1
|
Hackett J, Nadkarni V, Singh RS, Carthy CL, Antigua S, Hall BS, Rajadhyaksha AM. Repeat investigation during social preference behavior is suppressed in male mice with prefrontal cortex cacna1c (Ca v1.2)-deficiency through the dysregulation of neural dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546368. [PMID: 37425963 PMCID: PMC10326975 DOI: 10.1101/2023.06.24.546368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Impairments in social behavior are observed in a range of neuropsychiatric disorders and several lines of evidence have demonstrated that dysfunction of the prefrontal cortex (PFC) plays a central role in social deficits. We have previously shown that loss of neuropsychiatric risk gene Cacna1c that codes for the Cav1.2 isoform of L-type calcium channels (LTCCs) in the PFC result in impaired sociability as tested using the three-chamber social approach test. In this study we aimed to further characterize the nature of the social deficit associated with a reduction in PFC Cav1.2 channels (Cav1.2PFCKO mice) by testing male mice in a range of social and nonsocial tests while examining PFC neural activity using in vivo GCaMP6s fiber photometry. We found that during the first investigation of the social and non-social stimulus in the three-chamber test, both Cav1.2PFCKO male mice and Cav1.2PFCGFP controls spent significantly more time with the social stimulus compared to a non-social object. In contrast, during repeat investigations while Cav1.2PFCWT mice continued to spend more time with the social stimulus, Cav1.2PFCKO mice spent equal amount of time with both social and non-social stimuli. Neural activity recordings paralleled social behavior with increase in PFC population activity in Cav1.2PFCWT mice during first and repeat investigations, which was predictive of social preference behavior. In Cav1.2PFCKO mice, there was an increase in PFC activity during first social investigation but not during repeat investigations. These behavioral and neural differences were not observed during a reciprocal social interaction test nor during a forced alternation novelty test. To evaluate a potential deficit in reward-related processes, we tested mice in a three-chamber test wherein the social stimulus was replaced by food. Behavioral testing revealed that both Cav1.2PFCWT and Cav1.2PFCKO mice showed a preference for food over object with significantly greater preference during repeat investigation. Interestingly, there was no increase in PFC activity when Cav1.2PFCWT or Cav1.2PFCKO first investigated the food however activity significantly increased in Cav1.2PFCWT mice during repeat investigations of the food. This was not observed in Cav1.2PFCKO mice. In summary, a reduction in Cav1.2 channels in the PFC suppresses the development of a sustained social preference in mice that is associated with lack of PFC neuronal population activity that may be related to deficits in social reward.
Collapse
Affiliation(s)
- Jonathan Hackett
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | - Viraj Nadkarni
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | - Ronak S. Singh
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | - Camille L. Carthy
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | - Susan Antigua
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
| | - Baila S. Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
- Neuroscience Graduate Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065
| | - Anjali M. Rajadhyaksha
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
- Neuroscience Graduate Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
2
|
Appetitive 50 kHz calls in a pavlovian conditioned approach task in Cacna1c haploinsufficient rats. Physiol Behav 2022; 250:113795. [PMID: 35351494 DOI: 10.1016/j.physbeh.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that rats emit high-frequency 50 kHz ultrasonic vocalizations (USV) during sign- and goal-tracking in a common Pavlovian conditioned approach task. Such 50 kHz calls are probably related to positive affect and are associated with meso-limbic dopamine function. In humans, the CACNA1C gene, encoding for the α1C subunit of the L-type voltage-gated calcium channel CaV1.2, is implicated in several mental disorders, including mood disorders associated with altered dopamine signaling. In the present study, we investigated sign- and goal-tracking behavior and the emission of 50 kHz USV in Cacna1c haploinsufficent rats in a task where food pellet delivery is signaled by an appearance of an otherwise inoperable lever. Over the course of this Pavlovian training, these rats not only increased their approach to the reward site, but also their rates of pressing the inoperable lever. During subsequent extinction tests, where reward delivery was omitted, extinction patterns differed between reward site (i.e. magazine entries) and lever, since magazine entries quickly declined whereas behavior towards the lever transiently increased. Based on established criteria to define sign- or goal-tracking individuals, no CACNA1C rat met a sign-tracking criterion, since around 42% of rats tested where goal-trackers and the other 58% fell into an intermediate range. Regarding USV, we found that the CACNA1C rats emitted 50 kHz calls with a clear subject-dependent pattern; also, most of them were of a flat subtype and occurred mainly during initial habituation phases without cues or rewards. Compared, to previously published wildtype controls, Cacna1c haploinsufficent rats displayed reduced numbers of appetitive 50 kHz calls. Moreover, similar to wildtype littermate controls, 50 kHz call emission in Cacna1c haploinsufficent rats was intra-individually stable over training days and was negatively associated with goal-tracking. Together, these findings provide evidence in support of 50 kHz calls as trait marker. The finding that Cacna1c haploinsufficent rats show reductions of 50 kHz calls accompanied with more goal-tracking, is consistent with the assumption of altered dopamine signaling in these rats, a finding which supports their applicability in models of mental disorders.
