1
|
Nomier Y, Asaad GF, Salama A, Shabana ME, Alshahrani S, Firoz Alam M, Anwer T, Sultana S, ur Rehman Z, Khalid A. Explicit mechanistic insights of Prosopis juliflora extract in streptozotocin-induced diabetic rats at the molecular level. Saudi Pharm J 2023; 31:101755. [PMID: 37727228 PMCID: PMC10505680 DOI: 10.1016/j.jsps.2023.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Ancient system of medicine showed the limelight on the use of herbal remedies and was found to possess minimal side effects and acceptable therapeutic outcomes. In this context, Prosopis juliflora gained importance in managing chronic diseases such as cancer, dermatological diseases, and chronic inflammatory disorders. Hence, P. juliflora was selected for further investigation associated with diabetes and inflammation. Aim The present study aimed to evaluate the anti-diabetic activity in chemically induced experimental rats and explore the nature of phytocomponents that may produce this activity. Methods Experimentally, diabetes was induced by a single administration of streptozotocin at 50 mg/kg intraperitoneally in Wistar rats. The animals were treated orally with P. juliflora at low and high doses (200 and 400 mg/kg) for 10 days. Blood collected from the retro-orbital plexus was analyzed for parameters like blood glucose levels, insulin, adiponectin, Keap1 and Nrf2. PPAR-γ, AMPK and GLUT 2 levels were analyzed in the pancreatic tissue. Besides, at the end of the experiment, animals were sacrificed, and the pancreatic tissue sections were subjected for histopathological, morphometrical and immune histochemical exploration. The phytochemical composition of the plant was investigated by GC-MS. Results The administration of P. juliflora higher dose showed a significant decrease (**p< 0.001) in blood glucose levels with a rise in adiponectin, PPARγ, Keap1, Nrf2, Glut 2, and AMPK significantly (**p< 0.001). The inflammatory cytokine TNFα was also estimated and was found to be lowered significantly (**p< 0.001) in test drug-treated animals. Furthermore, in the pancreatic tissue, the number of Islets, the area, and the number of β-cells were improved significantly with the sub-chronic treatment of P. juliflora extract. The structure and function of β-cells were also revamped. Conclusion The study results demonstrated a significant effect of P. juliflora on glycemic status, inflammatory condition, and the architecture of pancreatic tissue. In the identification and isolation process by GC MS, it was noticed that P. juliflora contained few phytochemical constituents from which it might be considered a promising drug for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine, and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Gihan F. Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Abeer Salama
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Marwa E. Shabana
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, Pharmacy College, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Zia ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114 45142, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box: 2424, Khartoum 11111, Sudan
| |
Collapse
|
2
|
Yang J, Gu T, Lu Y, Xu Y, Gan RY, Ng SB, Sun Q, Peng Y. Edible Osmanthus fragrans flowers: aroma and functional components, beneficial functions, and applications. Crit Rev Food Sci Nutr 2023; 64:10055-10068. [PMID: 37287270 DOI: 10.1080/10408398.2023.2220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osmanthus fragrans (O. fragrans) has been cultivated in China for over 2,500 years as a traditional fragrant plant. Recently, O. fragrans has drawn increasing attention due to its unique aroma and potential health benefits. In this review, the aroma and functional components of O. fragrans are summarized, and their biosynthetic mechanism is discussed. The beneficial functions and related molecular mechanism of O. fragrans extract are then highlighted. Finally, potential applications of O. fragrans are summarized, and future perspectives are proposed and discussed. According to the current research, O. fragrans extracts and components have great potential to be developed into value-added functional ingredients with preventive effects on certain chronic diseases. However, it is crucial to develop efficient, large-scale, and commercially viable extraction methods to obtain the bioactive components from O. fragrans. Furthermore, more clinical studies are highly needed to explore the beneficial functions of O. fragrans and guide its development into functional food products.
