healthy control group (22 patients). Serum creatinine levels, proteinuria, serum albumin, and total protein concentrations were prospectively recorded for 2 years. The mean levels of AT2R antibodies in the lupus nephropathy group were significantly higher compared to the control group, 64.12 ± 26.95 units/mL and 9.72 ± 11.88 units/mL, respectively. There was no association between this level and the clinical course of the disease. The AT2R levels in other kinds of glomerular disease were no different from the control group. We found significant correlations between AT1R and AT2R in patients with membranous nephropathy (r = 0.66), IgA nephropathy (r = 0.61), and c-ANCA vasculitis (r = 0.63). Levels of AT2R antibodies in systemic lupus erythematosus are higher compared to other types of glomerulonephritis, vasculitis, and a healthy control group. Levels of AT2R antibodies correlate with AT1R antibodies in the groups of patients with membranous nephropathy, IgA nephropathy, and c-ANCA vasculitis. These kinds of AT2R antibodies have a stimulative effect on AT2R, but we have not found the influence of these antibodies on the clinical course of glomerular diseases.
Collapse
MESH Headings
- Humans
- Female
- Male
- Middle Aged
- Adult
- Receptor, Angiotensin, Type 2/immunology
- Receptor, Angiotensin, Type 2/metabolism
- Autoantibodies/blood
- Autoantibodies/immunology
- Aged
- Kidney Glomerulus/immunology
- Kidney Glomerulus/pathology
- Glomerulonephritis, Membranous/immunology
- Glomerulonephritis, Membranous/blood
- Glomerulonephritis/immunology
- Glomerulonephritis/blood
- Antibodies, Antineutrophil Cytoplasmic/immunology
- Antibodies, Antineutrophil Cytoplasmic/blood
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/blood
- Glomerulonephritis, IGA/immunology
- Glomerulonephritis, IGA/blood
- Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology
- Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood
- Lupus Nephritis/immunology
- Receptor, Angiotensin, Type 1/immunology
- Young Adult
- Kidney Diseases/immunology
Collapse
Affiliation(s)
- Maciej Szymczak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Marcelina Żabińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dagna Rukasz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kujawa
- Statistical Analysis Centre, Wroclaw Medical University, Wroclaw, Poland
| | | | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
3
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
4
|
Xu F, Zhu Y, Lu M, Qin L, Zhao D, Ren T. Effects of Hydroxy-Alpha-Sanshool on Intestinal Metabolism in Insulin-Resistant Mice. Foods 2022; 11:foods11142040. [PMID: 35885283 PMCID: PMC9322383 DOI: 10.3390/foods11142040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
To explore the hydroxy-alpha-sanshool (HAS) effects on the intestinal metabolites of insulin-resistant mice, the blank group (BG), model group (MG), and HAS dose group (DG) were designed. The insulin resistance (IR) model was induced through streptozotocin (STZ) combined with a high-fat and high-sugar diet. Based on the availability of the model, the HAS dose was given by gavage for 28 days. The determination of cecum and key serum indexes was made, including the contents of insulin (INS), triglycerides (TG), total cholesterol (TC), glycosylated serum protein (GSP), and glycosylated hemoglobin (GHb). The changes in gut microbiota and metabolites in cecal contents were detected by 16S rRNA gene amplicon sequencing and UPLC/HRMS technology, respectively. The results that the levels of GSP, GHb, TG, and TC were significantly increased; this was not the case for INS; or for the changes in the gut microbiota and metabolites in MG. However, the intervention of HAS effectively reversed these changes, for instance, it decreased levels of GSP, GHb, TG, TC, and alterations of metabolite composition for linoleic acid and tyrosine metabolism and recovered trends of declining species diversity and richness of the gut microbiota in MG. It was indicated that HAS alleviated IR by regulating the gut microbiota and metabolites and affecting lipid and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Fangyan Xu
- College of Brewing and Food Engineering, Guizhou University, Guiyang 550025, China; (F.X.); (M.L.); (L.Q.); (D.Z.)
| | - Yuping Zhu
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
| | - Mintao Lu
- College of Brewing and Food Engineering, Guizhou University, Guiyang 550025, China; (F.X.); (M.L.); (L.Q.); (D.Z.)
| | - Likang Qin
- College of Brewing and Food Engineering, Guizhou University, Guiyang 550025, China; (F.X.); (M.L.); (L.Q.); (D.Z.)
| | - Degang Zhao
- College of Brewing and Food Engineering, Guizhou University, Guiyang 550025, China; (F.X.); (M.L.); (L.Q.); (D.Z.)