Collapse
|
3
|
Chen M, Jiang Q, Zhang L. CACNA1C Gene rs1006737 Polymorphism Affects Cognitive Performance in Chinese Han Schizophrenia. Neuropsychiatr Dis Treat 2022; 18:1697-1704. [PMID: 35975220 PMCID: PMC9376000 DOI: 10.2147/ndt.s373492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the relationship between L-type calcium channel α1C subunit (CACNA1C) gene polymorphism and schizophrenia (SCZ) and cognitive function in the Han nationality, the main nationality in China. METHODS Genotyping of CACNA1C SNP (rs1006737, rs1024582, rs2007044) in SCZ patients (n = 312) and healthy controls (n = 305) was performed. Cognitive function was assessed in the SCZ patients using Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Then, the correlation between SNP and SCZ, as well as cognition, was calculated. RESULTS There was no significant difference in allele frequency and genotype distribution frequency of the three polymorphic loci of CACNA1C gene between the two groups. In cognitive tests, delayed memory scores in RBANS were significantly lower in rs1006737 "A" risk allele carriers than in non-carriers. CONCLUSION There is no significant difference in allele and genotype frequency of CANCA1C Gene rs1006737, rs1024582 and rs2007044 between the schizophrenia patients and healthy controls. The cognitive function of schizophrenia patients is correlated with the rs1006737, and the delayed memory of "A" allele carriers is significantly reduced.
Collapse
Affiliation(s)
- Mengyi Chen
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qi Jiang
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Xu X, Xiang H, Qiu Y, Teng Z, Li S, Huang J, Chen J, Tang H, Jin K, Jiang L, Wang B, Zhao Z, Wu H. Sex differences in cognitive function of first-diagnosed and drug-naïve patients with bipolar disorder. J Affect Disord 2021; 295:431-437. [PMID: 34507223 DOI: 10.1016/j.jad.2021.08.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe mental illness that affects more than 1% the world's population with high recurrence rates and a series of comorbidities. Cognitive dysfunction is an endophenotype of BD, but sex influences in cognitive impairment remains unclear. METHOD We evaluated the performance of 139 patients with first-diagnosed, drug-naïve BD (44 males and 95 females) and 92 healthy controls (24 males and 68 females) using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) scale and the Stroop color-word test. RESULT Immediate memory, visuospatial/constructional ability, language, attention, delayed memory, total RBANS score, and Stroop color-word scores were significantly lower in patients with first-diagnosed, drug-naïve BD than healthy participants. Thus, male patients had worse attention and delayed memory scores compared with female patients with BD. Importantly, a worse performance in visuospatial/constructional ability was negatively associated with the Young Mania Rating Scale score in male patients only. CONCLUSION Male patients with first-diagnosed, drug-naïve bipolar disorder had worse cognitive dysfunction than female patients in attention and delayed memory. Cognitive deficits were correlated with mania severity only in male patients. These findings reveal the sexual dimorphism in the cognitive deficits of early BD patients with mild and moderated symptoms for further pathophysiological exploration.
