1
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
2
|
Tang Y, Park HJ, Li S, Fitzgerald MC. Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease. J Proteome Res 2024; 23:4443-4456. [PMID: 39292827 DOI: 10.1021/acs.jproteome.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The stability of proteins from rates of oxidation (SPROX), thermal proteome profiling (TPP), and limited proteolysis (LiP) techniques were used to profile the stability of ∼2500 proteins in hippocampus tissue cell lysates from 2- and 8-months-old wild-type (C57BL/6J; n = 7) and transgenic (5XFAD; n = 7) mice with five Alzheimer's disease (AD)-linked mutations. Approximately 200-500 protein hits with AD-related stability changes were detected by each technique at each age point. The hit overlap from technique to technique was low, and all of the techniques generated protein hits that were more numerous and largely different from those identified in protein expression level analyses, which were also performed here. The hit proteins identified by each technique were enriched in a number of the same pathways and biological processes, many with known connections to AD. The protein stability hits included 25 high-value conformation biomarkers with AD-related stability changes detected using at least 2 techniques at both age points. Also discovered were subunit- and age-specific AD-related stability changes in the proteasome, which had reduced function at both age points. The different folding stability profiles of the proteasome at the two age points are consistent with a different mechanism for proteasome dysfunction at the early and late stages of AD.
Collapse
Affiliation(s)
- Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Shengyu Li
- Department of Computational Biology & Bioinformatics, Duke University, Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
3
|
Fermaintt CS, Wacker SA. Malate dehydrogenase as a multi-purpose target for drug discovery. Essays Biochem 2024; 68:147-160. [PMID: 38818725 DOI: 10.1042/ebc20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Malate dehydrogenase (MDH) enzymes play critical roles in cellular metabolism, facilitating the reversible conversion of malate to oxaloacetate using NAD+/NADH as a cofactor. The two human isoforms of MDH have roles in the citric acid cycle and the malate-aspartate shuttle, and thus both are key enzymes in aerobic respiration as well as regenerating the pool of NAD+ used in glycolysis. This review highlights the potential of MDH as a therapeutic drug target in various diseases, including metabolic and neurological disorders, cancer, and infectious diseases. The most promising molecules for targeting MDH have been examined in the context of human malignancies, where MDH is frequently overexpressed. Recent studies have led to the identification of several antagonists, some of which are broad MDH inhibitors while others have selectivity for either of the two human MDH isoforms. Other promising compounds have been studied in the context of parasitic MDH, as inhibiting the function of the enzyme could selectively kill the parasite. Research is ongoing with these chemical scaffolds to develop more effective small-molecule drug leads that would have great potential for clinical applications.
Collapse
Affiliation(s)
- Charles S Fermaintt
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, U.S.A
| | - Sarah A Wacker
- Department of Chemistry and Biochemistry, Manhattan College, The Bronx, NY, U.S.A
| |
Collapse
|
4
|
Parente AD, Bolland DE, Huisinga KL, Provost JJ. Physiology of malate dehydrogenase and how dysregulation leads to disease. Essays Biochem 2024; 68:121-134. [PMID: 38962852 DOI: 10.1042/ebc20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Malate dehydrogenase (MDH) is pivotal in mammalian tissue metabolism, participating in various pathways beyond its classical roles and highlighting its adaptability to cellular demands. This enzyme is involved in maintaining redox balance, lipid synthesis, and glutamine metabolism and supports rapidly proliferating cells' energetic and biosynthetic needs. The involvement of MDH in glutamine metabolism underlines its significance in cell physiology. In contrast, its contribution to lipid metabolism highlights its role in essential biosynthetic processes necessary for cell maintenance and proliferation. The enzyme's regulatory mechanisms, such as post-translational modifications, underscore its complexity and importance in metabolic regulation, positioning MDH as a potential target in metabolic dysregulation. Furthermore, the association of MDH with various pathologies, including cancer and neurological disorders, suggests its involvement in disease progression. The overexpression of MDH isoforms MDH1 and MDH2 in cancers like breast, prostate, and pancreatic ductal adenocarcinoma, alongside structural modifications, implies their critical role in the metabolic adaptation of tumor cells. Additionally, mutations in MDH2 linked to pheochromocytomas, paragangliomas, and other metabolic diseases emphasize MDH's role in metabolic homeostasis. This review spotlights MDH's potential as a biomarker and therapeutic target, advocating for further research into its multifunctional roles and regulatory mechanisms in health and disease.
Collapse
Affiliation(s)
- Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Danielle E Bolland
- Department of Biology, University of Minnesota Morris, Morris, MN 56267, U.S.A
| | - Kathryn L Huisinga
- Department of Chemistry and Biochemistry, Malone University, Canton, OH 44709, U.S.A
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
5
|
Joof AN, Ren F, Zhou Y, Wang M, Li J, Tan Y. Targeting Mitochondria: Influence of Metabolites on Mitochondrial Heterogeneity. Cell Biochem Funct 2024; 42:e4131. [PMID: 39380166 DOI: 10.1002/cbf.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are vital organelles that provide energy for the metabolic processes of cells. These include regulating cellular metabolism, autophagy, apoptosis, calcium ions, and signaling processes. Despite their varying functions, mitochondria are considered semi-independent organelles that possess their own genome, known as mtDNA, which encodes 13 proteins crucial for oxidative phosphorylation. However, their diversity reflects an organism's adaptation to physiological conditions and plays a complex function in cellular metabolism. Mitochondrial heterogeneity exists at the single-cell and tissue levels, impacting cell shape, size, membrane potential, and function. This heterogeneity can contribute to the progression of diseases such as neurodegenerative diseases, metabolic diseases, and cancer. Mitochondrial dynamics enhance the stability of cells and sufficient energy requirement, but these activities are not universal and can lead to uneven mitochondria, resulting in heterogeneity. Factors such as genetics, environmental compounds, and signaling pathways are found to affect these cellular processes and heterogeneity. Additionally, the varying roles of metabolites such as NADH and ATP affect glycolysis's speed and efficiency. An imbalance in metabolites can impair ATP production and redox potential in the mitochondria. Therefore, this review will explore the influence of metabolites in shaping mitochondrial morphology, how these changes contribute to age-related diseases and the therapeutic targets for regulating mitochondrial heterogeneity.