- Guiyang Station for DUS Testing Center of New Plant Varieties of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China in Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Tingyuan Ren
- College of Brewing and Food Engineering, Guizhou University, Guiyang 550025, China; (F.X.); (M.L.); (L.Q.); (D.Z.)
- Guiyang Station for DUS Testing Center of New Plant Varieties of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China in Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Correspondence:
| |
Collapse
|
5
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
6
|
Fatima N, Patel SN, Hussain T. Angiotensin II Type 2 Receptor: A Target for Protection Against Hypertension, Metabolic Dysfunction, and Organ Remodeling. Hypertension 2021; 77:1845-1856. [PMID: 33840201 PMCID: PMC8115429 DOI: 10.1161/hypertensionaha.120.11941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin system is of vital significance not only in the maintenance of blood pressure but also because of its role in the pathophysiology of different organ systems in the body. Of the 2 Ang II (angiotensin II) receptors, the AT1R (Ang II type 1 receptor) has been extensively studied for its role in mediating the classical functions of Ang II, including vasoconstriction, stimulation of renal tubular sodium reabsorption, hormonal secretion, cell proliferation, inflammation, and oxidative stress. The other receptor, AT2R (Ang II type 2 receptor), is abundantly expressed in both immune and nonimmune cells in fetal tissue. However, its expression is increased under pathological conditions in adult tissues. The role of AT2R in counteracting AT1R function has been discussed in the past 2 decades. However, with the discovery of the nonpeptide agonist C21, the significance of AT2R in various pathologies such as obesity, hypertension, and kidney diseases have been examined. This review focuses on the most recent findings on the beneficial effects of AT2R by summarizing both gene knockout studies as well as pharmacological studies, specifically highlighting its importance in blood pressure regulation, obesity/metabolism, organ protection, and relevance in the treatment of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Naureen Fatima
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| | - Sanket N Patel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| | - Tahir Hussain
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| |
Collapse
|
7
|
Adlanmerini M, Fébrissy C, Zahreddine R, Vessières E, Buscato M, Solinhac R, Favre J, Anquetil T, Guihot AL, Boudou F, Raymond-Letron I, Chambon P, Gourdy P, Ohlsson C, Laurell H, Fontaine C, Metivier R, Le Romancer M, Henrion D, Arnal JF, Lenfant F. Mutation of Arginine 264 on ERα (Estrogen Receptor Alpha) Selectively Abrogates the Rapid Signaling of Estradiol in the Endothelium Without Altering Fertility. Arterioscler Thromb Vasc Biol 2020; 40:2143-2158. [PMID: 32640903 DOI: 10.1161/atvbaha.120.314159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17β-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.
Collapse
Affiliation(s)
- Marine Adlanmerini
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Chanaelle Fébrissy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Rana Zahreddine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Emilie Vessières
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Mélissa Buscato
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Romain Solinhac
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Julie Favre
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Typhaine Anquetil
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Anne-Laure Guihot
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Frederic Boudou
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Isabelle Raymond-Letron
- Institut National Polytechnique, École Nationale Vétérinaire de Toulouse, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Service 006 (I.R.-L.), Université de Toulouse, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Collège de France, Université de Strasbourg, Illkirch, France (P.C.)
| | - Pierre Gourdy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden (C.O.)
| | - Henrik Laurell
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Coralie Fontaine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Raphaël Metivier
- CNRS, Université de Rennes, IGDR (Institut de Génétique De Rennes) - UMR 6290, France (R.M.)
| | - Muriel Le Romancer
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France (M.L.R.)