Collapse
Affiliation(s)
- Xuelei Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hui Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Qiu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Sujuan Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Kun Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lili Jiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ziru Zhao
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Haishan Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Cocaine- and stress-primed reinstatement of drug-associated memories elicit differential behavioral and frontostriatal circuit activity patterns via recruitment of L-type Ca 2+ channels. Mol Psychiatry 2020; 25:2373-2391. [PMID: 31501511 PMCID: PMC7927165 DOI: 10.1038/s41380-019-0513-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023]
Abstract
Cocaine-associated memories are critical drivers of relapse in cocaine-dependent individuals that can be evoked by exposure to cocaine or stress. Whether these environmental stimuli recruit similar molecular and circuit-level mechanisms to promote relapse remains largely unknown. Here, using cocaine- and stress-primed reinstatement of cocaine conditioned place preference to model drug-associated memories, we find that cocaine drives reinstatement by increasing the duration that mice spend in the previously cocaine-paired context whereas stress increases the number of entries into this context. Importantly, both forms of reinstatement require Cav1.2 L-type Ca2+ channels (LTCCs) in cells of the prelimbic cortex that project to the nucleus accumbens core (PrL→NAcC). Utilizing fiber photometry to measure circuit activity in vivo in conjunction with the LTCC blocker, isradipine, we find that LTCCs drive differential recruitment of the PrL→ NAcC pathway during cocaine- and stress-primed reinstatement. While cocaine selectively activates PrL→NAcC cells prior to entry into the cocaine-paired chamber, a measure that is predictive of duration in that chamber, stress increases persistent activity of this projection, which correlates with entries into the cocaine-paired chamber. Using projection-specific chemogenetic manipulations, we show that PrL→NAcC activity is required for both cocaine- and stress-primed reinstatement, and that activation of this projection in Cav1.2-deficient mice restores reinstatement. These data indicate that LTCCs are a common mediator of cocaine- and stress-primed reinstatement. However, they engage different patterns of behavior and PrL→NAcC projection activity depending on the environmental stimuli. These findings establish a framework to further study how different environmental experiences can drive relapse, and supports further exploration of isradipine, an FDA-approved LTCC blocker, as a potential therapeutic for the prevention of relapse in cocaine-dependent individuals.
Collapse
|
6
|
Contribution of D1R-expressing neurons of the dorsal dentate gyrus and Ca v1.2 channels in extinction of cocaine conditioned place preference. Neuropsychopharmacology 2020; 45:1506-1517. [PMID: 31905369 PMCID: PMC7360569 DOI: 10.1038/s41386-019-0597-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Cocaine-associated contextual cues can trigger relapse behavior by recruiting the hippocampus. Extinction of cocaine-associated contextual memories can reduce cocaine-seeking behavior, however the molecular mechanisms within the hippocampus that underlie contextual extinction behavior and subsequent reinstatement remain poorly understood. Here, we extend our previous findings for a role of Cav1.2 L-type Ca2+ channels in dopamine 1 receptor (D1R)-expressing cells in extinction of cocaine conditioned place preference (CPP) in adult male mice. We report that attenuated cocaine CPP extinction in mice lacking Cav1.2 channels in D1R-expressing cells (D1cre, Cav1.2fl/fl) can be rescued through chemogenetic activation of D1R-expressing cells within the dorsal dentate gyrus (dDG), but not the dorsal CA1 (dCA1). This is supported by the finding that Cav1.2 channels are required in excitatory cells of the dDG, but not in the dCA1, for cocaine CPP extinction. Examination of the role of S1928 phosphorylation of Cav1.2, a protein kinase A (PKA) site using S1928A Cav1.2 phosphomutant mice revealed no extinction deficit, likely due to homeostatic scaling up of extinction-dependent S845 GluA1 phosphorylation in the dDG. However, phosphomutant mice failed to show cocaine-primed reinstatement which can be reversed by chemogenetic manipulation of excitatory cells in the dDG during extinction training. These findings outline an essential role for the interaction between D1R, Cav1.2, and GluA1 signaling in the dDG for extinction of cocaine-associated contextual memories.
Collapse
|
7
|
Harrison PJ, Geddes JR, Tunbridge EM. The Emerging Neurobiology of Bipolar Disorder. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2020; 17:284-293. [PMID: 32015720 DOI: 10.1176/appi.focus.17309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
(Reprinted with permission from Trends in Neurosciences, January 2018, Vol. 41, No. 1 ).