Collapse
Affiliation(s)
- Amie N Joof
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Fangyuan Ren
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Jiani Li
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Quesnel MJ, Labonté A, Picard C, Bowie DC, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Osteopontin: A novel marker of pre-symptomatic sporadic Alzheimer's disease. Alzheimers Dement 2024; 20:6008-6031. [PMID: 39072932 PMCID: PMC11497655 DOI: 10.1002/alz.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION We investigate the role of osteopontin (OPN) in participants with Pre-symptomatic Alzheimer's disease (AD), mild cognitive impairment (MCI), and in AD brains. METHODS Cerebrospinal fluid (CSF) OPN, AD, and synaptic biomarker levels were measured in 109 cognitively unimpaired (CU), parental-history positive Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) participants, and in 167 CU and 399 participants with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. OPN levels were examined as a function of amyloid beta (Aβ) and tau positivity. Survival analyses investigated the link between OPN and rate of conversion to AD. RESULTS In PREVENT-AD, CSF OPN was positively correlated with synaptic biomarkers. In PREVENT-AD and ADNI, OPN was elevated in CSF Aβ42/40(+)/total tau(+) and CSF Aβ42/40(+)/phosphorylated tau181(+) individuals. In ADNI, OPN was increased in Aβ(+) positron emission tomography (PET) and tau(+) PET individuals, and associated with an accelerated rate of conversion to AD. OPN was elevated in autopsy-confirmed AD brains. DISCUSSION Strong associations between CSF OPN and key markers of AD pathophysiology suggest a significant role for OPN in tau neurobiology, particularly in the early stages of the disease. HIGHLIGHTS In the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease cohort, we discovered that cerebrospinal fluid (CSF) osteopontin (OPN) levels can indicate early synaptic dysfunction, tau deposition, and neuronal loss in cognitively unimpaired elderly with a parental history. CSF OPN is elevated in amyloid beta(+) positron emission tomography (PET) and tau(+) PET individuals. Elevated CSF OPN is associated with an accelerated rate of conversion to Alzheimer's disease (AD). Elevated CSF OPN is associated with an accelerated rate of cognitive decline on the Alzheimer's Disease Assessment Scale-Cognitive subscale 13, Montreal Cognitive Assessment, Mini-Mental State Examination, and Clinical Dementia Rating Scale Sum of Boxes. OPN mRNA and protein levels are significantly upregulated in the frontal cortex of autopsy-confirmed AD brains.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Anne Labonté
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Cynthia Picard
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Daniel C. Bowie
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science ParkShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Paris Brain Institute, ICM, Pitié‐Salpêtrière Hospital, Sorbonne UniversityParisFrance
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
| | - Sylvia Villeneuve
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Judes Poirier
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | | | | |
Collapse
|
7
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
8
|
Cartas-Cejudo P, Cortés A, Lachén-Montes M, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Mapping the human brain proteome: opportunities, challenges, and clinical potential. Expert Rev Proteomics 2024; 21:55-63. [PMID: 38299555 DOI: 10.1080/14789450.2024.2313073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases. AREAS COVERED Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification. EXPERT OPINION Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Elena Anaya-Cubero
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Erika Peral
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Karina Ausín
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ramón Díaz-Peña
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
9
|
Panyard DJ, McKetney J, Deming YK, Morrow AR, Ennis GE, Jonaitis EM, Van Hulle CA, Yang C, Sung YJ, Ali M, Kollmorgen G, Suridjan I, Bayfield A, Bendlin BB, Zetterberg H, Blennow K, Cruchaga C, Carlsson CM, Johnson SC, Asthana S, Coon JJ, Engelman CD. Large-scale proteome and metabolome analysis of CSF implicates altered glucose and carbon metabolism and succinylcarnitine in Alzheimer's disease. Alzheimers Dement 2023; 19:5447-5470. [PMID: 37218097 PMCID: PMC10663389 DOI: 10.1002/alz.13130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10-5 ) and 636 significant protein-biomarker associations (P < 6.07 × 10-6 ). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine-phosphorylated tau association.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Justin McKetney
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison; Madison, WI 53706, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison; Madison, WI 53506, United States of America
| | - Yuetiva K. Deming
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Autumn R. Morrow
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Gilda E. Ennis
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
| | - Erin M. Jonaitis
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
| | - Carol A. Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | | | | | | | - Barbara B. Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital; Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology; London, UK
- UK Dementia Research Institute at UCL; London, UK
- Hong Kong Center for Neurodegenerative Diseases; Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital; Mölndal, Sweden
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine; St Louis, MO 63110, United States of America
- NeuroGenomics and Informatics Center, Washington University School of Medicine; St Louis, MO 63110, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine; St Louis, MO 63110, United States of America
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison; 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison; 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison; 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- William S. Middleton Memorial Veterans Hospital; 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison; Madison, WI 53706, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison; Madison, WI 53506, United States of America
- Morgridge Institute for Research; Madison, WI 53706, United States of America
- Department of Chemistry, University of Wisconsin-Madison; Madison, WI 53506, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison; 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| |
Collapse
|
10
|
Gomes Moreira D, Jan A. A beginner's guide into curated analyses of open access datasets for biomarker discovery in neurodegeneration. Sci Data 2023; 10:432. [PMID: 37414779 PMCID: PMC10325954 DOI: 10.1038/s41597-023-02338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The discovery of surrogate biomarkers reflecting neuronal dysfunction in neurodegenerative diseases (NDDs) remains an active area of research. To boost these efforts, we demonstrate the utility of publicly available datasets for probing the pathogenic relevance of candidate markers in NDDs. As a starting point, we introduce the readers to several open access resources, which contain gene expression profiles and proteomics datasets from patient studies in common NDDs, including proteomics analyses of cerebrospinal fluid (CSF). Then, we illustrate the method for curated gene expression analyses across select brain regions from four cohorts of Parkinson disease patients (and from one study in common NDDs), probing glutathione biogenesis, calcium signaling and autophagy. These data are complemented by findings of select markers in CSF-based studies in NDDs. Additionally, we enclose several annotated microarray studies, and summarize reports on CSF proteomics across the NDDs, which the readers can utilize for translational purposes. We anticipate that this "beginner's guide" will benefit the research community in NDDs, and would serve as a useful educational tool.
Collapse
Affiliation(s)
- Diana Gomes Moreira
- Department of Clinical Medicine, Palle Juul-Jensens Boulevard 165, DK-8200, Aarhus N, Denmark
| | - Asad Jan
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
11
|
De Schepper S, Ge JZ, Crowley G, Ferreira LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin SH, Kim JS, Childs T, Lashley T, Burden JJ, Sasner M, Sala Frigerio C, Jung S, Hong S. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease. Nat Neurosci 2023; 26:406-415. [PMID: 36747024 PMCID: PMC9991912 DOI: 10.1038/s41593-023-01257-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-β oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.
Collapse
Affiliation(s)
- Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Judy Z Ge
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Laís S S Ferreira
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | | | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Childs
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | - Carlo Sala Frigerio
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Steffen Jung
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
12
|
Behzad M, Zirak N, Madani GH, Baidoo L, Rezaei A, Karbasi S, Sadeghi M, Shafie M, Mayeli M, Alzheimer's Disease Neuroimaging Initiative. CSF-Targeted Proteomics Indicate Amyloid-Beta Ratios in Patients with Alzheimer's Dementia Spectrum. Int J Alzheimers Dis 2023; 2023:5336273. [PMID: 36793451 PMCID: PMC9925239 DOI: 10.1155/2023/5336273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background According to recent studies, amyloid-β (Aβ) isoforms as cerebrospinal fluid (CSF) biomarkers have remarkable predictive value for cognitive decline in the early stages of Alzheimer's disease (AD). Herein, we aimed to investigate the correlations between several targeted proteomics in CSF samples with Aβ ratios and cognitive scores in patients in AD spectrum to search for potential early diagnostic utility. Methods A total of 719 participants were found eligible for inclusion. Patients were then categorized into cognitively normal (CN), mild cognitive impairment (MCI), and AD and underwent an assessment of Aβ and proteomics. Clinical Dementia Rating (CDR), Alzheimer's Disease Assessment Scale (ADAS), and Mini Mental State Exam (MMSE) were used for further cognitive assessment. The Aβ42, Aβ42/Aβ40, and Aβ42/38 ratios were considered as means of comparison to identify those peptides corresponding significantly to these established biomarkers and cognitive scores. The diagnostic utility of the IASNTQSR, VAELEDEK, VVSSIEQK, GDSVVYGLR, EPVAGDAVPGPK, and QETLPSK was assessed. Results All investigated peptides corresponded significantly to Aβ42 in controls. In those with MCI, VAELEDEK and EPVAGDAVPGPK were significantly correlated with Aβ42 (p value < 0.001). Additionally, IASNTQSR, VVSSIEQK, GDSVVYGLR, and QETLPSK were significantly correlated with Aβ42/Aβ40 and Aβ42/38 (p value < 0.001) in this group. This group of peptides similarly corresponded to Aβ ratios in those with AD. Eventually, IASNTQSR, VAELEDEK, and VVSSIEQK were significantly associated with CDR, ADAS-11, and ADAS-13, particularly in MCI group. Conclusion Our research suggests potential early diagnostic and prognostic utilities for certain peptides extracted from CSF-targeted proteomics research. The ethical approval of ADNI is available at ClinicalTrials.gov with Identifier: NCT00106899.
Collapse
Affiliation(s)
- Maryam Behzad
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemistery, University of Tehran, Iran
| | - Negin Zirak
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Educational Science and Psychology, University of Tabriz, Tabriz, Iran
| | - Ghazal Hamidi Madani
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Sciences, University of Guilan, Iran
| | - Linda Baidoo
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rezaei
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Karbasi
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Sadeghi
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Shafie
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mayeli
- NeuroTRACT Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Charpignon ML, Vakulenko-Lagun B, Zheng B, Magdamo C, Su B, Evans K, Rodriguez S, Sokolov A, Boswell S, Sheu YH, Somai M, Middleton L, Hyman BT, Betensky RA, Finkelstein SN, Welsch RE, Tzoulaki I, Blacker D, Das S, Albers MW. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat Commun 2022; 13:7652. [PMID: 36496454 PMCID: PMC9741618 DOI: 10.1038/s41467-022-35157-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain.
