1
|
Bao C, Zhang Q, He C, Zou H, Xia Y, Yan R, Hua L, Wang X, Lu Q, Yao Z. Neural responses to decision-making in suicide attempters with youth major depressive disorder. Neuroimage Clin 2024; 43:103667. [PMID: 39241548 PMCID: PMC11406072 DOI: 10.1016/j.nicl.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
An improved understanding of the factors associated with suicidal attempts in youth suffering from depression is crucial for the identification and prevention of future suicide risk. However, there is limited understanding of how neural activity is modified during the process of decision-making. Our study aimed to investigate the neural responses in suicide attempters with major depressive disorder (MDD) during decision-making. Electroencephalography (EEG) was recorded from 79 individuals aged 16-25 with MDD, including 39 with past suicide attempts (SA group) and 40 without (NSA group), as well as from 40 age- and sex- matched healthy controls (HCs) during the Iowa Gambling Task (IGT). All participants completed diagnostic interviews, self-report questionnaires. Our study examined feedback processing by measuring the feedback-related negativity (FRN), ΔFN (FRN-loss minus FRN-gain), and the P300 as electrophysiological indicators of feedback evaluation. The SA group showed poorest IGT performance. SA group and NSA group, compared with HC group, exhibited specific deficits in decision-making (i.e., exhibited smaller (i.e., blunted) ΔFN). Post hoc analysis found that the SA group was the least sensitive to gains and the most sensitive to losses. In addition, we also found that the larger the value of ΔFN, the better the decision-making ability and the lower the impulsivity. Our study highlights the link between suicide attempts and impaired decision-making in individuals with major depressive disorder. These findings constitute an important step in gaining a better understanding of the specific reward-related abnormalities that could contribute to the young MDD patients with suicide attempts.
Collapse
Affiliation(s)
- Ciqing Bao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Qiaoyang Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Psychology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Chen He
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing 210093, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Barbosa MR, Costa EFL, Coimbra DG, Pinto VTBC, Gitaí DLG, Duzzioni M, Crespo MT, Golombek DA, Chiesa JJ, Agostino PV, de Andrade TG. Transitional photoperiod induces a mania-like behavior in male mice. Eur J Neurosci 2024; 60:5141-5155. [PMID: 39119736 DOI: 10.1111/ejn.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This study aimed to investigate the behavioral responses and circadian rhythms of mice to both rapid and gradual increases in photoperiod, mimicking the transition from winter to summer, which is associated with a heightened prevalence of hospitalizations for mania and suicidal behavior. Behavioral tests were performed in C57BL/6 male mice exposed to a transitional photoperiod, from short to long durations. To determine if circadian rhythms are affected, we measured spontaneous locomotor activity and body temperature. Mice exhibited heightened exploratory and risk-taking behaviors compared with equatorial and static long (16:8 h of light-dark cycle for several days) groups. These behaviors were prevented by lithium. Spontaneous locomotor activity and body temperature rhythms persisted and were effectively synchronized; however, the relative amplitude of activity and interdaily stability were diminished. Additionally, the animals displayed increased activity during the light phase. Photoperiodic transition modulates behavior and circadian rhythms, mirroring certain features observed in bipolar disorder patients. This study introduces an animal model for investigating mania-like behavior induced by photoperiodic changes, offering potential insights for suicide prevention strategies and the management of mood disorders.
Collapse
Affiliation(s)
- Mayara Rodrigues Barbosa
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Daniel Gomes Coimbra
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Alagoas, Brazil
| | - Marcelo Duzzioni
- Laboratory of Pharmacology Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Brazil
| | - Manuel Tomás Crespo
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Diego Andrés Golombek
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés, Victoria, Argentina
| | - Juan José Chiesa
- Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | | | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
3
|
Zielinski JM, Reisert M, Sajonz BEA, Teo SJ, Thierauf-Emberger A, Wessolleck J, Frosch M, Spittau B, Leupold J, Döbrössy MD, Coenen VA. In Search for a Pathogenesis of Major Depression and Suicide-A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow. Brain Sci 2024; 14:723. [PMID: 39061463 PMCID: PMC11275155 DOI: 10.3390/brainsci14070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) is prevalent with a high subjective and socio-economic burden. Despite the effectiveness of classical treatment methods, 20-30% of patients stay treatment-resistant. Deep Brain Stimulation of the superolateral branch of the medial forebrain bundle is emerging as a clinical treatment. The stimulation region (ventral tegmental area, VTA), supported by experimental data, points to the role of dopaminergic (DA) transmission in disease pathology. This work sets out to develop a workflow that will allow the performance of analyses on midbrain DA-ergic neurons and projections in subjects who have committed suicide. Human midbrains were retrieved during autopsy, formalin-fixed, and scanned in a Bruker MRI scanner (7T). Sections were sliced, stained for tyrosine hydroxylase (TH), digitized, and integrated into the Montreal Neurological Institute (MNI) brain space together with a high-resolution fiber tract atlas. Subnuclei of the VTA region were identified. TH-positive neurons and fibers were semi-quantitatively evaluated. The study established a rigorous protocol allowing for parallel histological assessments and fiber tractographic analysis in a common space. Semi-quantitative readings are feasible and allow the detection of cell loss in VTA subnuclei. This work describes the intricate workflow and first results of an investigation of DA anatomy in VTA subnuclei in a growing naturalistic database.
Collapse
Affiliation(s)
- Jana M. Zielinski
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Institute of Forensic Medicine, Medical Center of Freiburg University, 79104 Freiburg, Germany
| | - Johanna Wessolleck
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Maximilian Frosch
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Institute of Neuropathology, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Björn Spittau
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33501 Bielefeld, Germany
- Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, 79104 Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Máté D. Döbrössy
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Center for Basics in Neuromodulation, Medical Faculty of Freiburg University, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Vega-Vásquez T, Langgartner D, Wang JY, Reber SO, Picard M, Basualto-Alarcón C. Mitochondrial morphology in the mouse adrenal cortex: Influence of chronic psychosocial stress. Psychoneuroendocrinology 2024; 160:106683. [PMID: 38086320 PMCID: PMC10872515 DOI: 10.1016/j.psyneuen.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 01/02/2024]
Abstract
Mitochondria within the adrenal cortex play a key role in synthesizing steroid hormones. The adrenal cortex is organized in three functionally specialized zones (glomerulosa, fasciculata, and reticularis) that produce different classes of steroid hormones in response to various stimuli, including psychosocial stress. Given that the functions and morphology of mitochondria are dynamically related and respond to stress, we applied transmission electron microscopy (TEM) to examine potential differences in mitochondrial morphology under basal and chronic psychosocial stress conditions. We used the chronic subordinate colony housing (CSC) paradigm, a murine model of chronic psychosocial stress. Our findings quantitatively define how mitochondrial morphology differs among each of the three adrenal cortex zones under basal conditions, and show that chronic psychosocial stress mainly affected mitochondria in the zona glomerulosa, shifting their morphology towards the more typical glucocorticoid-producing zona fasciculata mitochondrial phenotype. Analysis of adrenocortical lipid droplets that provide cholesterol for steroidogenesis showed that chronic psychosocial stress altered lipid droplet diameter, without affecting droplet number or inter-organellar mitochondria-lipid droplet interactions. Together, our findings support the hypothesis that each adrenal cortex layer is characterized by morphologically distinct mitochondria and that this adrenal zone-specific mitochondrial morphology is sensitive to environmental stimuli, including chronic psychosocial stressors. Further research is needed to define the role of these stress-induced changes in mitochondrial morphology, particularly in the zona glomerulosa, on stress resilience and related behaviors.