Collapse
|
8
|
Hamidian S, Pourshahbaz A, Bozorgmehr A, Ananloo ES, Dolatshahi B, Ohadi M. How obsessive-compulsive and bipolar disorders meet each other? An integrative gene-based enrichment approach. Ann Gen Psychiatry 2020; 19:31. [PMID: 32411272 PMCID: PMC7211339 DOI: 10.1186/s12991-020-00280-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The novel approaches to psychiatric classification assume that disorders, contrary to what was previously thought, are not completely separate phenomena. In this regard, in addition to symptom-based criteria, disturbances are also considered on the basis of lower level components. With this viewpoint, identifying common biochemical markers would be beneficial in adopting a comprehensive strategy for prevention, diagnosis and treatment. MAIN BODY One of the problematic areas in clinical settings is the coexistence of both obsessive-compulsive disorder (OCD) and bipolar disorder (BD) that is challenging and difficult to manage. In this study, using a system biologic approach we aimed to assess the interconnectedness of OCD and BD at different levels. Gene Set Enrichment Analysis (GSEA) method was used to identify the shared biological network between the two disorders. The results of the analysis revealed 34 common genes between the two disorders, the most important of which were CACNA1C, GRIA1, DRD2, NOS1, SLC18A1, HTR2A and DRD1. Dopaminergic synapse and cAMP signaling pathway as the pathways, dopamine binding and dopamine neurotransmitter receptor activity as the molecular functions, dendrite and axon part as the cellular component and cortex and striatum as the brain regions were the most significant commonalities. SHORT CONCLUSION The results of this study highlight the role of multiple systems, especially the dopaminergic system in linking OCD and BD. The results can be used to estimate the disease course, prognosis, and treatment choice, particularly in the cases of comorbidity. Such perspectives, going beyond symptomatic level, help to identify common endophenotypes between the disorders and provide diagnostic and therapeutic approaches based on biological in addition to the symptomatic level.
Collapse
Affiliation(s)
- Sajedeh Hamidian
- 1Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| | - Abbas Pourshahbaz
- 1Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| | - Ali Bozorgmehr
- 2Iran Psychiatric Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Esmaeil Shahsavand Ananloo
- 3Department of Psychosomatic, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Behrooz Dolatshahi
- 1Department of Clinical Psychology, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| | - Mina Ohadi
- 4Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences (USWR), Tehran, Iran
| |
Collapse
|
9
|
Sykes L, Haddon J, Lancaster TM, Sykes A, Azzouni K, Ihssen N, Moon AL, Lin TCE, Linden DE, Owen MJ, O’Donovan MC, Humby T, Wilkinson LS, Thomas KL, Hall J. Genetic Variation in the Psychiatric Risk Gene CACNA1C Modulates Reversal Learning Across Species. Schizophr Bull 2019; 45:1024-1032. [PMID: 30304534 PMCID: PMC6737471 DOI: 10.1093/schbul/sby146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic variation in CACNA1C, which encodes the alpha-1 subunit of Cav1.2 L-type voltage-gated calcium channels (VGCCs), has been strongly linked to risk for psychiatric disorders including schizophrenia and bipolar disorder. How genetic variation in CACNA1C contributes to risk for these disorders is however not fully known. Both schizophrenia and bipolar disorder are associated with impairments in reversal learning (RL), which may contribute to symptoms seen in these conditions. We used a translational RL paradigm to investigate whether genetic variation in CACNA1C affects RL in both humans and transgenic rats. Associated changes in gene expression were explored using in situ hybridization and quantitative PCR in rats and the BRAINEAC online human database. Risk-associated genetic variation in CACNA1C in healthy human participants was associated with impairments in RL. Consistent with this finding, rats bearing a heterozygous deletion of Cacna1c were impaired in an analogous touchscreen RL task. We investigated the possible molecular mechanism underlying this impairment and found that Cacna1c +/- rats show decreased expression of Bdnf in prefrontal cortex. Examination of BRAINEAC data showed that human risk-associated genetic variation in CACNA1C is also associated with altered expression of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex in humans. These results indicate that genetic variation in CACNA1C may contribute to risk for schizophrenia and bipolar disorder by impacting behavioral flexibility, potentially through altered regulation of BDNF expression in the prefrontal cortex. Tests of RL may be useful for translational studies and in the development of therapies targeting VGCCs.