Collapse
Affiliation(s)
- Marie-Laure Charpignon
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bang Zheng
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bowen Su
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Kyle Evans
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Steve Rodriguez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Yi-Han Sheu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Melek Somai
- Inception Labs, Collaborative for Health Delivery Sciences, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College London NHS Healthcare Trust, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rebecca A Betensky
- Department of Biostatistics, School of Global Public Health, New York University, New York, NY, USA
| | - Stan N Finkelstein
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roy E Welsch
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Dementia Research Institute, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece.
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Chen H, Huang C, Wu Y, Sun N, Deng C. Exosome Metabolic Patterns on Aptamer-Coupled Polymorphic Carbon for Precise Detection of Early Gastric Cancer. ACS NANO 2022; 16:12952-12963. [PMID: 35946596 DOI: 10.1021/acsnano.2c05355] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gastric cancer (GC) presents high mortality worldwide because of delayed diagnosis. Currently, exosome-based liquid biopsy has been applied in diagnosis and monitoring of diseases including cancers, whereas disease detection based on exosomes at the metabolic level is rarely reported. Herein, the specific aptamer-coupled Au-decorated polymorphic carbon (CoMPC@Au-Apt) is constructed for the capture of urinary exosomes from early GC patients and healthy controls (HCs) and the subsequent exosome metabolic pattern profiling without extra elution process. Combining with machine learning algorithm on all exosome metabolic patterns, the early GC patients are excellently discriminated from HCs, with an accuracy of 100% for both the discovery set and blind test. Ulteriorly, three key metabolic features with clear identities are determined as a biomarker panel, obtaining a more than 90% diagnostic accuracy for early GC in the discovery set and validation set. Moreover, the change law of the key metabolic features along with GC development is revealed through making a comparison among HCs and GC at early stage and advanced stage, manifesting their monitoring ability toward GC. This work illustrates the high specificity of exosomes and the great prospective of exosome metabolic analysis in disease diagnosis and monitoring, which will promote exosome-driven precision medicine toward practical clinical application.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Chemistry, Metabolism and Integrative Biology (IMIB), Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Chuwen Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yonglei Wu
- Department of Chemistry, Metabolism and Integrative Biology (IMIB), Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunhui Deng
- Department of Chemistry, Metabolism and Integrative Biology (IMIB), Zhongshan Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022; 465:153049. [PMID: 34818560 DOI: 10.1016/j.tox.2021.153049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
The adverse physiological conditions have been long known to impact protein synthesis, folding and functionality. Major physiological factors such as the effect of pH, temperature, salt and pressure are extensively studied for their impact on protein structure and homeostasis. However, in the current scenario, the environmental risk factors (pollutants) have gained impetus in research because of their increasing concentrations in the environment and strong epidemiologic link with protein aggregation disorders. Here, we review the physiological and environmental risk factors for their impact on protein conformational changes, misfolding, aggregation, and associated pathological conditions, especially environmental risk factors associated pathologies.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Pedrero-Prieto CM, Frontiñán-Rubio J, Alcaín FJ, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. Biological Significance of the Protein Changes Occurring in the Cerebrospinal Fluid of Alzheimer's Disease Patients: Getting Clues from Proteomic Studies. Diagnostics (Basel) 2021; 11:1655. [PMID: 34573996 PMCID: PMC8467255 DOI: 10.3390/diagnostics11091655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The fact that cerebrospinal fluid (CSF) deeply irrigates the brain together with the relative simplicity of sample extraction from patients make this biological fluid the best target for biomarker discovery in neurodegenerative diseases. During the last decade, biomarker discovery has been especially fruitful for the identification new proteins that appear in the CSF of Alzheimer's disease (AD) patients together with amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau). Thus, several proteins have been already stablished as important biomarkers, due to an increase (i.e., CHI3L1) or a decrease (i.e., VGF) in AD patients' CSF. Notwithstanding this, only a deep analysis of a database generated with all the changes observed in CSF across multiple proteomic studies, and especially those using state-of-the-art methodologies, may expose those components or metabolic pathways disrupted at different levels in AD. Deep comparative analysis of all the up- and down-regulated proteins across these studies revealed that 66% of the most consistent protein changes in CSF correspond to intracellular proteins. Interestingly, processes such as those associated to glucose metabolism or RXR signaling appeared inversely represented in CSF from AD patients in a significant manner. Herein, we discuss whether certain cellular processes constitute accurate indicators of AD progression by examining CSF. Furthermore, we uncover new CSF AD markers, such as ITAM, PTPRZ or CXL16, identified by this study.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, University of Castilla-La Mancha (UCLM), 13005 Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, CRIB, University of Castilla-La Mancha (UCLM), Paseo de Moledores SN, 13071 Ciudad Real, Spain; (C.M.P.-P.); (J.F.-R.); (F.J.A.); (M.D.-P.)
| |
Collapse
|
17
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
18
|
Uddin MS, Kabir MT, Jakaria M, Sobarzo-Sánchez E, Barreto GE, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Exploring the Potential of Neuroproteomics in Alzheimer's Disease. Curr Top Med Chem 2021; 20:2263-2278. [PMID: 32493192 DOI: 10.2174/1568026620666200603112030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is progressive brain amyloidosis that damages brain regions associated with memory, thinking, behavioral and social skills. Neuropathologically, AD is characterized by intraneuronal hyperphosphorylated tau inclusions as neurofibrillary tangles (NFTs), and buildup of extracellular amyloid-beta (Aβ) peptide as senile plaques. Several biomarker tests capturing these pathologies have been developed. However, for the full clinical expression of the neurodegenerative events of AD, there exist other central molecular pathways. In terms of understanding the unidentified underlying processes for the progression and development of AD, a complete comprehension of the structure and composition of atypical aggregation of proteins is essential. Presently, to aid the prognosis, diagnosis, detection, and development of drug targets in AD, neuroproteomics is elected as one of the leading essential tools for the efficient exploratory discovery of prospective biomarker candidates estimated to play a crucial role. Therefore, the aim of this review is to present the role of neuroproteomics to analyze the complexity of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Jain AP, Sathe G. Proteomics Landscape of Alzheimer's Disease. Proteomes 2021; 9:proteomes9010013. [PMID: 33801961 PMCID: PMC8005944 DOI: 10.3390/proteomes9010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia, and the numbers of AD patients are expected to increase as human life expectancy improves. Deposition of β-amyloid protein (Aβ) in the extracellular matrix and intracellular neurofibrillary tangles are molecular hallmarks of the disease. Since the precise pathophysiology of AD has not been elucidated yet, effective treatment is not available. Thus, understanding the disease pathology, as well as identification and development of valid biomarkers, is imperative for early diagnosis as well as for monitoring disease progression and therapeutic responses. Keeping this goal in mind several studies using quantitative proteomics platform have been carried out on both clinical specimens including the brain, cerebrospinal fluid (CSF), plasma and on animal models of AD. In this review, we summarize the mass spectrometry (MS)-based proteomics studies on AD and discuss the discovery as well as validation stages in brief to identify candidate biomarkers.