Collapse
Affiliation(s)
- Tamara Vega-Vásquez
- Laboratory of Cellular Physiology and Metabolism, Health Sciences Department, University of Aysén, Coyhaique, Chile
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Jennifer Y Wang
- School of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA
| | - Carla Basualto-Alarcón
- Laboratory of Cellular Physiology and Metabolism, Health Sciences Department, University of Aysén, Coyhaique, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
5
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. [Ketamine and suicidal behavior: Contribution of animal models of aggression-impulsivity to understanding its mechanism of action]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:3-14. [PMID: 37890717 DOI: 10.1016/j.pharma.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
More than two-thirds of suicides occur during a major depressive episode. Acting out prevention measures and therapeutic options to manage the suicidal crisis are limited. The impulsive-aggressive dimensions are vulnerability factors associated with suicide in patients suffering from a characterized depressive episode: this can be a dimension involved in animals. Impulsive and aggressive rodent models can help analyze, at least in part, the neurobiology of suicide and the beneficial effects of treatments. Ketamine, a glutamatergic antagonist, by rapidly improving the symptoms of depressive episodes, would help reduce suicidal thoughts in the short term. Animal models share with humans impulsive and aggressive endophenotypes modulated by the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation or the hypothalamic-pituitary-adrenal axis and stress. Significant effects of ketamine on these endophenotypes remain to be demonstrated.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Jollant
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France; Pôle de psychiatrie, CHU de Nîmes, Nîmes, France; Département de psychiatrie, Université McGill et Groupe McGill d'études sur le suicide, Montréal, Canada
| | - Laurent Tritschler
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France
| | - Romain Colle
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Inserm CESP/UMR 1018, équipe MOODS, faculté de médecine, université Paris-Saclay, 94270 Le Kremin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris (AP-HP), 94275 Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Inserm CESP/UMR 1018, équipe MOODS, faculté de pharmacie, université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
6
|
Miguel-Hidalgo JJ, Hearn E, Moulana M, Saleem K, Clark A, Holmes M, Wadhwa K, Kelly I, Stockmeier CA, Rajkowska G. Reduced length of nodes of Ranvier and altered proteoglycan immunoreactivity in prefrontal white matter in major depressive disorder and chronically stressed rats. Sci Rep 2023; 13:16419. [PMID: 37775676 PMCID: PMC10541441 DOI: 10.1038/s41598-023-43627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment. Various glia-derived proteoglycans interact with NR axonal proteins to sustain NR function. It is unclear whether NR length and the content of associated proteoglycans is altered in prefrontal cortex (PFC) WM of human subjects with MDD and in experimentally stressed animals. The length of WM NRs in histological sections from the PFC of 10 controls and 10 MDD subjects, and from the PFC of control and CUS rats was measured. In addition, in WM of the same brain region, five proteoglycans, tenascin-R and NR protein neurofascin were immunostained or their levels measured with western blots. Analysis of covariance and t-tests were used for group comparisons. There was dramatic reduction of NR length in PFC WM in both MDD and CUS rats. Proteoglycan BRAL1 immunostaining was reduced at NRs and in overall WM of MDD subjects, as was versican in overall WM. Phosphacan immunostaining and levels were increased in both in MDD and CUS. Neurofascin immunostaining at NRs and in overall WM was significantly increased in MDD. Reduced length of NRs and increased phosphacan and neurocan in MDD and stressed animals suggest that morphological and proteoglycan changes at NRs in depression may be related to stress exposure and contribute to connectivity alterations. However, differences between MDD and CUS for some NR related markers may point to other mechanisms affecting the structure and function of NRs in MDD.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Erik Hearn
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Mohadetheh Moulana
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Khunsa Saleem
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Austin Clark
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Maggie Holmes
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Kashish Wadhwa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Isabella Kelly
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Craig Allen Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| |
Collapse
|
7
|
Fang S, Law SF, Ji X, Liu Q, Zhang P, Zhong R, Li H, Wang X, Yao S, Wang X. Potential neuropsychological mechanism involved in the transition from suicide ideation to action - a resting-state fMRI study implicating the insula. Eur Psychiatry 2023; 66:e69. [PMID: 37694389 PMCID: PMC10594382 DOI: 10.1192/j.eurpsy.2023.2444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Understanding the neural mechanism underlying the transition from suicidal ideation to action is crucial but remains unclear. To explore this mechanism, we combined resting-state functional connectivity (rsFC) and computational modeling to investigate differences between those who attempted suicide(SA) and those who hold only high levels of suicidal ideation(HSI). METHODS A total of 120 MDD patients were categorized into SA group (n=47) and HSI group (n=73). All participants completed a resting-state functional MRI scan, with three subregions of the insula and the dorsal anterior cingulate cortex (dACC) being chosen as the region of interest (ROI) in seed-to-voxel analyses. Additionally, 86 participants completed the balloon analogue risk task (BART), and a five-parameter Bayesian modeling of BART was estimated. RESULTS In the SA group, the FC between the ventral anterior insula (vAI) and the superior/middle frontal gyrus (vAI-SFG, vAI-MFG), as well as the FC between posterior insula (pI) and MFG (pI-MFG), were lower than those in HSI group. The correlation analysis showed a negative correlation between the FC of vAI-SFG and psychological pain avoidance in SA group, whereas a positive correlation in HSI group. Furthermore, the FC of vAI-MFG displayed a negative correlation with loss aversion in SA group, while a positive correlation was found with psychological pain avoidance in HSI group. CONCLUSION In current study, two distinct neural mechanisms were identified in the insula which involving in the progression from suicidal ideation to action. Dysfunction in vAI FCs may gradually stabilize as individuals experience heightened psychological pain, and a shift from positive to negative correlation patterns of vAI-MFC may indicate a transition from state to trait impairment. Additionally, the dysfunction in PI FC may lead to a lowered threshold for suicide by blunting the perception of physical harm.