Collapse
Affiliation(s)
- Lucy Sykes
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | | - Thomas M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Cardiff, UK
| | - Arabella Sykes
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Karima Azzouni
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Niklas Ihssen
- Department of Psychology, Durham University, Durham, UK
| | - Anna L Moon
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Tzu-Ching E Lin
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O’Donovan
- School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK,To whom correspondence should be addressed; Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK; tel: 02920-688-342, fax: +44 2920 687 068, e-mail:
| |
Collapse
|
10
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
11
|
Braun MD, Kisko TM, Vecchia DD, Andreatini R, Schwarting RKW, Wöhr M. Sex-specific effects of Cacna1c haploinsufficiency on object recognition, spatial memory, and reversal learning capabilities in rats. Neurobiol Learn Mem 2018; 155:543-555. [PMID: 29800644 DOI: 10.1016/j.nlm.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The CACNA1C gene is strongly implicated in the etiology of multiple major neuropsychiatric disorders, such as bipolar disorder, major depression, and schizophrenia, with cognitive deficits being a common feature. It is unclear, however, by which mechanisms CACNA1C variants advance the risk of developing neuropsychiatric disorders. This study set out to investigate cognitive functioning in a newly developed genetic Cacna1c rat model. Specifically, spatial and reversal learning, as well as object recognition memory were assessed in heterozygous Cacna1c+/- rats and compared to wildtype Cacna1c+/+ littermate controls in both sexes. Our results show that both Cacna1c+/+ and Cacna1c+/- animals were able to learn the rewarded arm configuration of a radial maze over the course of seven days. Both groups also showed reversal learning patterns indicative of intact abilities. In females, genotype differences were evident in the initial spatial learning phase, with Cacna1c+/- females showing hypo-activity and fewer mixed errors. In males, a difference was found during probe trials for both learning phases, with Cacna1c+/- rats displaying better distinction between previously baited and non-baited arms; and regarding cognitive flexibility in favor of the Cacna1c+/+ animals. All experimental groups proved to be sensitive to reward magnitude and fully able to distinguish between novel and familiar objects in the novel object recognition task. Taken together, these results indicate that Cacna1c haploinsufficiency has a minor, but positive impact on (spatial) memory functions in rats.
Collapse
Affiliation(s)
- Moria D Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Débora Dalla Vecchia
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| |
Collapse
|
12
|
Harrison PJ, Geddes JR, Tunbridge EM. The Emerging Neurobiology of Bipolar Disorder. Trends Neurosci 2018; 41:18-30. [PMID: 29169634 PMCID: PMC5755726 DOI: 10.1016/j.tins.2017.10.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a leading cause of global disability. Its biological basis is unknown, and its treatment unsatisfactory. Here, we review two recent areas of progress. First, the discovery of risk genes and their implications, with a focus on voltage-gated calcium channels as part of the disease process and as a drug target. Second, facilitated by new technologies, it is increasingly apparent that the bipolar phenotype is more complex and nuanced than simply one of recurring manic and depressive episodes. One such feature is persistent mood instability, and efforts are underway to understand its mechanisms and its therapeutic potential. BD illustrates how psychiatry is being transformed by contemporary neuroscience, genomics, and digital approaches.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - John R Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
13
|
Kabir ZD, Martínez-Rivera A, Rajadhyaksha AM. From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms. Neurotherapeutics 2017; 14:588-613. [PMID: 28497380 PMCID: PMC5509628 DOI: 10.1007/s13311-017-0532-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The L-type calcium channels (LTCCs) Cav1.2 and Cav1.3, encoded by the CACNA1C and CACNA1D genes, respectively, are important regulators of calcium influx into cells and are critical for normal brain development and plasticity. In humans, CACNA1C has emerged as one of the most widely reproduced and prominent candidate risk genes for a range of neuropsychiatric disorders, including bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. Separately, CACNA1D has been found to be associated with BD and autism spectrum disorder, as well as cocaine dependence, a comorbid feature associated with psychiatric disorders. Despite growing evidence of a significant link between CACNA1C and CACNA1D and psychiatric disorders, our understanding of the biological mechanisms by which these LTCCs mediate neuropsychiatric-associated endophenotypes, many of which are shared across the different disorders, remains rudimentary. Clinical studies with LTCC blockers testing their efficacy to alleviate symptoms associated with BD, SCZ, and drug dependence have provided mixed results, underscoring the importance of further exploring the neurobiological consequences of dysregulated Cav1.2 and Cav1.3. Here, we provide a review of clinical studies that have evaluated LTCC blockers for BD, SCZ, and drug dependence-associated symptoms, as well as rodent studies that have identified Cav1.2- and Cav1.3-specific molecular and cellular cascades that underlie mood (anxiety, depression), social behavior, cognition, and addiction.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Arlene Martínez-Rivera