Collapse
Affiliation(s)
- Jiani Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | | | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
3
|
Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int J Mol Sci 2023; 24:ijms24032927. [PMID: 36769249 PMCID: PMC9917392 DOI: 10.3390/ijms24032927] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy is a tissue-specific neurovascular impairment of the retina in patients with both type 1 and type 2 diabetes. Several pathological factors are involved in the progressive impairment of the interdependence between cells that consist of the neurovascular units (NVUs). The advanced glycation end-products (AGEs) are one of the major pathological factors that cause the impairments of neurovascular coupling in diabetic retinopathy. Although the exact mechanisms for the toxicities of the AGEs in diabetic retinopathy have not been definitively determined, the AGE-receptor of the AGE (RAGE) axis, production of reactive oxygen species, inflammatory reactions, and the activation of the cell death pathways are associated with the impairment of the NVUs in diabetic retinopathy. More specifically, neuronal cell death is an irreversible change that is directly associated with vision reduction in diabetic patients. Thus, neuroprotective therapies must be established for diabetic retinopathy. The AGEs are one of the therapeutic targets to examine to ameliorate the pathological changes in the NVUs in diabetic retinopathy. This review focuses on the basic and pathological findings of AGE-induced neurovascular abnormalities and the potential therapeutic approaches, including the use of anti-glycated drugs to protect the AGE-induced impairments of the NVUs in diabetic retinopathy.
Collapse
|
4
|
Ma A, Zou F, Zhang R, Zhao X. The effects and underlying mechanisms of medicine and food homologous flowers on the prevention and treatment of related diseases. J Food Biochem 2022; 46:e14430. [PMID: 36165435 DOI: 10.1111/jfbc.14430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
The theory of medicine and food homology has a long history in China. Numerous traditional Chinese medicinal could be used as both medicine and food. Many flower medicinal materials also belong to the homology of medicine and food, such as Chrysanthemum morifolium, Lonicera japonica, Crocus sativus, and Lonicera macranthoides. They mainly contain flavonoids, organic acids, terpenoids, and other active ingredients, which have a variety of medicinal values, including anti-inflammatory, anti-tumor, and antioxidant. There are many formulations and functional foods containing these plants in Chinese medicine, which have a variety of nutritional and health effects on the human body. In this review, 10 widely used flowers were selected to review their pharmacological activities, prevention and treatment of related diseases and underlying mechanisms, and discussed the current limitations and future development prospects, hoping to provide references for the research on the development and utilization of natural medical flowers. PRACTICAL APPLICATIONS: The "homology of medicine and food" flowers have a wide range of uses and are of great research value. In this paper, we introduce 10 "homology of medicine and food" flowers. Their active ingredients, pharmacological activities, and treatments for related diseases are reviewed, and the limitations and development prospects of the "homology of medicine and food" flowers are discussed. It is hoped that this will contribute to the development of the food and pharmacological fields.
Collapse
Affiliation(s)
- Aijinxiu Ma
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Jiahehongsheng (Shenzhen) Health Industry Group, Shenzhen, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Yue X, Li G, Chen X, Li Z, Gu H, Chen H, Peng W. Nano Catalysis of Biofuels and Biochemicals from Cotinus coggygria Scop. Wood for Bio-Oil Raw Material. Polymers (Basel) 2022; 14:4610. [PMID: 36365604 PMCID: PMC9659074 DOI: 10.3390/polym14214610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 10/29/2023] Open
Abstract
Cotinus coggygria Scop. as a precious landscape shrub and a good afforestation species that is used in the pharmaceutical industry. In this paper, TG-FTIR, TG-DTG, and Py-GC/MS were used to study the biomaterials of Cotinus coggygria used as biofuels and biochemicals under the catalysis of nano-Mo/Fe2O3. The wood powder was extracted using a methanol/benzene solution, and the extract was analyzed by FTIR and GC-MS. The results showed that the pyrolysis products of Cotinus coggygria wood were rich in phenols, alcohols, and biofuels. The metal nano-Mo powder played a catalytic role in the interpretation of the gas in the species, where it accelerates gas products. Metal nano-Fe2O3 has a certain flame-retardant effect on the burning process of Cotinus coggygria wood, and the residual amount of pyrolysis is greater. The contents of the extract Formamide, 1-Hexanol, Levodopa, and 9,12-Octadecadienoic acid (Z,Z)- are not only widely used industrially but also play an important role in medicine. Cotinus coggygria is therefore an excellent biomaterial for biofuels and biochemicals.