Collapse
Affiliation(s)
- Shulin Fang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Samuel F. Law
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Xinlei Ji
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Qinyu Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Panwen Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Shanghai Songjiang Jiuting Middle School, Shanghai, China
| | - Runqing Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing, China
| | - Xiaosheng Wang
- Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| |
Collapse
|
8
|
Nguyen TML, Jollant F, Tritschler L, Colle R, Corruble E, Gardier AM. Pharmacological Mechanism of Ketamine in Suicidal Behavior Based on Animal Models of Aggressiveness and Impulsivity: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:ph16040634. [PMID: 37111391 PMCID: PMC10146327 DOI: 10.3390/ph16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Around 700,000 people die from suicide each year in the world. Approximately 90% of suicides have a history of mental illness, and more than two-thirds occur during a major depressive episode. Specific therapeutic options to manage the suicidal crisis are limited and measures to prevent acting out also remain limited. Drugs shown to reduce the risk of suicide (antidepressants, lithium, or clozapine) necessitate a long delay of onset. To date, no treatment is indicated for the treatment of suicidality. Ketamine, a glutamate NMDA receptor antagonist, is a fast-acting antidepressant with significant effects on suicidal ideation in the short term, while its effects on suicidal acts still need to be demonstrated. In the present article, we reviewed the literature on preclinical studies in order to identify the potential anti-suicidal pharmacological targets of ketamine. Impulsive-aggressive traits are one of the vulnerability factors common to suicide in patients with unipolar and bipolar depression. Preclinical studies in rodent models with impulsivity, aggressiveness, and anhedonia may help to analyze, at least in part, suicide neurobiology, as well as the beneficial effects of ketamine/esketamine on reducing suicidal ideations and preventing suicidal acts. The present review focuses on disruptions in the serotonergic system (5-HTB receptor, MAO-A enzyme), neuroinflammation, and/or the HPA axis in rodent models with an impulsive/aggressive phenotype, because these traits are critical risk factors for suicide in humans. Ketamine can modulate these endophenotypes of suicide in human as well as in animal models. The main pharmacological properties of ketamine are then summarized. Finally, numerous questions arose regarding the mechanisms by which ketamine may prevent an impulsive-aggressive phenotype in rodents and suicidal ideations in humans. Animal models of anxiety/depression are important tools to better understand the pathophysiology of depressed patients, and in helping develop novel and fast antidepressant drugs with anti-suicidal properties and clinical utility.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Fabrice Jollant
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
- Pôle de Psychiatrie, CHU Nîmes, 30900 Nîmes, France
- Department of Psychiatry, McGill University and McGill Group for Suicide Studies, Montréal, QC H3A 0G4, Canada
| | - Laurent Tritschler
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| | - Romain Colle
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm CESP/UMR 1018, MOODS Team, F-94270 Le Kremin-Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, F-94275 Le Kremlin Bicêtre, France
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm CESP/UMR 1018, MOODS Team, F-91400 Orsay, France
| |
Collapse
|
9
|
Kempter E, Amoroso M, Kupfer S, Lupu L, Kustermann M, Scheurer J, Baumann B, Wirth T, Gündel H, Straub RH, Strauß G, Huber-Lang M, Langgartner D, Reber SO. The PMN-MDSC - A key player in glucocorticoid resistance following combined physical and psychosocial trauma. Brain Behav Immun 2023; 108:148-161. [PMID: 36427809 DOI: 10.1016/j.bbi.2022.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stress-associated somatic and psychiatric disorders are often linked to non-resolving low-grade inflammation, which is promoted at least in part by glucocorticoid (GC) resistance of distinct immune cell subpopulations. While the monocyte/macrophage compartment was in the focus of many clinical and preclinical studies, the role of myeloid-derived suppressor cells (MDSCs) in stress-associated pathologies and GC resistance is less understood. As GC resistance is a clear risk factor for posttraumatic complications in patients on intensive care, the exact interplay of physical and psychosocial traumatization in the development of GC resistance needs to be further clarified. In the current study we employ the chronic subordinate colony housing (CSC) paradigm, a well-characterized mouse model of chronic psychosocial stress, to study the role of myeloid cells, in particular of MDSCs, in innate immune activation and GC resistance following combined psychosocial and physical (e.g., bite wounds) trauma. Our findings support the hypothesis that stress-induced neutrophils, polymorphonuclear (PMN)-MDSCs and monocytes/monocyte-like (MO)-MDSCs get primed and activated locally in the bone marrow as determined by toll-like receptor (TLR)2 upregulation and increased basal and lipopolysaccharide (LPS)-induced in vitro cell viability. These primed and activated myeloid cells emigrate into the peripheral circulation and subsequently, if CSC is accompanied by significant bite wounding, accumulate in the spleen. Here, PMN-MDSCs and monocytes/MO-MDSCs upregulate TLR4 expression, which exclusively in PMN-MDSCs promotes NF-κB hyperactivation upon LPS-stimulation, thereby exceeding the anti-inflammatory capacities of GCs and resulting in GC resistance.
Collapse
Affiliation(s)
- Elena Kempter
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Sandra Kupfer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Monika Kustermann
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Scheurer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Gudrun Strauß
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
10
|
Masdrakis VG, Baldwin DS. Prevention of suicide by clozapine in mental disorders: systematic review. Eur Neuropsychopharmacol 2023; 69:4-23. [PMID: 36640481 DOI: 10.1016/j.euroneuro.2022.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Previous research has investigated the efficacy of clozapine in reducing suicidality in patients with schizophrenia and schizoaffective disorder. We aimed to systematically review published evidence, including studies concerning clozapine administration to treat: (a) refractory suicidality in other mental disorders, including bipolar disorder and borderline and other personality disorders; and (b) refractory cases of non-suicidal self-injury. METHOD We performed a PUBMED-search (last day: July 17, 2022) of English-language studies, combining the keywords "clozapine", "suicidality", and "suicide" with various psychopathological terms (e.g. "schizophrenia"). All duplications were eliminated. RESULTS Fifty-one studies were eligible for inclusion in the review. Most studies suggest a superior anti-suicide effect of clozapine in schizophrenia/schizoaffective disorder, compared to other antipsychotics, or no antipsychotic therapy, which is not due to the close monitoring of patients for blood dyscrasias. No consensus exists as to whether other antipsychotic drugs share this effect. Discontinuation of clozapine is associated with increases in suicidality. Reductions in refractory suicidality/NSSI are observed in clozapine-treated patients with bipolar disorder or borderline personality disorder, but the evidence is limited. Potential biological underpinnings of the anti-suicide effect of clozapine include its unique profile of modulation of brain neurotransmitters; its non-selectivity for neurotransmitter receptors; specific genetic and hormonal factors; effects on neuroinflammation; and ability to elicit epileptiform activity. CONCLUSION The superior anti-suicide effect of clozapine in schizophrenia/schizoaffective disorder patients is well established. It may have a role in severe and refractory cases of suicidality and non-suicidal self-injury in patients with bipolar disorder or borderline personality disorder, but the level and quality of supporting evidence is limited.