Collapse
Affiliation(s)
- Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
20
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
21
|
Devi S, Karsauliya K, Srivastava T, Raj R, Kumar D, Priya S. Pesticide interactions induce alterations in secondary structure of malate dehydrogenase to cause destability and cytotoxicity. CHEMOSPHERE 2021; 263:128074. [PMID: 33297076 DOI: 10.1016/j.chemosphere.2020.128074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Environmental exposure to pesticides increases the risk of neurotoxicity and neurodegenerative diseases. The mechanism of pesticide-induced toxicity is attributed to the increased reactive oxygen species, mitochondrial dysfunction, inhibition of key cellular enzymes and accelerated pathogenic protein aggregation. The structural basis of pesticide-protein interaction is limited to pathogenic proteins such as α-synuclein, Tau and amyloid-beta. However, the effect of pesticides on metabolic proteins is still unexplored. Here, we used rotenone and chlorpyrifos to understand the interaction of these pesticides with a metabolic protein, malate dehydrogenase (MDH) and the consequent pesticide-induced cytotoxicity. We found that rotenone and chlorpyrifos strongly bind to MDH, interferes with protein folding and triggers alteration in its secondary structure. Both pesticides showed high binding affinities for MDH as observed by NMR and LCMS. Rotenone and chlorpyrifos induced structural alterations during MDH refolding resulting in the formation of cytotoxic conformers that generated oxidative stress and reduced cell viability. Our findings suggest that pesticides, in general, interact with proteins resulting in the formation of cytotoxic conformers that may have implications in neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shweta Devi
- System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kajal Karsauliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Pesticide Toxicology Laboratory & Regulatory Toxicology Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Tulika Srivastava
- System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ritu Raj
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Smriti Priya
- System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
22
|
Wu CY, Bawa KK, Ouk M, Leung N, Yu D, Lanctôt KL, Herrmann N, Pakosh M, Swardfager W. Neutrophil activation in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of protein markers in blood and cerebrospinal fluid. Ageing Res Rev 2020; 62:101130. [PMID: 32712109 DOI: 10.1016/j.arr.2020.101130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022]
Abstract
Inflammation is involved in the pathophysiology of Alzheimer's disease (AD), with multiple inflammatory processes implicated in its risk and progression. This review included original peer-reviewed studies measuring the cerebrospinal fluid or peripheral blood concentrations of protein markers specifically related to neutrophil activity in healthy controls (HC) and in patients with AD or mild cognitive impairment (MCI). A total of 35 studies (NHC = 3095, NAD = 2596, NMCI = 1203) were included. Random-effects meta-analyses were used to estimate between-groups standardized mean differences (SMD) and 95 % confidence intervals. In blood, concentrations of myeloperoxidase (MPO; NAD/NHC = 271/209, SMD = 0.41 [0.20, 0.62]; I2 = 15.7 %) and neutrophil gelatinase associated lipocalin (NGAL; NAD/NHC = 273/185, SMD = 0.30 [0.11, 0.49]; I2 < 0.005 %) were significantly higher in AD relative to HC. Peripheral blood concentrations of NGAL were also higher in MCI compared to HC (NMCI/NHC = 489/145, SMD = 0.39 [0.11, 0.67]; I2 = 38.6 %). None of the protein markers exhibited a significant difference between HC, MCI, or AD groups in the cerebrospinal fluid. The evidence suggests that peripheral neutrophil activation, as indicated by blood concentrations of NGAL and MPO, may be a pathological feature of cognitive impairment due to AD, evident at stages of MCI and AD dementia.
Collapse
Affiliation(s)
- Che-Yuan Wu
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Kritleen K Bawa
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Michael Ouk
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Nathan Leung
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Di Yu
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada; KITE UHN Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON, M4G 2V6, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada
| | - Maureen Pakosh
- KITE UHN Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON, M4G 2V6, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada; KITE UHN Toronto Rehabilitation Institute, 347 Rumsey Rd, East York, ON, M4G 2V6, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
23
|
Woollacott IO, Nicholas JM, Heller C, Foiani MS, Moore KM, Russell LL, Paterson RW, Keshavan A, Schott JM, Warren JD, Heslegrave A, Zetterberg H, Rohrer JD. Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype. Dement Geriatr Cogn Disord 2020; 49:56-76. [PMID: 32344399 PMCID: PMC7513620 DOI: 10.1159/000506282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer's disease (AD) but have not been explored in detail across the spectrum of FTD. METHODS We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD syndrome due to AD versus non-AD (frontotemporal lobar degeneration, FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen healthy controls and 64 people with FTD (behavioural variant FTD, n = 20; primary progressive aphasia [PPA], n = 44: nfvPPA, n = 16, svPPA, n = 11, lvPPA, n = 14, PPA-NOS, n = 3) were included. 10/64 had familial FTD, with mutations in GRN(n = 3), MAPT(n = 4), or C9orf72 (n = 3). 15/64 had neurodegenerative biomarkers consistent with AD pathology. Levels were measured by immunoassay and compared using multiple linear regressions. We also examined relationships of YKL-40 and chitotriosidase with CSF total tau (T-tau), phosphorylated tau 181 (P-tau) and β-amyloid 1-42 (Aβ42), with each other, and with age and disease du-ration. RESULTS CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls. GRN mutation carriers had higher levels of both proteins than controls and C9orf72 expansion carriers, and YKL-40 was higher in MAPT mutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, and with each other, depending on clinical syndrome and underlying pathology. CSF YKL-40 but not chitotriosidase was associated with age, but not disease duration. CONCLUSION CSF YKL-40 and chitotriosidase levels are increased in individuals with clinical FTD syndromes, particularly due to AD pathology. In a preliminary analysis of genetic groups, levels of both proteins are found to be highly elevated in FTD due to GRN mutations, while YKL-40 is increased in individuals with MAPT mutations. As glia-derived protein levels generally correlate with T-tau and P-tau levels, they may reflect the glial response to neurodegeneration in FTLD.
Collapse
Affiliation(s)
- Ione O.C. Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolin Heller
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Martha S. Foiani
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Katrina M. Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Lucy L. Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Ross W. Paterson
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Jason D. Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D. Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, United Kingdom,*Dr. Jonathan D. Rohrer, Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London WC1N 3BG (UK),
| |
Collapse
|
24
|
Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Llanos-González E, Aguilera García C, Alcaín FJ, Lindberg I, Durán-Prado M, Peinado JR, Rabanal-Ruiz Y. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer's disease. Clin Proteomics 2020; 17:21. [PMID: 32518535 PMCID: PMC7273668 DOI: 10.1186/s12014-020-09276-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During the last two decades, over 100 proteomics studies have identified a variety of potential biomarkers in CSF of Alzheimer's (AD) patients. Although several reviews have proposed specific biomarkers, to date, the statistical relevance of these proteins has not been investigated and no peptidomic analyses have been generated on the basis of specific up- or down- regulation. Herein, we perform an analysis of all unbiased explorative proteomics studies of CSF biomarkers in AD to critically evaluate whether proteins and peptides identified in each study are consistent in distribution; direction change; and significance, which would strengthen their potential use in studies of AD pathology and progression. METHODS We generated a database containing all CSF proteins whose levels are known to be significantly altered in human AD from 47 independent, validated, proteomics studies. Using this database, which contains 2022 AD and 2562 control human samples, we examined whether each protein is consistently present on the basis of reliable statistical studies; and if so, whether it is over- or under-represented in AD. Additionally, we performed a direct analysis of available mass spectrometric data of these proteins to generate an AD CSF peptide database with 3221 peptides for further analysis. RESULTS Of the 162 proteins that were identified in 2 or more studies, we investigated their enrichment or depletion in AD CSF. This allowed us to identify 23 proteins which were increased and 50 proteins which were decreased in AD, some of which have never been revealed as consistent AD biomarkers (i.e. SPRC or MUC18). Regarding the analysis of the tryptic peptide database, we identified 87 peptides corresponding to 13 proteins as the most highly consistently altered peptides in AD. Analysis of tryptic peptide fingerprinting revealed specific peptides encoded by CH3L1, VGF, SCG2, PCSK1N, FBLN3 and APOC2 with the highest probability of detection in AD. CONCLUSIONS Our study reveals a panel of 27 proteins and 21 peptides highly altered in AD with consistent statistical significance; this panel constitutes a potent tool for the classification and diagnosis of AD.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Cristina Aguilera García
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruiz
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
25
|
Batruch I, Lim B, Soosaipillai A, Brinc D, Fiala C, Diamandis EP. Mass Spectrometry-Based Assay for Targeting Fifty-Two Proteins of Brain Origin in Cerebrospinal Fluid. J Proteome Res 2020; 19:3060-3071. [PMID: 32315192 DOI: 10.1021/acs.jproteome.0c00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebrospinal fluid (CSF) is a circulatory fluid of the central nervous system and it can reflect the biochemical changes occurring in the brain. Although CSF retrieval through lumbar puncture is invasive, it remains the most commonly used fluid in exploring brain pathology as it is less complex and contains a higher concentration of brain-derived proteins than plasma (Reiber, H. Clin. Chim. Acta 2001, 310, 173-186; Macron et al. J. Proteome Res. 2018, 17, 4315-4319). We hypothesize that proteins produced by the brain will have diagnostic significance for brain pathologies. Hence, we expanded the previously in-house-developed 31-protein panel with more proteins classified as brain-specific by the Human Protein Atlas (HPA). Using the HPA, we selected 76 protein coding genes and screened CSF using liquid chromatography-mass spectrometry (LC-MS) and narrowed the protein list to candidates identified endogenously in CSF. Next, we developed a parallel reaction monitoring (PRM) assay for the 21 new proteins and merged it with the 31-protein assay developed earlier. In the process, we evaluated different screening strategies and optimized MS collision energies and ion isolation windows to achieve the highest possible analyte signal resulting in the PRM assay with an average linear dynamic range of 4.3 × 103. We also assessed the extent of Asn (N)-Gln (Q) deamidation, N-terminal pyro-Glu (E) conversion, and Met (M) oxidation and found that deamidation can be misassigned without high mass accuracy and high-resolution settings. We also assessed how many of these proteins could be reliably measured in 10 individual patient CSF samples. Our approach allows us to measure the relative levels of 52 brain-derived proteins in CSF by a single LC-MS method. This new assay may have important applications in discovering CSF biomarkers for various neurological diseases.