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Powers A, Almli L, Smith A, Lori A, Leveille J, Ressler KJ, Jovanovic T, Bradley B. A genome-wide association study of emotion dysregulation: Evidence for interleukin 2 receptor alpha. J Psychiatr Res 2016; 83:195-202. [PMID: 27643478 PMCID: PMC5896292 DOI: 10.1016/j.jpsychires.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/01/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
Emotion dysregulation has been implicated as a risk factor for many psychiatric conditions. Therefore, examining genetic risk associated with emotion dysregulation could help inform cross-disorder risk more generally. A genome-wide association study (GWAS) of emotion dysregulation using single nucleotide polymorphism (SNP) array technology was conducted in a highly traumatized, minority, urban sample (N = 2600, males = 774). Post-hoc analyses examined associations between SNPs identified in the GWAS and current depression, posttraumatic stress disorder (PTSD), and history of suicide attempt. Methylation quantitative trait loci were identified and gene set enrichment analyses were used to broadly determine biological processes involved with these SNPs. Among males, SNP rs6602398, located within the interleukin receptor 2A gene, IL2RA, was significantly associated with emotion dysregulation (p = 1.1 × 10-8). Logistic regression analyses revealed this SNP was significantly associated with depression (Exp(B) = 2.67, p < 0.001) and PTSD (Exp(B) = 2.07, p < 0.01). This SNP was associated with differential DNA methylation (p < 0.05) suggesting it may be functionally active. Finally, through gene set enrichment analyses, ten psychiatric disease pathways (adjusted p < 0.01) and the calcium signaling pathway (adjusted p = 0.008) were significantly associated with emotion dysregulation. We found initial evidence for an association between emotion dysregulation and genetic risk loci that have already been implicated in medical disorders that have high comorbidity with psychiatric disorders. Our results provide further evidence that emotion dysregulation can be understood as a potential psychiatric cross-disorder risk factor, and that sex differences across these phenotypes may be critical. Continued research into genetic and biological risk associated with emotion dysregulation is needed.
Collapse
Affiliation(s)
- Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States.
| | - Lynn Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Alicia Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Jen Leveille
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine,McLean Hospital, Harvard Medical School
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine,Atlanta VA Medical Center
| |
Collapse
|
15
|
Kabir ZD, Lee AS, Rajadhyaksha AM. L-type Ca 2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. J Physiol 2016; 594:5823-5837. [PMID: 26913808 PMCID: PMC5063939 DOI: 10.1113/jp270673] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/28/2015] [Indexed: 01/07/2023] Open
Abstract
Brain Cav 1.2 and Cav 1.3 L-type Ca2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Cav 1.2 and Cav 1.3 Ca2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour-based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice.
Collapse
Affiliation(s)
- Z D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A S Lee
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
16
|
Cipriani A, Saunders K, Attenburrow MJ, Stefaniak J, Panchal P, Stockton S, Lane TA, Tunbridge EM, Geddes JR, Harrison PJ. A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Mol Psychiatry 2016; 21:1324-32. [PMID: 27240535 PMCID: PMC5030455 DOI: 10.1038/mp.2016.86] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
l-type calcium channel (LTCC) antagonists have been used in bipolar disorder for over 30 years, without becoming an established therapeutic approach. Interest in this class of drugs has been rekindled by the discovery that LTCC genes are part of the genetic aetiology of bipolar disorder and related phenotypes. We have therefore conducted a systematic review of LTCC antagonists in the treatment and prophylaxis of bipolar disorder. We identified 23 eligible studies, with six randomised, double-blind, controlled clinical trials, all of which investigated verapamil in acute mania, and finding no evidence that it is effective. Data for other LTCC antagonists (diltiazem, nimodipine, nifedipine, methyoxyverapamil and isradipine) and for other phases of the illness are limited to observational studies, and therefore no robust conclusions can be drawn. Given the increasingly strong evidence for calcium signalling dysfunction in bipolar disorder, the therapeutic candidacy of this class of drugs has become stronger, and hence we also discuss issues relevant to their future development and evaluation. In particular, we consider how genetic, molecular and pharmacological data can be used to improve the selectivity, efficacy and tolerability of LTCC antagonists. We suggest that a renewed focus on LTCCs as targets, and the development of 'brain-selective' LTCC ligands, could be one fruitful approach to innovative pharmacotherapy for bipolar disorder and related phenotypes.