Collapse
Affiliation(s)
- Vasilios G Masdrakis
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece
| | - David S Baldwin
- University Department of Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom; University Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Jollant F, Colle R, Nguyen TML, Corruble E, Gardier AM, Walter M, Abbar M, Wagner G. Ketamine and esketamine in suicidal thoughts and behaviors: a systematic review. Ther Adv Psychopharmacol 2023; 13:20451253231151327. [PMID: 36776623 PMCID: PMC9912570 DOI: 10.1177/20451253231151327] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/01/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND More than 2% of the general population experience suicidal ideas each year and a large number of them will attempt suicide. Evidence-based therapeutic options to manage suicidal crisis are currently limited. OBJECTIVES The aim of this study was to overview the findings on the use of ketamine and esketamine for the treatment of suicidal ideas and acts. DESIGN Systematic review. DATA SOURCES AND METHODS PubMed, article references, and Clinicaltrials.gov up to June 30, 2022. Meta-analyses published within the last 2 years were also reviewed. RESULTS We identified 12 randomized controlled trials with reduction of suicidal ideation as the primary objective and 14 trials as secondary objectives. Intravenous racemic ketamine was superior to control drugs (placebo or midazolam) within the first 72 h, in spite of large placebo effects. Adverse events were minor and transient. In contrast, intranasal esketamine did not differ from placebo in large-scale studies. Limitations, clinical considerations, and opportunities for future research include the following points: large placebo effects when studying suicidal ideation reduction; small concerns about blinding quality due to dissociative effects; no studies on the risk/prevention of suicidal acts and mortality; lack of studies beyond affective disorders; no studies in adolescents and older people; lack of knowledge of long-term side effects, notably liability for abuse; no robust predictive markers; limited understanding of the mechanisms of ketamine on suicidal ideas; need for improved assessment of suicidal ideation in clinical trials; need for studies in outpatient settings, emergency room, and liaison consultation; need for research on ketamine administration; limited knowledge on the positive and negative effects of concomitant treatments. CONCLUSION Overall, there is compelling evidence for a favorable short-term benefit-risk balance with intravenous racemic ketamine but not intranasal esketamine. The place of ketamine will have to be defined within a multimodal care strategy for suicidal patients. Caution remains necessary for clinical use, and pharmacovigilance will be essential.
Collapse
Affiliation(s)
- Fabrice Jollant
- Service de Psychiatrie, CHU Bicêtre, APHP, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France.,Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France.,Department of Psychiatry, CHU Nîmes, Univ Montpellier, Nîmes, France.,Department of Psychiatry & McGill Group for Suicide Studies, McGill University, Montréal, QC, Canada
| | - Romain Colle
- Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Department of Psychiatry, CHU Bicêtre, APHP, Le Kremlin-Bicêtre, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Thi Mai Loan Nguyen
- Faculty of Pharmacy, University Paris-Saclay, Orsay, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- Faculty of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Department of Psychiatry, CHU Bicêtre, APHP, Le Kremlin-Bicêtre, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Alain M Gardier
- Faculty of Pharmacy, University Paris-Saclay, Orsay, France.,MOODS Team, Inserm 1018, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Le Kremlin-Bicêtre, France
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,German Center for Mental Health (DZPG), site Jena Magdeburg Halle, Germany.,Center for Intervention and Research on adaptive and maladaptive Brain Circuits underlying Mental Health (C-I-R-C), site Jena Magdeburg Halle, Germany
| | - Mocrane Abbar
- Department of Psychiatry, CHU Nîmes, Univ Montpellier, Nîmes, France
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Network for Suicide Prevention in Thuringia (NeST), Jena, Germany.,Center for Intervention and Research on adaptive and maladaptive Brain Circuits underlying Mental Health (C-I-R-C), site Jena Magdeburg Halle, Germany
| |
Collapse
|
12
|
Anderson DJ, Vazirnia P, Loehr C, Sternfels W, Hasoon J, Viswanath O, Kaye AD, Urits I. Testosterone Replacement Therapy in the Treatment of Depression. Health Psychol Res 2022; 10:38956. [PMID: 36452903 PMCID: PMC9704723 DOI: 10.52965/001c.38956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Depression is a common disorder that affects millions globally and is linked to reduced quality of life and mortality. Its pathophysiology is complex and there are several forms of treatment proposed in the literature with differing side effect profiles. Many patients do not respond to treatment which warrants augmentation with other treatments and the investigation of novel treatments. One of these treatments includes testosterone therapy which evidence suggests might improve depressed mood in older patients with low levels of testosterone and helps restore physical impairments caused by age-related hormonal changes. OBJECTIVE The objective of this review is to synthesize information regarding clinical depression, its treatment options, and the efficacy and safety of testosterone treatment for the treatment of depression. METHODS This review utilized comprehensive secondary and tertiary data analysis across many academic databases and published work pertaining to the topic of interest. RESULTS Within some subpopulations such as men with dysthymic disorder, treatment resistant depression, or low testosterone levels, testosterone administration yielded positive results in the treatment of depression. Additionally, rodent models have shown that administering testosterone to gonadectomized male animals reduces symptoms of depression. Conversely, some studies have found no difference in depressive symptoms after treatment with testosterone when compared with placebo. It was also noted that over administration of testosterone is associated with multiple adverse effects and complications. CONCLUSION The current evidence provides mixed conclusions on the effectiveness of testosterone therapy for treating depression. More research is needed in adult men to see if declining testosterone levels directly influence the development of depression.
Collapse
Affiliation(s)
| | | | - Catherine Loehr
- School of Medicine, Louisiana State University Health Sciences Center
| | - Whitney Sternfels
- School of Medicine, Louisiana State University Health Sciences Center
| | - Jamal Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Omar Viswanath
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Valley Anesthesiology and Pain Consultants, Envision Physician Services; Department of Anesthesiology, University of Arizona College of Medicine Phoenix; Department of Anesthesiology, Creighton University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
13
|
Barua PD, Vicnesh J, Lih OS, Palmer EE, Yamakawa T, Kobayashi M, Acharya UR. Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cogn Neurodyn 2022:1-22. [PMID: 36467993 PMCID: PMC9684805 DOI: 10.1007/s11571-022-09904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren't any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts.