Collapse
Affiliation(s)
- Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada
| | - Bryant Lim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| | - Clare Fiala
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| |
Collapse
|
26
|
Chaudhary H, Meister SW, Zetterberg H, Löfblom J, Lendel C. Dissecting the Structural Organization of Multiprotein Amyloid Aggregates Using a Bottom-Up Approach. ACS Chem Neurosci 2020; 11:1447-1457. [PMID: 32315153 PMCID: PMC7243255 DOI: 10.1021/acschemneuro.0c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deposition of fibrillar amyloid β (Aβ) in senile plaques is a pathological signature of Alzheimer's disease. However, senile plaques also contain many other components, including a range of different proteins. Although the composition of the plaques can be analyzed in post-mortem tissue, knowledge of the molecular details of these multiprotein inclusions and their assembly processes is limited, which impedes the progress in deciphering the biochemical mechanisms associated with Aβ pathology. We describe here a bottom-up approach to monitor how proteins from human cerebrospinal fluid associate with Aβ amyloid fibrils to form plaque particles. The method combines flow cytometry and mass spectrometry proteomics and allowed us to identify and quantify 128 components of the captured multiprotein aggregates. The results provide insights into the functional characteristics of the sequestered proteins and reveal distinct interactome responses for the two investigated Aβ variants, Aβ(1-40) and Aβ(1-42). Furthermore, the quantitative data is used to build models of the structural organization of the multiprotein aggregates, which suggests that Aβ is not the primary binding target for all the proteins; secondary interactions account for the majority of the assembled components. The study elucidates how different proteins are recruited into senile plaques and establishes a new model system for exploring the pathological mechanisms of Alzheimer's disease from a molecular perspective.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Sebastian W. Meister
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal SE-413 90, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal SE-413 90, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
- UK Dementia Research Institute at UCL, London WC1N 3BG, United Kingdom
| | - John Löfblom
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
27
|
Ku EJ, Cho KC, Lim C, Kang JW, Oh JW, Choi YR, Park JM, Han NY, Oh JJ, Oh TJ, Jang HC, Lee H, Kim KP, Choi SH. Discovery of plasma biomarkers for predicting the severity of coronary artery atherosclerosis by quantitative proteomics. BMJ Open Diabetes Res Care 2020; 8:8/1/e001152. [PMID: 32327445 PMCID: PMC7202779 DOI: 10.1136/bmjdrc-2019-001152] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) in patients with diabetes is the leading cause of death. Finding early biomarkers for detecting asymptomatic patients with CVD can improve survival. Recently, plasma proteomics-targeted selected reaction monitoring/multiple reaction monitoring analyses (MRM)-has emerged as highly specific and sensitive tools compared with classic ELISA methods. The objective was to identify differentially regulated proteins according to the severity of the coronary artery atherosclerosis. RESEARCH DESIGN AND METHODS A discovery cohort, a verification cohort and a validation cohort consisted of 18, 53, and 228 subjects, respectively. The grade of coronary artery stenosis was defined as a percentage of luminal stenosis of the major coronary arteries. Participants were divided into six groups, depending on the presence of diabetes and the grade of coronary artery stenosis. Two mass spectrometric approaches were employed: (1) conventional shotgun liquid chromatography tandem mass spectrometry for a discovery and (2) quantitative MRM for verification and validation. An analysis of the covariance was used to examine the biomarkers' predictivity beyond conventional cardiovascular risks. RESULTS A total of 1349 different proteins were identified from a discovery cohort. We selected 52 proteins based on the tandem mass tag quantitative analysis then summarized as follows: chemokine (C-X-C motif) ligand 7 (CXCL7), apolipoprotein C-II (APOC2), human lipopolysaccharide-binding protein (LBP) and dedicator of cytokinesis 2 (DOCK2) in diabetes; CXCL7, APOC2, LBP, complement 4A (C4A), vitamin D-binding protein (VTDB) and laminin β1 subunit in non-diabetes. Analysis of covariance showed that APOC2, DOCK2, CXCL7 and VTDB were upregulated and C4A was downregulated in patients with diabetes showing severe coronary artery stenosis. LBP and VTDB were downregulated in patients without diabetes, showing severe coronary artery stenosis. CONCLUSION We identified significant associations between circulating APOC2, C4A, CXCL7, DOCK2, LBP and VTDB levels and the degree of coronary artery stenosis using the MRM technique.
Collapse
Affiliation(s)
- Eu Jeong Ku
- Internal Medicine, Chungbuk National University Hospital, Cheongju, South Korea
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Kyung-Cho Cho
- Applied Chemisty, Kyung Hee University College of Applied Sciences, Yongin, South Korea
| | - Cheong Lim
- Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Won Kang
- Applied Chemisty, Kyung Hee University College of Applied Sciences, Yongin, South Korea
| | - Jae Won Oh
- Applied Chemisty, Kyung Hee University College of Applied Sciences, Yongin, South Korea
| | - Yu Ri Choi
- Applied Chemisty, Kyung Hee University College of Applied Sciences, Yongin, South Korea
| | - Jong-Moon Park
- Pharmaceutics, Gachon University College of Pharmacy, Incheon, South Korea
| | - Na-Young Han
- Pharmaceutics, Gachon University College of Pharmacy, Incheon, South Korea
| | - Jong Jin Oh
- Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae Jung Oh
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hak Chul Jang
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hookeun Lee
- Pharmaceutics, Gachon University College of Pharmacy, Incheon, South Korea
| | - Kwang Pyo Kim
- Applied Chemisty, Kyung Hee University College of Applied Sciences, Yongin, South Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Badhwar A, Haqqani AS. Biomarker potential of brain-secreted extracellular vesicles in blood in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12001. [PMID: 32211497 PMCID: PMC7085285 DOI: 10.1002/dad2.12001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Brain cells secrete extracellular microvesicles (EVs) that cross the blood-brain barrier. Involved in cell-to-cell communication, EVs contain surface markers and a biologically active cargo of molecules specific to their tissue (and cell) of origin, reflecting the tissue or cell's physiological state. Isolation of brain-secreted EVs (BEVs) from blood provides a minimally invasive way to sample components of brain tissue in Alzheimer's disease (AD), and is considered a form of "liquid biopsy." METHODS We performed a comprehensive review of the PubMed literature to assess the biomarker and therapeutic potential of blood-isolated BEVs in AD. RESULTS We summarize methods used for BEV isolation, validation, and novel biomarker discovery, as well as provide insights from 26 studies in humans on the biomarker potential in AD of four cell-specific BEVs isolated from blood: neuron-, neural precursor-, astrocyte-, and brain vasculature-derived BEVs. Of these, neuron-derived BEVs has been investigated on several fronts, and these include levels of amyloid-β and tau proteins, as well as synaptic proteins. In addition, we provide a synopsis of the current landscape of BEV-based evaluation/monitoring of AD therapeutics based on two published trials and a review of registered clinical trials. DISCUSSION Blood-isolated BEVs have emerged as a novel player in the study of AD, with enormous potential as a diagnostic, evaluation of therapeutics, and treatment tool. The literature has largely concentrated on neuron-derived BEVs in the blood in AD. Given the multifactorial pathophysiology of AD, additional studies, in neuron-derived and other brain cell-specific BEVs are warranted to establish BEVs as a robust blood-based biomarker of AD.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Centre de recherche de l'Institut universitaire de gériatrie de MontréalUniversity of MontrealMontrealQuebecCanada
| | - Arsalan S. Haqqani
- Human Health Therapeutics Research CentreNational Research CouncilOttawaOntarioCanada
| |
Collapse
|
29
|
Wesenhagen KEJ, Teunissen CE, Visser PJ, Tijms BM. Cerebrospinal fluid proteomics and biological heterogeneity in Alzheimer's disease: A literature review. Crit Rev Clin Lab Sci 2019; 57:86-98. [PMID: 31694431 DOI: 10.1080/10408363.2019.1670613] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by aggregation of amyloid and tau proteins in the brain. Results from genetic studies suggest that the pathophysiology underlying AD is complex, but studying this complexity in patients remains difficult. The cerebrospinal fluid (CSF) proteome contains a large number of proteins that can reflect ongoing biological processes. Proteomics techniques can be used to measure many proteins simultaneously in individual patients and may therefore provide an opportunity to study AD disease mechanisms. Here, we review the CSF proteomics literature to identify proteins consistently associated with AD, and perform pathway analyses on these proteins to study which biological processes may be involved in the disease.We performed a literature search of studies that investigated CSF proteomic alterations related to AD. We included original research articles when they measured at least 10 proteins in (antemortem) CSF in at least 10 individuals with AD, mild cognitive impairment (MCI) or controls. We examined if proteins were consistently related to AD, defined as consistent increase or decrease in AD vs. controls across studies. Next, we used the proteins identified as input to pathway analyses using Reactome to investigate which biological processes were enriched.In total, 29 studies were included that investigated AD-related changes to the CSF proteome, including a total of 1434 individuals with AD (of whom 47.1% had a CSF biomarker profile and 9.6% a postmortem examination consistent with AD) and 1380 controls. The studies reported 1 to 138 proteins associated with AD, of which 97 proteins were reported by two or more studies. Among proteins that were measured in more than one study, 27 (27.8%) showed consistent increases, 15 (15.5%) consistent decreases and 55 (56.7%) had contrasting results. Pathway analyses showed that AD-related proteins were enriched for hemostasis, lipoprotein and extracellular matrix pathways.These results indicate that proteomic alterations in CSF associated with AD reflect involvement of various biological pathways. The frequent occurrence of inconsistent protein level changes reported by different studies suggests that additional biological and/or (pre)analytical factors may influence the CSF proteome in AD, which should be further investigated in order to improve understanding of the biological complexity underlying AD.