Collapse
Affiliation(s)
- A Cipriani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - K Saunders
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - M-J Attenburrow
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - J Stefaniak
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - P Panchal
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - S Stockton
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - T A Lane
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - E M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - J R Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - P J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| |
Collapse
|
17
|
Lancaster TM, Foley S, Tansey KE, Linden DEJ, Caseras X. CACNA1C risk variant is associated with increased amygdala volume. Eur Arch Psychiatry Clin Neurosci 2016; 266:269-75. [PMID: 26048451 DOI: 10.1007/s00406-015-0609-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023]
Abstract
Genome-wide association studies suggest that genetic variation within L-type calcium channel subunits confer risk to psychosis. The single nucleotide polymorphism at rs1006737 in CACNA1C has been associated with both schizophrenia and bipolar disorder and with several intermediate phenotypes that may serve as neurobiological antecedents, linking psychosis to genetic aetiology. Amongst others, it has been implicated in alterations in amygdala structure and function. In the present study, we show that the risk allele (A) is associated with increased amygdala volume in healthy individuals (n = 258). This observation reinforces a hypothesis that genetic variation may confer risk to psychosis via alterations in limbic structures. Further study of CACNA1C using intermediate phenotypes for psychosis will determine the mechanisms by which variation in this gene confers risk.
Collapse
Affiliation(s)
- T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, UK. .,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| | - S Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - K E Tansey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - D E J Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, UK.,Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - X Caseras
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
18
|
Huang L, Mo Y, Sun X, Yu H, Li H, Wu L, Li M. The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:396-401. [PMID: 26756527 DOI: 10.1002/ajmg.b.32418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/23/2015] [Indexed: 11/08/2022]
Abstract
The SNP rs1006737 in CACNA1C gene has been significantly associated with psychiatric disorders (e.g., schizophrenia and bipolar disorder) in European populations. In Han Chinese, rs1006737 is also strongly associated with schizophrenia, although the effects of the psychosis risk SNP on related brain functions and structures in this population remain unclear. Here, we examined the association of rs1006737 with gray matter volume in a sample of 278 healthy Han Chinese. A whole-brain voxel-based morphometry (VBM) analysis revealed a significant association in the region around right superior occipital gyrus (family-wise error corrected, P = 0.023). Our data provides initial evidence for the involvement of this psychosis genetic risk locus in brain structure variations in Chinese population, and calls for further investigations.
Collapse
Affiliation(s)
- Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yin Mo
- Imaging Center, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Xuejin Sun
- Imaging Center, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, China
| | - Hualin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lichuan Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
19
|
Lee AS, De Jesús-Cortés H, Kabir ZD, Knobbe W, Orr M, Burgdorf C, Huntington P, McDaniel L, Britt JK, Hoffmann F, Brat DJ, Rajadhyaksha AM, Pieper AA. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons. eNeuro 2016; 3:ENEURO.0006-16.2016. [PMID: 27066530 PMCID: PMC4819284 DOI: 10.1523/eneuro.0006-16.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 02/04/2023] Open
Abstract
Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract.
Collapse
Affiliation(s)
- Anni S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
| | - Héctor De Jesús-Cortés
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Zeeba D. Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
| | - Whitney Knobbe
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Madeline Orr
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Caitlin Burgdorf
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
| | - Paula Huntington
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Latisha McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Jeremiah K. Britt
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
| | - Franz Hoffmann
- Institute of Pharmacology, Technical University Munich, Munich, Germany
- Research Group 923, Technical University Munich, Munich, Germany
| | - Daniel J. Brat
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Anjali M. Rajadhyaksha
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York 10065
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
| | - Andrew A. Pieper
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, New York 10065
- Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
- Department of Free Radical and Radiation Biology Program, Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242
- Department of Veteran Affairs, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
20
|
Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ. The influence of genes on "positive valence systems" constructs: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:92-110. [PMID: 26365619 DOI: 10.1002/ajmg.b.32382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
In 2009, the U.S. National Institute of Mental Health (NIMH) proposed an approach toward the deconstruction of psychiatric nosology under the research domain criteria (RDoC) framework. The overarching goal of RDoC is to identify robust, objective measures of behavior, emotion, cognition, and other domains that are more closely related to neurobiology than are diagnoses. A preliminary framework has been constructed, which has connected molecules, genes, brain circuits, behaviors, and other elements to dimensional psychiatric constructs. Although the RDoC framework has salience in emerging studies, foundational literature that pre-dated this framework requires synthesis and translation to the evolving objectives and nomenclature of RDoC. Toward this end, we review the candidate-gene association, linkage, and genome-wide studies that have implicated a variety of loci and genetic polymorphisms in selected Positive Valence Systems (PVS) constructs. Our goal is to review supporting evidence to currently listed genes implicated in this domain and novel candidates. We systematically searched and reviewed literature based on keywords listed under the June, 2011, edition of the PVS matrix on the RDoC website (http://www.nimh.nih.gov/research-priorities/rdoc/positive-valence-systems-workshop-proceedings.shtml), which were supplemented with de novo keywords pertinent to the scope of our review. Several candidate genes linked to the PVS framework were identified from candidate-gene association studies. We also identified novel candidates with loose association to PVS traits from genome-wide studies. There is strong evidence suggesting that PVS constructs, as currently conceptualized under the RDoC initiative, index genetically influenced traits; however, future research, including genetic epidemiological, and psychometric analyses, must be performed.