Collapse
Affiliation(s)
- Prabal Datta Barua
- School of Management and Enterprise, University of Southern Queensland, Springfield, Australia
| | - Jahmunah Vicnesh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Oh Shu Lih
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Elizabeth Emma Palmer
- Discipline of Pediatric and Child Health, School of Clinical Medicine, University of New South Wales, Kensington, Australia
- Sydney Children’s Hospitals Network, Sydney, Australia
| | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Makiko Kobayashi
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Udyavara Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taizhong, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Chammas F, Januel D, Bouaziz N. Inpatient suicide in psychiatric settings: Evaluation of current prevention measures. Front Psychiatry 2022; 13:997974. [PMID: 36386981 PMCID: PMC9650354 DOI: 10.3389/fpsyt.2022.997974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The risk of suicide in psychiatric hospitals is 50 times higher than in the general population, despite patient safety being a priority for any hospital. However, to date, due to the complexity of assessing suicide risk, there has been no consensus on the suicide prevention measures that should be in place in hospitals. The aim of this work is: To provide an overview of the progress that has been made in the field of inpatient suicide prevention in recent years; discuss the problems that remain; and suggest potential future developments. As new clinical dimensions (notably anhedonia, psychological pain and hopelessness) develop, they should become new therapeutic targets. Team training (like the Gatekeeper Training Program) and the latest advances in suicide risk assessment (such as the Collaborative Assessment and Management of Suicidality) should be implemented in psychiatric wards. Suicide prevention plans (e.g., ASSIP, SAFE-T, etc.) represent easy-to-administer, low-cost interventions. The Mental Health Environment of Care Checklist has been proven effective to reduce suicide risk at hospitals. Furthermore, the types of psychotherapy recommended to reduce suicide risk are cognitive behavioral therapy (CBT) and dialectical behavioral therapy (DBT). There are several pharmacological treatments for suicide risk, such as lithium and clozapine, which have been shown to be effective in the long term, as well as ketamine and esketamine, which are more effective in the short term. Following some encouraging recent results, buprenorphine may also be proposed to patients with a suicide risk. Triple chronotherapy rapidly improves depressive symptoms over 9 weeks. Regarding brain stimulation techniques, rTMS has proven to be effective in alleviating multiple dimensions of suicidality.
Collapse
Affiliation(s)
- Francesca Chammas
- Centre de Recherche Clinique, EPS Ville-Evrard, Neuilly-sur-Marne, France
| | | | | |
Collapse
|
15
|
Teng T, Fan L, Yan W, Li X, Zhang Y, Xiang Y, Jiang Y, Yuan K, Yin B, Shi L, Liu X, Yu Y, Zhou X, Lu L, Xie P. A diathesis-stress rat model induced suicide-implicated endophenotypes and prefrontal cortex abnormalities in the PKA and GABA receptor signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110538. [PMID: 35189256 DOI: 10.1016/j.pnpbp.2022.110538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Suicide is one of the leading causes of death and represents a significant public health problem worldwide; however, the underlying mechanism of suicide remains unclear, and there is no animal model with suicide-implicated endophenotypes for investigating the etiology, course and potential treatment targets of suicide. Thus, we generated a diathesis-stress rat model to simulate suicide-implicated endophenotypes. First, two hundred rats were screened in two rounds of learned helplessness (LH) tests and selected as learned helplessness-sensitive (LHS) rats (n = 37) and learned helplessness-resistant (LHR) rats (n = 39). Then, all LHS rats and half of the rats (randomly selected) in the LHR group were exposed to four weeks of social defeat stress (SDS) (LHS + SDS group, n = 37 and LHR + SDS group, n = 20, respectively). The remainder of the LHR rats were handled as controls (LHR + CON group, n = 19). The LHS + SDS group showed significantly more suicide-implicated endophenotypes than the LHR + CON group, including longer immobile times in the forced swim test (hopelessness), higher scores in the irritability test (irritability), shorter latencies to attack (impulsivity), longer total attack times in the resident-intruder test (aggression), and lower sucrose preference indices (anhedonia). Proteomic analyses revealed that the canonical pathways that were the most common between the LHS + SDS and LHR + CON groups were the PKA and GABA receptor pathways in the prefrontal cortex. A diathesis-stress paradigm would be a useful way to establish a rat model with suicide-implicated endophenotypes, providing novel perspectives for revealing the potential mechanism of suicide.
Collapse
Affiliation(s)
- Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuemei Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bangmin Yin
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
17
|
Nguyen KT, Gates CA, Hassell JE, Foxx CL, Salazar SN, Luthens AK, Arnold AL, Elam BL, Elsayed AI, Leblanc M, Adams SC, Lowry CA, Reuter JD. Evaluation of the effects of altitude on biological signatures of inflammation and anxiety- and depressive-like behavioral responses. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110331. [PMID: 33891978 DOI: 10.1016/j.pnpbp.2021.110331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Over sixteen million people suffer from a depressive episode annually in the United States, with females affected at twice the rate of males. Little is known about the effects of exposure to high altitude on the risk of development of major depressive disorder, despite reports of higher suicide rates at higher altitudes. We hypothesize that exposure to hypobaric hypoxia at high altitude increases endophenotypes of self-directed suicidal violence, including biological signatures of chronic inflammation and vulnerability to anxiety-like and depressive-like behavioral responses in a sex-specific manner. Biological signatures of inflammation, including granulocyte:lymphocyte ratios, monocyte cell counts, and monocyte:lymphocyte ratios were assessed using complete blood count data, anhedonia, and anxiety- and depressive-like behavioral responses were evaluated. We assessed biological signatures of inflammation and behavioral responses in the open-field test, sucrose preference test, and modified Porsolt forced swim test in young adult male and female Long-Evans and Sprague Dawley rats. All tests were conducted near sea level (374 ft [114 m] elevation) and at moderate-high altitude (5430 ft [1655 m] elevation) during acclimation periods of one, two, three, four, and five weeks following shipment from a sea level animal breeding facility (N = 320, n = 8 per group). Exposure to moderate-high altitude induced a biological signature of increased inflammation, as evidenced by main effects of altitude for: 1) increased granulocyte:lymphocyte ratio; 2) increased count and relative abundance of circulating monocytes; and 3) increased monocyte:lymphocyte ratios. Exposure to moderate-high altitude also increased anhedonia as assessed in the sucrose preference test in both male and female rats, when data were collapsed across strain and time. Among male and female Long Evans rats, exposure to moderate-high altitude increased immobility in the forced swim test, without changing anxiety-like behaviors in the open-field test. Finally, granulocyte:lymphocyte ratios were correlated with anhedonia in the sucrose preference test. These data are consistent with the hypothesis that hypobaric hypoxia at moderate-high altitude induces persistent endophenotypes of self-directed suicidal violence including biological signatures of inflammation, anhedonia, and depressive-like behavioral responses.