Collapse
Affiliation(s)
- Kirsten E J Wesenhagen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S, Stomrud E, Lee J, Fitz L, Samad TA, Ramaswamy G, Margolin RA, Malarstig A, Hansson O. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease. Acta Neuropathol Commun 2019; 7:169. [PMID: 31694701 PMCID: PMC6836495 DOI: 10.1186/s40478-019-0795-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
To date, the development of disease-modifying therapies for Alzheimer’s disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (− 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (− 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87–0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68–0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
Collapse
|
31
|
Teo E, Ravi S, Barardo D, Kim HS, Fong S, Cazenave-Gassiot A, Tan TY, Ching J, Kovalik JP, Wenk MR, Gunawan R, Moore PK, Halliwell B, Tolwinski N, Gruber J. Metabolic stress is a primary pathogenic event in transgenic Caenorhabditis elegans expressing pan-neuronal human amyloid beta. eLife 2019; 8:50069. [PMID: 31610847 PMCID: PMC6794093 DOI: 10.7554/elife.50069] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting the elderly worldwide. Mitochondrial dysfunction has been proposed as a key event in the etiology of AD. We have previously modeled amyloid-beta (Aβ)-induced mitochondrial dysfunction in a transgenic Caenorhabditis elegans strain by expressing human Aβ peptide specifically in neurons (GRU102). Here, we focus on the deeper metabolic changes associated with this Aβ-induced mitochondrial dysfunction. Integrating metabolomics, transcriptomics and computational modeling, we identify alterations in Tricarboxylic Acid (TCA) cycle metabolism following even low-level Aβ expression. In particular, GRU102 showed reduced activity of a rate-limiting TCA cycle enzyme, alpha-ketoglutarate dehydrogenase. These defects were associated with elevation of protein carbonyl content specifically in mitochondria. Importantly, metabolic failure occurred before any significant increase in global protein aggregate was detectable. Treatment with an anti-diabetes drug, Metformin, reversed Aβ-induced metabolic defects, reduced protein aggregation and normalized lifespan of GRU102. Our results point to metabolic dysfunction as an early and causative event in Aβ-induced pathology and a promising target for intervention.
Collapse
Affiliation(s)
- Emelyne Teo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Science Division, Yale-NUS College, Singapore, Singapore
| | - Sudharshan Ravi
- Department of Chemical and Biological Engineering, University of Buffalo, Buffalo, United States.,Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Diogo Barardo
- Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hyung-Seok Kim
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Sheng Fong
- Geriatric Medicine Senior Residency Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
| | - Tsze Yin Tan
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University of Buffalo, Buffalo, United States
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | | | - Jan Gruber
- Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Essential Features and Use Cases of the Cerebrospinal Fluid Proteome Resource (CSF-PR). Methods Mol Biol 2019. [PMID: 31432427 DOI: 10.1007/978-1-4939-9706-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Every year, a large number of published studies present biomarkers for various neurological disorders. Many of these studies are based on mass spectrometry proteomics data and describe comparison of the abundance of proteins in cerebrospinal fluid between two or more disease groups. As the number of such studies is growing, it is no longer straightforward to obtain an overview of which specific proteins are increased or decreased between the numerous relevant diseases and their many subcategories, or to see the larger picture or trends between related diseases. To alleviate this situation, we therefore mined the literature for mass spectrometry-based proteomics studies including quantitative protein data from cerebrospinal fluid of patients with multiple sclerosis, Alzheimer's disease, and Parkinson's disease and organized the extracted data in the Cerebrospinal Fluid Proteome Resource (CSF-PR). CSF-PR is freely available online at http://probe.uib.no/csf-pr , is highly interactive, and allows for easy navigation, visualization, and export of the published scientific data. This chapter will guide the user through some of the most important features of the tool and show examples of the suggested use cases.
Collapse
|
33
|
Gámez-Valero A, Beyer K, Borràs FE. Extracellular vesicles, new actors in the search for biomarkers of dementias. Neurobiol Aging 2019; 74:15-20. [DOI: 10.1016/j.neurobiolaging.2018.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
|
34
|
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019; 151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Eugene M Cilento
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Min Shi
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA.,Department of Pathology, School of Basic Medicine, Peking University Health Science Center, Peking University Third Hospital and Peking Key Laboratory for Early Diagnosis of Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
35
|
Stepler KE, Robinson RAS. The Potential of ‘Omics to Link Lipid Metabolism and Genetic and Comorbidity Risk Factors of Alzheimer’s Disease in African Americans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:1-28. [DOI: 10.1007/978-3-030-05542-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Schilde LM, Kösters S, Steinbach S, Schork K, Eisenacher M, Galozzi S, Turewicz M, Barkovits K, Mollenhauer B, Marcus K, May C. Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research. PLoS One 2018; 13:e0206478. [PMID: 30496192 PMCID: PMC6264484 DOI: 10.1371/journal.pone.0206478] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022] Open
Abstract
Cerebrospinal fluid is investigated in biomarker studies for various neurological disorders of the central nervous system due to its proximity to the brain. Currently, only a limited number of biomarkers have been validated in independent studies. The high variability in the protein composition and protein abundance of cerebrospinal fluid between as well as within individuals might be an important reason for this phenomenon. To evaluate this possibility, we investigated the inter- and intraindividual variability in the cerebrospinal fluid proteome globally, with a specific focus on disease biomarkers described in the literature. Cerebrospinal fluid from a longitudinal study group including 12 healthy control subjects was analyzed by label-free quantification (LFQ) via LC-MS/MS. Data were quantified via MaxQuant. Then, the intra- and interindividual variability and the reference change value were calculated for every protein. We identified and quantified 791 proteins, and 216 of these proteins were abundant in all samples and were selected for further analysis. For these proteins, we found an interindividual coefficient of variation of up to 101.5% and an intraindividual coefficient of variation of up to 29.3%. Remarkably, these values were comparably high for both proteins that were published as disease biomarkers and other proteins. Our results support the hypothesis that natural variability greatly impacts cerebrospinal fluid protein biomarkers because high variability can lead to unreliable results. Thus, we suggest controlling the variability of each protein to distinguish between good and bad biomarker candidates, e.g., by utilizing reference change values to improve the process of evaluating potential biomarkers in future studies.