Collapse
Affiliation(s)
- Xiaochen Yue
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Guanyan Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangmeng Chen
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaolin Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiling Chen
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Lee KH, Whang WK. Inhibitory Effects of Bioassay-Guided Isolation of Anti-Glycation Components from Taraxacum coreanum and Simultaneous Quantification. Molecules 2018; 23:molecules23092148. [PMID: 30150550 PMCID: PMC6225126 DOI: 10.3390/molecules23092148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the formation of advanced glycation end products (AGEs) is an attractive strategy in diabetes treatment. Taraxacum coreanum extracts were suggested to have antidiabetic effects. However, studies on the components of T. coreanum are lacking, and there is no report on the inhibitory effects of T. coreanum on the formation of AGEs. Therefore, T. coreanum extracts and fractions were tested for their inhibitory effects on α-glucosidase and AGEs formation in two systems (bovine serum albumin (BSA)⁻glucose and BSA⁻methylglyoxal (MGO)). Bioassay-guided isolation of compounds from T. coreanum led to six flavones (1⁻6) and four hydroxycinnamic acid derivatives (7⁻11). Compound 11 exhibited the highest inhibitory activity against α-glucosidase and AGEs formation and had the highest content in T. coreanum extract. All compounds except compound 9 showed a stronger inhibition than the positive control in the BSA-glucose and BSA-MGO system. In addition, T. coreanum showed a higher content of bioactive compounds and stronger inhibition of AGE formation and α-glucosidase activity than T. officinale. Our study demonstrated the preventive and therapeutic efficacy of T. coreanum and its potential use as a cost-effective phytopharmaceutical in complementary therapy against type-2 diabetes and its complications.
Collapse
Affiliation(s)
- Kang Hee Lee
- Pharmaceutical Botany Laboratory, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Wan Kyunn Whang
- Pharmaceutical Botany Laboratory, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
| |
Collapse
|
7
|
Characterization of α-Glucosidase Inhibitor/Cyclodextrin Complex Prepared by Freeze-Drying. JOURNAL OF PHARMACEUTICS 2018; 2018:3202719. [PMID: 29854557 PMCID: PMC5964620 DOI: 10.1155/2018/3202719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/01/2018] [Indexed: 11/17/2022]
Abstract
Miglitol (MT) is an α-glucosidase inhibitor with a postmeal blood glucose level lowering effect that is used to treat type 2 diabetes. In addition, α-cyclodextrin (αCD) has been reported to inhibit increases in postmeal blood glucose. The aim of this study was to prepare a freeze-dried product (FD) composed of MT and αCD or γCD (molar ratio of MT/αCD = 1/1, MT/γCD = 1/1) and to evaluate the physicochemical properties and biological activity of the FD. The PXRD profile of FD exhibited a halo pattern, and characteristic peaks derived from MT, αCD, and γCD were not observed. The TG-DTA results for FD indicated an increased weight loss temperature and the absence of an endothermic peak for MT. The NIR absorption spectrum measurement suggested an intermolecular interaction between MT and αCD or γCD in the FD. 1H-1H NOESY NMR spectroscopy (D2O) revealed an intermolecular interaction in the FD. The results of the α-glucosidase activity inhibition test and the α-amylase activity inhibition test indicated that the FD exhibited the same inhibition rate as MT alone and the effects of MT were not altered by the freeze-drying method.
Collapse
|
8
|
Antilipotoxicity Activity of Osmanthus fragrans and Chrysanthemum morifolium Flower Extracts in Hepatocytes and Renal Glomerular Mesangial Cells. Mediators Inflamm 2017; 2017:4856095. [PMID: 29358848 PMCID: PMC5735667 DOI: 10.1155/2017/4856095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
The excess influx of free fatty acids (FFAs) into nonadipose tissues, such as those of liver and kidney, induces lipotoxicity leading to hepatic steatosis and renal dysfunction. The aim of this study was to investigate the protective effects of methanolic flower extracts of Osmanthus fragrans (OF) and Chrysanthemum morifolium (CM) against FFA-induced lipotoxicity in hepatocytes (human HepG2 cells) and renal glomerular mesangial cells (mouse SV40-Mes13 cells). The results showed that OF and CM significantly suppressed FFA-induced intracellular triacylglycerol accumulation via partially inhibiting the gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and glycerol-3-phosphate acyltransferase (GPAT) in HepG2 cells. Both extracts inhibited reactive oxygen species (ROS) generation by FFA-stimulated HepG2 cells. OF and CM also suppressed the mRNA expression of interleukin- (IL-) 1β, IL-6, IL-8, tumor necrosis factor- (TNF-) α, and transforming growth factor- (TGF-) β by HepG2 cells treated with conditioned medium derived from lipopolysaccharide-treated THP-1 monocytes. Furthermore, OF and CM effectively inhibited oleate-induced cellular lipid accumulation, TGF-β secretion, and overexpression of fibronectin in mesangial cells. In conclusion, OF and CM possess hepatoprotective activity by inhibiting hepatic fat load and inflammation and renal protection by preventing FFA-induced mesangial extracellular matrix formation.
Collapse
|