Collapse
Affiliation(s)
- Kadi T Nguyen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Chloé A Gates
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - James E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christine L Foxx
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Stephanie N Salazar
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Amalia K Luthens
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Andrea L Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Brooke L Elam
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Mathias Leblanc
- Animal Resources Department, Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Sean C Adams
- Animal Resources Department, Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA.
| | - Jon D Reuter
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Office of Animal Resources, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
18
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
19
|
Sex-based changes in rat brain serotonin and behavior in a model of altitude-related vulnerability to treatment-resistant depression. Psychopharmacology (Berl) 2021; 238:2867-2881. [PMID: 34159421 DOI: 10.1007/s00213-021-05902-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Rates of depression and suicide increase with altitude. In our animal model, rats housed at moderate altitude vs. at sea level exhibit increased depressive symptoms in the forced swim test (FST) and lack of response to selective serotonin reuptake inhibitors (SSRIs). Depression and SSRI resistance are linked to disrupted serotonergic function, and hypobaric hypoxia may reduce the oxygen-dependent synthesis of serotonin. We therefore tested brain serotonin in rats housed at altitude. METHODS Sprague-Dawley rats were housed at altitude (4,500 ft, 10,000 ft) vs. sea level for 7-36 days. Brain serotonin was measured by ELISA, or behavior evaluated in the FST, sucrose preference (SPT), or open-field tests (OFT). RESULTS After 2 weeks at 4,500 ft or 10,000ft vs. sea level, serotonin levels decreased significantly at altitude in the female prefrontal cortex, striatum, hippocampus, and brainstem, but increased with altitude in the male hippocampus and brainstem. Female brain serotonin decreased from 7 to 36 days at 4,500 ft, but males did not vary. At 2 weeks and 24 days, females at altitude exhibit lower brain serotonin and increased depressive symptoms in the FST and SPT, with motor behavior unaltered. In males, serotonin, passive coping in the FST and OFT immobility increased with altitude at 2 weeks, but not at 24 days. Male SPT behavior did not change with altitude. CONCLUSIONS Females may be more vulnerable to depressive symptoms at altitude, while males may be resilient. Chronic hypoxic stress at altitudes as low as 4,500 ft may cause a brain serotonin imbalance to worsen vulnerability to depression and SSRI resistance, and potentially worsen suicide risk.
Collapse
|
20
|
Raising doubt about the anticipated consequences of suicidal behavior: Evidence for a new approach from laboratory and real-world experiments. Behav Res Ther 2021; 147:103971. [PMID: 34597872 DOI: 10.1016/j.brat.2021.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Converging evidence from basic science and experimental suicide research suggest that the anticipated consequences of suicide may have direct causal effects on suicidal behavior and accordingly represent a promising intervention target. Raising doubt about individuals' desirable anticipated consequences of suicide may be one means of disrupting this target. We tested this possibility across two complementary experimental studies. METHOD Study 1 tested the effects of raising doubt about desirable anticipated consequences on virtual reality (VR) suicide in the lab, randomizing 413 participants across four conditions. In Study 2, 226 suicidal adults were randomized to an anticipated consequence manipulation or control condition then re-assessed at 2- and 8-weeks post-baseline. RESULTS In Study 1, anticipating that engaging in VR suicide would guarantee a desirable outcome significantly increased the VR suicide rate; conversely, raising doubt about the desirable anticipated consequences significantly reduced the VR suicide rate. In Study 2, raising doubt about the anticipated consequences of attempting suicide by firearm significantly reduced the perceived lethality of firearms as well as self-predicted likelihood of future suicide attempts, with effects sustained at 2-week follow-up. CONCLUSIONS Findings suggest that raising doubt about desirable anticipated consequences of suicide merits further research as one potential approach to inhibit suicidal behavior.
Collapse
|
21
|
Ji X, Zhao J, Fan L, Li H, Lin P, Zhang P, Fang S, Law S, Yao S, Wang X. Highlighting psychological pain avoidance and decision-making bias as key predictors of suicide attempt in major depressive disorder-A novel investigative approach using machine learning. J Clin Psychol 2021; 78:671-691. [PMID: 34542183 DOI: 10.1002/jclp.23246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/05/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Predicting suicide is notoriously difficult and complex, but a serious public health issue. An innovative approach utilizing machine learning (ML) that incorporates features of psychological mechanisms and decision-making characteristics related to suicidality could create an improved model for identifying suicide risk in patients with major depressive disorder (MDD). METHOD Forty-four patients with MDD and past suicide attempts (MDD_SA, N = 44); 48 patients with MDD but without past suicide attempts (MDD_NS, N = 48-42 of whom with suicide ideation [MDD_SI, N = 42]), and healthy controls (HCs, N = 51) completed seven psychometric assessments including the Three-dimensional Psychological Pain Scale (TDPPS), and one behavioral assessment, the Balloon Analogue Risk Task (BART). Descriptive statistics, group comparisons, logistic regressions, and ML were used to explore and compare the groups and generate predictors of suicidal acts. RESULTS MDD_SA and MDD_NS differed in TDPPS total score, pain arousal and avoidance subscale scores, suicidal ideation scores, and relevant decision-making indicators in BART. Logistic regression tests linked suicide attempts to psychological pain avoidance and a risk decision-making indicator. The resultant key ML model distinguished MDD_SA/MDD_NS with 88.2% accuracy. The model could also distinguish MDD_SA/MDD_SI with 81.25% accuracy. The ML model using hopelessness could classify MDD_SI/HC with 94.4% accuracy. CONCLUSION ML analyses showed that motivation to avoid intolerable psychological pain, coupled with impaired decision-making bias toward under-valuing life's worth are highly predictive of suicide attempts. Analyses also demonstrated that suicidal ideation and attempts differed in potential mechanisms, as suicidal ideation was more related to hopelessness. ML algorithms show useful promises as a predictive instrument.