Collapse
Affiliation(s)
- Lukas M. Schilde
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Steffen Kösters
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Simone Steinbach
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Karin Schork
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Sara Galozzi
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Klinikstraße, Kassel, and University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitaetsstrasse, Bochum, Germany
| |
Collapse
|
37
|
Sathe G, Na CH, Renuse S, Madugundu A, Albert M, Moghekar A, Pandey A. Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 2018; 15:29. [PMID: 30220890 PMCID: PMC6136184 DOI: 10.1186/s12014-018-9205-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is an important source of potential biomarkers that affect the brain. Biomarkers for neurodegenerative disorders are needed to assist in diagnosis, monitoring disease progression and evaluating efficacy of therapies. Recent studies have demonstrated the involvement of tyrosine kinases in neuronal cell death. Thus, neurodegeneration in the brain is related to altered tyrosine phosphorylation of proteins in the brain and identification of abnormally phosphorylated tyrosine peptides in CSF has the potential to ascertain candidate biomarkers for neurodegenerative disorders. Methods In this study, we used an antibody-based tyrosine phosphopeptide enrichment method coupled with high resolution Orbitrap Fusion Tribrid Lumos Fourier transform mass spectrometer to catalog tyrosine phosphorylated peptides from cerebrospinal fluid. The subset of identified tyrosine phosphorylated peptides was also validated using parallel reaction monitoring (PRM)-based targeted approach. Results To date, there are no published studies on global profiling of phosphotyrosine modifications of CSF proteins. We carried out phosphotyrosine profiling of CSF using an anti-phosphotyrosine antibody-based enrichment and analysis using high resolution Orbitrap Fusion Lumos mass spectrometer. We identified 111 phosphotyrosine peptides mapping to 66 proteins, which included 24 proteins which have not been identified in CSF previously. We then validated a set of 5 tyrosine phosphorylated peptides in an independent set of CSF samples from cognitively normal subjects, using a PRM-based targeted approach. Conclusions The findings from this deep phosphotyrosine profiling of CSF samples have the potential to identify novel disease-related phosphotyrosine-containing peptides in CSF. Electronic supplementary material The online version of this article (10.1186/s12014-018-9205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gajanan Sathe
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,7Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Chan Hyun Na
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,6Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anil Madugundu
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,7Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Marilyn Albert
- 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Abhay Moghekar
- 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Akhilesh Pandey
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,5Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
38
|
Carlyle BC, Trombetta BA, Arnold SE. Proteomic Approaches for the Discovery of Biofluid Biomarkers of Neurodegenerative Dementias. Proteomes 2018; 6:32. [PMID: 30200280 PMCID: PMC6161166 DOI: 10.3390/proteomes6030032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative dementias are highly complex disorders driven by vicious cycles of intersecting pathophysiologies. While most can be definitively diagnosed by the presence of disease-specific pathology in the brain at postmortem examination, clinical disease presentations often involve substantially overlapping cognitive, behavioral, and functional impairment profiles that hamper accurate diagnosis of the specific disease. As global demographics shift towards an aging population in developed countries, clinicians need more sensitive and specific diagnostic tools to appropriately diagnose, monitor, and treat neurodegenerative conditions. This review is intended as an overview of how modern proteomic techniques (liquid chromatography mass spectrometry (LC-MS/MS) and advanced capture-based technologies) may contribute to the discovery and establishment of better biofluid biomarkers for neurodegenerative disease, and the limitations of these techniques. The review highlights some of the more interesting technical innovations and common themes in the field but is not intended to be an exhaustive systematic review of studies to date. Finally, we discuss clear reporting principles that should be integrated into all studies going forward to ensure data is presented in sufficient detail to allow meaningful comparisons across studies.
Collapse
Affiliation(s)
- Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.
| |
Collapse
|
39
|
Heywood WE, Hallqvist J, Heslegrave AJ, Zetterberg H, Fenoglio C, Scarpini E, Rohrer JD, Galimberti D, Mills K. CSF pro-orexin and amyloid-β38 expression in Alzheimer's disease and frontotemporal dementia. Neurobiol Aging 2018; 72:171-176. [PMID: 30292090 PMCID: PMC6221294 DOI: 10.1016/j.neurobiolaging.2018.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/02/2022]
Abstract
There is an unmet need for markers that can stratify different forms and subtypes of dementia. Because of similarities in clinical presentation, it can be difficult to distinguish between Alzheimer's disease (AD) and frontotemporal dementia (FTD). Using a multiplex targeted proteomic LC-MS/MS platform, we aimed to identify cerebrospinal fluid proteins differentially expressed between patients with AD and FTD. Furthermore analysis of 2 confirmed FTD genetic subtypes carrying progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72) mutations was performed to give an insight into the differing pathologies of these forms of FTD. Patients with AD (n = 13) demonstrated a significant (p < 0.007) 1.24-fold increase in pro-orexin compared to FTD (n = 32). Amyloid beta-38 levels in patients with AD were unaltered but demonstrated a >2-fold reduction (p < 0.0001) in the FTD group compared to controls and a similar 1.83-fold reduction compared to the AD group (p < 0.001). Soluble TREM2 was elevated in both dementia groups but did not show any difference between AD and FTD. A further analysis comparing FTD subgroups revealed slightly lower levels of proteins apolipoprotein E, CD166, osteopontin, transthyretin, and cystatin C in the GRN group (n = 9) compared to the C9orf72 group (n = 7). These proteins imply GRN FTD elicits an altered inflammatory response to C9orf72 FTD.
Collapse
Affiliation(s)
- Wendy E Heywood
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jenny Hallqvist
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Salhgrenska Academy at the University of Gothenburg, Sweden
| | - Chiara Fenoglio
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Daniela Galimberti
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Kevin Mills
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
40
|
Woollacott IOC, Nicholas JM, Heslegrave A, Heller C, Foiani MS, Dick KM, Russell LL, Paterson RW, Keshavan A, Fox NC, Warren JD, Schott JM, Zetterberg H, Rohrer JD. Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. ALZHEIMERS RESEARCH & THERAPY 2018; 10:79. [PMID: 30111356 PMCID: PMC6094471 DOI: 10.1186/s13195-018-0405-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reliable biomarkers of frontotemporal dementia (FTD) are currently lacking. FTD may be associated with chronic immune dysfunction, microglial activation and raised inflammatory markers, particularly in progranulin (GRN) mutation carriers. Levels of soluble triggering receptor expressed on myeloid cells 2 (sTREM2) are elevated in Alzheimer's disease (AD), but they have not been fully explored in FTD. METHODS We investigated whether cerebrospinal fluid (CSF) sTREM2 levels differ between FTD and controls, across different clinical and genetic subtypes of FTD, or between individuals with FTD due to AD versus non-AD pathology (based on CSF neurodegenerative biomarkers). We also assessed relationships between CSF sTREM2 and other CSF biomarkers (total tau [T-tau], tau phosphorylated at position threonine-181 [P-tau] and β-amyloid 1-42 [Aβ42]) and age and disease duration. Biomarker levels were measured using immunoassays in 17 healthy controls and 64 patients with FTD (behavioural variant FTD, n = 20; primary progressive aphasia, n = 44). Ten of 64 had familial FTD, with mutations in GRN (n = 3), MAPT (n = 4), or C9orf72 (n = 3). Fifteen of 64 had neurodegenerative biomarkers consistent with AD pathology (11 of whom had logopenic variant PPA). Levels were compared using multivariable linear regressions. RESULTS CSF sTREM2 levels did not differ between FTD and controls or between clinical subgroups. However, GRN mutation carriers had higher levels than controls (mean ([SD] = 9.7 [2.9] vs. 6.8 [1.6] ng/ml; P = 0.028) and MAPT (3.9 [1.5] ng/ml; P = 0.003] or C9orf72 [4.6 [1.8] ng/ml; P = 0.006) mutation carriers. Individuals with AD-like CSF had higher sTREM2 levels than those with non-AD-like CSF (9.0 [3.6] vs. 6.9 [3.0] ng/ml; P = 0.029). CSF sTREM2 levels were associated with T-tau levels in control and FTD groups and also with P-tau in those with FTD and AD-like CSF. CSF sTREM2 levels were influenced by both age and disease duration in FTD. CONCLUSIONS Although CSF sTREM2 levels are not raised in FTD overall or in a particular clinical subtype of FTD, levels are raised in familial FTD associated with GRN mutations and in FTD syndromes due to AD pathology. Because CSF sTREM2 levels correlate with a marker of neuronal injury (T-tau), sTREM2 should be explored as a biomarker of disease intensity in future longitudinal studies of FTD.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Carolin Heller
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Martha S Foiani
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Katrina M Dick
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ross W Paterson
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
41
|
Foiani MS, Woollacott IO, Heller C, Bocchetta M, Heslegrave A, Dick KM, Russell LL, Marshall CR, Mead S, Schott JM, Fox NC, Warren JD, Zetterberg H, Rohrer JD. Plasma tau is increased in frontotemporal dementia. J Neurol Neurosurg Psychiatry 2018; 89:804-807. [PMID: 29440230 PMCID: PMC6204947 DOI: 10.1136/jnnp-2017-317260] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations in GRN, MAPT and C9orf72 being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life. METHODS This study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in either MAPT (n=12), GRN (n=9) or C9orf72 (n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression. RESULTS Higher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only the MAPT group had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration. CONCLUSION Plasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only in MAPT mutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies.