Collapse
Affiliation(s)
- Jonathan L Hess
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel M Kawaguchi
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kayla E Wagner
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stephen J Glatt
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
21
|
Lancaster TM, Ihssen N, Brindley LM, Tansey KE, Mantripragada K, O'Donovan MC, Owen MJ, Linden DEJ. Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Hum Brain Mapp 2015; 37:491-500. [PMID: 26510167 PMCID: PMC4949629 DOI: 10.1002/hbm.23044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic‐learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch–stay) and reflection upon choice outcome (reward–punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE‐BRAIN‐CORRECTED = 0.048) and the ventral striatum (PROI‐CORRECTED = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp 37:491–500, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Psychology, Cardiff University, Cardiff University Brain Research Imaging Centre (CUBRIC), 70 Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.,Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Niklas Ihssen
- School of Psychology, Cardiff University, Cardiff University Brain Research Imaging Centre (CUBRIC), 70 Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.,Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Lisa M Brindley
- School of Psychology, Cardiff University, Cardiff University Brain Research Imaging Centre (CUBRIC), 70 Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.,Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Katherine E Tansey
- Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Kiran Mantripragada
- Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Michael C O'Donovan
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - David E J Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Psychology, Cardiff University, Cardiff University Brain Research Imaging Centre (CUBRIC), 70 Park Place, Cardiff, CF10 3AT, Wales, United Kingdom.,Cardiff School of Medicine, Cardiff University, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| |
Collapse
|
22
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Lancaster TM, Heerey EA, Mantripragada K, Linden DEJ. Replication study implicates COMT val158met polymorphism as a modulator of probabilistic reward learning. GENES BRAIN AND BEHAVIOR 2015; 14:486-92. [PMID: 26096878 DOI: 10.1111/gbb.12228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 12/24/2022]
Abstract
Previous studies suggest that a single nucleotide polymorphism in the catechol-O-methyltransferase (COMT) gene (val158met) may modulate reward-guided decision making in healthy individuals. The polymorphism affects dopamine catabolism and thus modulates prefrontal dopamine levels, which may lead to variation in individual responses to risk and reward. We previously showed, using tasks that index reward responsiveness (measured by responses bias towards reinforced stimuli) and risk taking (measured by the Balloon Analogue Risk Task), that COMT met homozygotes had increased reward responsiveness and, thus, an increased propensity to seek reward. In this study, we sought to replicate these effects in a larger, independent cohort of Caucasian UK university students and staff with similar demographic characteristics (n = 101; 54 females, mean age: 22.2 years). Similarly to our previous study, we observed a significant trial × COMT genotype interaction (P = 0.047; η(2) = 0.052), which was driven by a significant effect of COMT on the incremental acquisition of response bias [response bias at block 3 - block 1 (met/met > val/val: P = 0.028) and block 3 - block 2 (met/met > val/val: P = 0.007)], suggesting that COMT met homozygotes demonstrated higher levels of reward responsiveness by the end of the task. However, we failed to see main effects of COMT genotype on overall response bias or risk-seeking behaviour. These results provide additional evidence that prefrontal dopaminergic variation may have a role in reward responsiveness, but not risk-seeking behaviour. Our findings may have implications for neuropsychiatric disorders characterized by clinical deficits in reward processing such as anhedonia.
Collapse
Affiliation(s)
- T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - E A Heerey
- School of Psychology, Bangor University, Bangor, UK
| | - K Mantripragada
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - D E J Linden
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|