Collapse
Affiliation(s)
- Xinlei Ji
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Zhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lejia Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing, China
| | - Pan Lin
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Panwen Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shulin Fang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Samuel Law
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Medical Psychological Institute of Central South University, Changsha, Hunan, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| |
Collapse
|
22
|
Izumi K, Iwamoto H, Yaegashi H, Nohara T, Shigehara K, Kadono Y, Nanjo S, Yamada T, Ohtsubo K, Yano S, Mizokami A. Androgen replacement therapy for cancer-related symptoms in male: result of prospective randomized trial (ARTFORM study). J Cachexia Sarcopenia Muscle 2021; 12:831-842. [PMID: 34029455 PMCID: PMC8350213 DOI: 10.1002/jcsm.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypogonadism associated with cancer is reported to cause cachexia and a variety of physical and psychological symptoms. This study aims to evaluate whether androgen replacement therapy can improve cancer-related symptoms in male advanced cancer patients. METHODS An investigator-initiated, prospective, and randomized controlled study was conducted. Patients with low serum testosterone levels (total or free testosterone levels were <2.31 ng/mL or <11.8 pg/mL, respectively) were randomly assigned to the control or testosterone enanthate administration (testosterone group) groups. Testosterone enanthate was injected into the muscle tissue at a dose of 250 mg every 4 weeks (baseline, week 4, and week 8). Differences in quality of life questionnaires and cachexia-related serum protein levels between groups were assessed. RESULTS This study enrolled and randomized 106 and 81 patients, respectively. Moreover, 41 and 40 patients were in the control and testosterone groups, respectively. Although no significant differences in the change of subscales and total scores in Functional Assessment of Anorexia/Cachexia Treatment were noted from the baseline between the two groups, the testosterone group showed a significantly better change in the 'unhappiness' item of the Edmonton Symptom Assessment System at week 12 compared with baseline versus the control group (-1.4 and 0.0 points, respectively; mean, P = 0.007). No significant differences exist in the change of serum interleukin-6 and insulin-like growth factor-1 levels at week 12 from the baseline between the control and testosterone groups. Consequently, the testosterone group significantly inhibited the change in serum tumour necrotic factor-α level at week 12 from the baseline compared with the control group (+0.4 and +0.1 pg/mL, respectively; mean, P = 0.005). CONCLUSIONS Although testosterone enanthate did not improve most of the items in health-related quality of life questionnaires, testosterone enanthate induced a significantly better change in the 'unhappiness' item at week 12 compared with the control. Testosterone enanthate may be a potential treatment option for male advanced cancer patients.
Collapse
Affiliation(s)
- Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Hiroshi Yaegashi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Takahiro Nohara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tadaaki Yamada
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koshiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| |
Collapse
|
23
|
Zafiriou E, Daponte AI, Siokas V, Tsigalou C, Dardiotis E, Bogdanos DP. Depression and Obesity in Patients With Psoriasis and Psoriatic Arthritis: Is IL-17-Mediated Immune Dysregulation the Connecting Link? Front Immunol 2021; 12:699848. [PMID: 34367160 PMCID: PMC8334867 DOI: 10.3389/fimmu.2021.699848] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Patients with psoriasis are frequently obese and experience anxiety or suffer from depressive disorders. The immunopathogenesis of psoriasis and indeed psoriatic arthritis is largely based on the pivotal role of IL-17/IL-23 axis, to an extent that currently monoclonal antibodies selectively inhibiting IL-17 or IL-23 are routinely used for the treatment of psoriatic diseases. Emerging data, demonstrating a decisive role for IL-17 and IL-17 producing cell subsets, such as Th17 in the induction and progression of obesity and depression has led authors to suggest that psoriatic disease, obesity and anxiety/depression may indeed be interconnected manifestation of a state of immunedysregulation, the linked being IL-17 and its related cells. We discuss this hypothetical link in depth taking into account the beneficial effects anti-IL17 and anti-IL-17 receptor inhibitors in treating psoriatic disease and the on-going debate as to whether these biologics may exert a direct or indirect effect in ameliorating concomitant obesity and depressive disorders, which are frequently noted in the same patient.
Collapse
Affiliation(s)
- Efterpi Zafiriou
- Academic Department of Dermatology, University General Hospital of Larissa and Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Athina I. Daponte
- Academic Department of Dermatology, University General Hospital of Larissa and Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Vasileios Siokas
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Christina Tsigalou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efthymios Dardiotis
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Dimitrios P. Bogdanos
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| |
Collapse
|
24
|
Roy B, Dwivedi Y. Modeling endophenotypes of suicidal behavior in animals. Neurosci Biobehav Rev 2021; 128:819-827. [PMID: 33421543 DOI: 10.1016/j.neubiorev.2020.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/25/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Suicide is a major public health concern. One of the common contributors to the increased risk for suicide is the genetic constitution of individuals, which determines certain endophenotypic traits used as quantifiable measure of neurobiological functions. Therefore, a logical deconstruction of the originating endophenotypes associated with suicidal risk could provide a better understanding of this complex disorder. In this regard, non-human animals can be a useful resource to test endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. In this review, we have focused on the neurobiological abnormalities, primarily genetic and epigenetic abnormalities, associated with suicidal behavior and the scope of their modeling in animals. This can substantially advance the current understanding of suicidal behavior manifested with certain trait-based endophenotypes and may provide an opportunity to test novel hypotheses as well as aid in the development of treatment opportunities and risk assessment.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, 1720 7(th) Avenue South, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, 1720 7(th) Avenue South, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
25
|
Postolache TT, Wadhawan A, Rujescu D, Hoisington AJ, Dagdag A, Baca-Garcia E, Lowry CA, Okusaga OO, Brenner LA. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front Psychiatry 2021; 12:665682. [PMID: 34177652 PMCID: PMC8226025 DOI: 10.3389/fpsyt.2021.665682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents. This paper is a detailed review of the associations between T. gondii serology and suicidal behavior, a field of study that started 15 years ago with our publication of associations between T. gondii IgG serology and suicidal behavior in persons with mood disorders. This "legacy" article presents, chronologically, our primary studies in individuals with mood disorders and schizophrenia in Germany, recent attempters in Sweden, and in a large cohort of mothers in Denmark. Then, it reviews findings from all three meta-analyses published to date, confirming our reported associations and overall consistent in effect size [ranging between 39 and 57% elevation of odds of suicide attempt in T. gondii immunoglobulin (IgG) positives]. Finally, the article introduces certain links between T. gondii and biomarkers previously associated with suicidal behavior (kynurenines, phenylalanine/tyrosine), intermediate phenotypes of suicidal behavior (impulsivity, aggression) and state-dependent suicide risk factors (hopelessness/dysphoria, sleep impairment). In sum, an abundance of evidence supports a positive link between suicide attempts (but not suicidal ideation) and T. gondii IgG (but not IgM) seropositivity and serointensity. Trait impulsivity and aggression, endophenotypes of suicidal behavior have also been positively associated with T. gondii seropositivity in both the psychiatrically healthy as well as in patients with Intermittent Explosive Disorder. Yet, causality has not been demonstrated. Thus, randomized interventional studies are necessary to advance causal inferences and, if causality is confirmed, to provide hope that an etiological treatment for a distinct subgroup of individuals at an increased risk for suicide could emerge.