| | - Daniel Henrion
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Jean-Francois Arnal
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Francoise Lenfant
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| |
Collapse
|
8
|
OIP5-AS1 Attenuates Microangiopathy in Diabetic Mouse by Regulating miR-200b/ACE2. World Neurosurg 2020; 139:e52-e60. [PMID: 32200014 DOI: 10.1016/j.wneu.2020.03.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate OIP5-AS1 effects on microangiopathy in diabetic mouse. METHODS The expression levels of OIP5-AS1, miR-200b, and ACE2 expression were measured by RT-qPCR. Western blot was conducted to detect The ACE2 and Ang-(1-7) expression. Luciferase reporter assays were used to identify the interaction between miR-200b and OIP5-AS1 or ACE2. Morris water maze test was performed for detecting cognitive function. RESULTS Our results indicated that diabetic mice exhibited much lower OIP5-AS1 expression in the hippocampus than normal mice. Diabetic mice of OIP5-AS1 KO group showed remarkably lower OIP5-AS1 expression in the hippocampus, longer escape latency and lower percentage of CD31+ cells in the hippocampusthan those of WT group. OIP5-AS1 knockdown directly up-regulated miR-200b expression and ACE2 was directly inhibited by miR-200b. Relative to normal mice, diabetic mice had markedly higher miR-200b expression and lower ACE2 expression in the hippocampus. Diabetic mice of OIP5-AS1 KO group were with obviously higher miR-200b expression and lower ACE2 expression in the hippocampus than those of WT group. Compared with diabetic mice of OIP5-AS1 KO group, those of WT group, OIP5-AS1 KO + miR-200b inhibitor group and OIP5-AS1 KO + ACE2 group had obviously shorter escape latency and higher percentage of CD31+ cells and more caspase-3 protein expression in the hippocampus. CONCLUSIONS OIP5-AS1 attenuated microangiopathy in diabetic mouse by regulating miR-200b/ACE2.
Collapse
|
9
|
Guivarc'h E, Favre J, Guihot AL, Vessières E, Grimaud L, Proux C, Rivron J, Barbelivien A, Fassot C, Briet M, Lenfant F, Fontaine C, Loufrani L, Arnal JF, Henrion D. Nuclear Activation Function 2 Estrogen Receptor α Attenuates Arterial and Renal Alterations Due to Aging and Hypertension in Female Mice. J Am Heart Assoc 2020; 9:e013895. [PMID: 32102616 PMCID: PMC7335584 DOI: 10.1161/jaha.119.013895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background The cardiovascular protective effects of estrogens in premenopausal women depend mainly on estrogen receptor α (ERα). ERα activates nuclear gene transcription regulation and membrane‐initiated signaling. The latter plays a key role in estrogen‐dependent activation of endothelial NO synthase. The goal of the present work was to determine the respective roles of the 2 ERα activities in endothelial function and cardiac and kidney damage in young and old female mice with hypertension, which is a major risk factor in postmenopausal women. Methods and Results Five‐ and 18‐month‐old female mice lacking either ERα (ERα−/−), the nuclear activating function AF2 of ERα (AF2°), or membrane‐located ERα (C451A) were treated with angiotensin II (0.5 mg/kg per day) for 1 month. Systolic blood pressure, left ventricle weight, vascular reactivity, and kidney function were then assessed. Angiotensin II increased systolic blood pressure, ventricle weight, and vascular contractility in ERα−/− and AF2° mice more than in wild‐type and C451A mice, independent of age. In both the aorta and mesenteric resistance arteries, angiotensin II and aging reduced endothelium‐dependent relaxation in all groups, but this effect was more pronounced in ERα−/− and AF2° than in the wild‐type and C451A mice. Kidney inflammation and oxidative stress, as well as blood urea and creatinine levels, were also more pronounced in old hypertensive ERα−/− and AF2° than in old hypertensive wild‐type and C451A mice. Conclusions The nuclear ERα‐AF2 dependent function attenuates angiotensin II–dependent hypertension and protects target organs in aging mice, whereas membrane ERα signaling does not seem to play a role.
Collapse
Affiliation(s)
- Emmanuel Guivarc'h
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Julie Favre
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Anne-Laure Guihot
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Emilie Vessières
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Linda Grimaud
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Coralyne Proux
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Jordan Rivron
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Agnès Barbelivien
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Céline Fassot
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Marie Briet
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France.,University Hospital of Angers Angers France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires Université de Toulouse 3 UMR INSERM 1048 Toulouse France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires Université de Toulouse 3 UMR INSERM 1048 Toulouse France
| | - Laurent Loufrani
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires Université de Toulouse 3 UMR INSERM 1048 Toulouse France
| | - Daniel Henrion
- MITOVASC Institute and CARFI Facility INSERM U1083 CNRS UMR 6015 Angers University Angers France.,University Hospital of Angers Angers France
| |
Collapse
|