Collapse
Affiliation(s)
- Martha S Foiani
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Ione Oc Woollacott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Carolin Heller
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Katrina M Dick
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Charles R Marshall
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Jason D Warren
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
42
|
Begcevic I, Brinc D, Dukic L, Simundic AM, Zavoreo I, Basic Kes V, Martinez-Morillo E, Batruch I, Drabovich AP, Diamandis EP. Targeted Mass Spectrometry-Based Assays for Relative Quantification of 30 Brain-Related Proteins and Their Clinical Applications. J Proteome Res 2018; 17:2282-2292. [PMID: 29708756 DOI: 10.1021/acs.jproteome.7b00768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cerebrospinal fluid (CSF) is a promising clinical sample for identification of novel biomarkers for various neurological disorders. Considering its direct contact with brain tissue, CSF represents a valuable source of brain-related and brain-specific proteins. Multiple sclerosis is an inflammatory, demyelinating neurological disease affecting the central nervous system, and so far there are no diagnostic or prognostic disease specific biomarkers available in the clinic. The primary aim of the present study was to develop a targeted mass spectrometry assay for simultaneous quantification of 30 brain-related proteins in CSF and subsequently to demonstrate assay feasibility in neurological samples derived from multiple sclerosis patients. Our multiplex selected reaction monitoring assay had wide dynamic range (median fold range across peptides = 8.16 × 103) and high assay reproducibility (median across peptides CV = 4%). Candidate biomarkers were quantified in CSF samples from neurologically healthy individuals (n = 9) and patients diagnosed with clinically isolated syndrome (n = 29) or early multiple sclerosis (n = 15).
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada.,Department of Clinical Biochemistry , University Health Network , Toronto , Ontario M5G 2C4 , Canada
| | - Lora Dukic
- Department of Medical Laboratory Diagnostics , University Hospital "Sveti Duh" , 10000 Zagreb , Croatia
| | - Ana-Maria Simundic
- Department of Medical Laboratory Diagnostics , University Hospital "Sveti Duh" , 10000 Zagreb , Croatia
| | - Iris Zavoreo
- University Department of Neurology , Medical School University Hospital "Sestre milosrdnice" , 10000 Zagreb , Croatia
| | - Vanja Basic Kes
- University Department of Neurology , Medical School University Hospital "Sestre milosrdnice" , 10000 Zagreb , Croatia
| | - Eduardo Martinez-Morillo
- Laboratory of Medicine, Department of Clinical Biochemistry , Hospital Universitario Central de Asturias , 33011 Oviedo , Spain
| | - Ihor Batruch
- Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Clinical Biochemistry , University Health Network , Toronto , Ontario M5G 2C4 , Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada.,Department of Clinical Biochemistry , University Health Network , Toronto , Ontario M5G 2C4 , Canada
| |
Collapse
|
43
|
Abreu CM, Soares-Dos-Reis R, Melo PN, Relvas JB, Guimarães J, Sá MJ, Cruz AP, Mendes Pinto I. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Front Mol Neurosci 2018; 11:164. [PMID: 29867354 PMCID: PMC5964192 DOI: 10.3389/fnmol.2018.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation plays a critical role in the onset and progression of many neurological disorders, including Multiple Sclerosis, Alzheimer's and Parkinson's diseases. In these clinical conditions the underlying neuroinflammatory processes are significantly heterogeneous. Nevertheless, a common link is the chronic activation of innate immune responses and imbalanced secretion of pro and anti-inflammatory mediators. In light of this, the discovery of robust biomarkers is crucial for screening, early diagnosis, and monitoring of neurological diseases. However, the difficulty to investigate biochemical processes directly in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory responses have been identified in different body fluids, such as blood, cerebrospinal fluid, and tears. In addition, progress in micro and nanotechnology has enabled the development of biosensing platforms capable of detecting in real-time, multiple biomarkers in clinically relevant samples. Biosensing technologies are approaching maturity where they will become deployed in community settings, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight both clinical and recent technological advances toward the development of multiplex-based solutions for effective neuroinflammatory and neurodegenerative disease diagnostics and monitoring.
Collapse
Affiliation(s)
- Catarina M Abreu
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Medical School, Swansea University, Swansea, United Kingdom
| | - Ricardo Soares-Dos-Reis
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro N Melo
- Graduate Programme in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Porto, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Andrea P Cruz
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
44
|
Begcevic I, Brinc D, Brown M, Martinez-Morillo E, Goldhardt O, Grimmer T, Magdolen V, Batruch I, Diamandis EP. Brain-related proteins as potential CSF biomarkers of Alzheimer's disease: A targeted mass spectrometry approach. J Proteomics 2018; 182:12-20. [PMID: 29684683 DOI: 10.1016/j.jprot.2018.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline. The main disease hallmarks include amyloid beta aggregates and neurofibrillary tangles. Brain pathology is reflected in cerebrospinal fluid (CSF); the core biomarkers amyloid beta 1-42, total and phosphorylated tau protein levels are changed, relative to cognitively normal elderly. Still, there is a need for additional biomarkers which could identify disease more accurately and at an earlier stage, predict severity and be used in research settings. Here we evaluated 30 brain-related proteins as candidate biomarkers of AD. Proteins were quantified in CSF samples from cognitively healthy individuals (n = 23) and patients with mild cognitive impairment (MCI) due to AD (n = 20) or dementia due to AD (n = 10) using selected reaction monitoring mass spectrometry assays. APLP1 protein was increased in MCI relative to control (p < 0.001). The best discrimination between MCI vs. controls was observed with a model combining APLP1 and SPP1 proteins (area under the curve, AUC = 0.84). The strongest associations between protein abundance and disease severity were found for APLP1, CNTN2 and SPP1 proteins, which had a significant correlation with MMSE and CDR tests (p < 0.05). This study identifies new proteins with biomarker potential at various stages of AD severity. SIGNIFICANCE The current study evaluated 30 brain-related, highly specific proteins as candidate biomarkers of AD diagnosis. Protein APLP1 showed promise as early AD biomarker; protein panel APLP1 and SPP1 had the best diagnostic potential in discriminating MCI from control group, while proteins APLP1, SPP1 and CNTN2 may be indicators of disease progression, demonstrating weak to moderate correlation with cognitive tests. This study therefore identifies new proteins with biomarker potential at early AD stage. If the performance of proposed biomarkers is further confirmed, these proteins may add value in the clinic or clinical trial settings as diagnostic biomarkers (alone or in combination with the existing biomarkers) of the prodromal AD stage, and in monitoring disease progression.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Marshall Brown
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eduardo Martinez-Morillo
- Laboratory of Medicine, Department of Clinical Biochemistry, Hospital Universitario Central, Oviedo, Spain
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ihor Batruch
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
45
|
Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia Â, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. [PMID: 29126445 PMCID: PMC5681777 DOI: 10.1186/s13024-017-0226-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.
Collapse
Affiliation(s)
- Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Katrin Thüne
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Present address: Unit of Lymphoid Malignancies, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Eleni Kovatsi
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Paula Garcia-Esparcia
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Duru Ozbay
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Ângela Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Ina M. Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|