Collapse
Affiliation(s)
- Teodor T Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, United States
| | - Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Psychiatry, Saint Elizabeth's Hospital, Washington, DC, United States
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle, Halle, Germany
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Systems Engineering and Management, Air Force Institute of Technology, Dayton, OH, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Enrique Baca-Garcia
- Department of Psychiatry, Jimenez Diaz Foundation Hospital, Madrid, Spain.,Department of Psychiatry, Madrid Autonomous University, Madrid, Spain.,Department of Psychiatry, Rey Juan Carlos University Hospital, Móstoles, Spain.,Department of Psychiatry, General Hospital of Villalba, Madrid, Spain.,Department of Psychiatry, Infanta Elena University Hospital, Valdemoro, Spain.,Universidad Catolica del Maule, Talca, Chile.,Department of Psychiatry, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Olaoluwa O Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E DeBakey VA Medical Center, Houston, TX, United States
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Psychiatry & Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
Lennon JC. Machine learning algorithms for suicide risk: a premature arms race? Gen Psychiatr 2020; 33:e100269. [PMID: 33089067 PMCID: PMC7534051 DOI: 10.1136/gpsych-2020-100269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jack C Lennon
- Department of Psychology, Adler University, Chicago, Illinois, USA
| |
Collapse
|
27
|
Zitzmann M. Testosterone, mood, behaviour and quality of life. Andrology 2020; 8:1598-1605. [DOI: 10.1111/andr.12867] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Zitzmann
- Center for Reproductive Medicine and Andrology/Clinical Andrology University Hospital Münster Germany
| |
Collapse
|
28
|
Unintentional injury fatalities in the context of rising U.S. suicide rates: A five-year review of the web-based injury statistics query and reporting system. Psychiatry Res 2020; 289:113066. [PMID: 32438211 PMCID: PMC7211705 DOI: 10.1016/j.psychres.2020.113066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/21/2022]
Abstract
This archival study focuses specifically on suicide fatalities in relation to unintentional and undetermined injury fatalities in an effort to determine whether or not these rates are rising consistently. This question may serve to inform whether or not suicides are being accurately reported and documented. Data from all 50 states from the years 2012-2016 were obtained from the Web-based Injury Statistics Query and Reporting System (WISQARS) developed by the Centers for Disease Control and Prevention. A total of 213,726 suicide fatalities, 702,176 unintentional injury fatalities, and 24,533 undetermined injury fatalities comprised the dataset. Injury fatality rates depicted annual increases in both suicide and unintentional injury fatalities but variability in undetermined injury fatalities. Bivariate analyses discovered a statistically significant association between annual suicide fatality rates and unintentional (nonsuicidal) injury fatality rates. It would be suspected, ceteris paribus, that calculated rate changes over these years would follow suit. However, this was not observed. Given the trends and increasing stigma surrounding suicide, it is worth considering the degree to which suicides may be underreported or -documented and the epidemiological and translational ramifications of these trends as they pertain to future suicide research.
Collapse
|
29
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
30
|
Ambrus L, Westling S. Leptin, Anxiety Symptoms, and Hypothalamic-Pituitary-Adrenal Axis Activity among Drug-Free, Female Suicide Attempters. Neuropsychobiology 2020; 78:145-152. [PMID: 31189176 DOI: 10.1159/000500737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/29/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dysregulation of leptin secretion and functioning of the hypothalamic-pituitary-adrenal (HPA) axis may be involved in the pathophysiology of suicide. Preclinical and clinical studies have shown interactions between the HPA axis and leptin. There is also evidence for a negative relationship between leptin and anxiety in humans. However, these possible associations have not been studied in individuals with attempted suicide. OBJECTIVES To examine the relationship between leptin, HPA axis activity, and anxiety in individuals with a recent suicide attempt. METHOD Sixty-nine individuals with a recent suicide attempt (n = 37 females; n = 32 males) were recruited and subjected to the Dexamethasone Suppression Test (DST), lumbar puncture, and evaluation with the Comprehensive Psychopathological Rating Scale from which the Brief Scale for Anxiety (BSA) was derived. Leptin was analyzed in cerebrospinal fluid (CSF) and cortisol in serum. Leptin was corrected for body mass index (BMI) by dividing CSF-leptin by BMI (CSF-leptin/BMI). Due to gender-related differences in leptin secretion and HPA axis activity, calculations were made for males and females separately. RESULTS Significant differences were only found among females; CSF-leptin/BMI levels correlated significantly and negatively with BSA (p < 0.05), pre-DST cortisol, and post-DST serum cortisol at 8 a.m. and 3 p.m. (all p < 0.05). Furthermore, CSF-leptin/BMI was significantly lower in nonsuppressors of dexamethasone as compared to suppressors (p < 0.05). CONCLUSIONS These findings suggest that in females with a recent suicide attempt, low CSF leptin may be related to symptoms of anxiety and a hyperactive HPA axis.
Collapse
Affiliation(s)
- Livia Ambrus
- Section of Psychiatry, Department of Clinical Sciences, Clinical Psychiatric Research Center, Lund University, Lund, Sweden,
| | - Sofie Westling
- Section of Psychiatry, Department of Clinical Sciences, Clinical Psychiatric Research Center, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Lengvenyte A, Conejero I, Courtet P, Olié E. Biological bases of suicidal behaviours: A narrative review. Eur J Neurosci 2019; 53:330-351. [PMID: 31793103 DOI: 10.1111/ejn.14635] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Suicidal behaviour is a multifaceted phenomenon that concerns all human populations. It has been suggested that a complex interaction between the individual genetic profile and environmental factors throughout life underlies the pathophysiology of suicidal behaviour. Although epidemiological and genetic studies suggest the existence of a genetic component, exposure to biological and psychosocial adversities, especially during critical developmental periods, also contributes to altering the biological responses to threat and pleasure. This results in amplified maladaptive cognitive and behavioural traits and states associated with suicidal behaviours. Alterations in the cognitive inhibition and decision-making capacity have been implicated in suicidal behaviours. Structural and functional changes in key brain regions and networks, such as prefrontal cortex, insula and default mode network, may underlie this relationship. Furthermore, the shift from health to suicidal behaviour incorporates complex and dynamic changes in the immune and stress responses, monoaminergic system, gonadal system and neuroplasticity. In this review, we describe the major findings of epidemiological, genetic, neuroanatomical, neuropsychological, immunological and neuroendocrinological studies on suicide behaviours to provide a solid background for future research in this field. This broad overview of the biological bases of suicide should promote neuroscience research on suicidal behaviours. This might lead to improved biological models and to the identification of evidence-based biomarkers, treatment options and preventive strategies.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry & Acute Care, CHU Montpellier, University of Montpellier, Montpellier, France.,Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Ismael Conejero
- Neuropsychiatry: Epidemiological and Clinical Research, Inserm Unit 1061, Montpellier, France.,Department of Psychiatry, CHU Nimes, University of Montpellier, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry & Acute Care, CHU Montpellier, University of Montpellier, Montpellier, France.,Neuropsychiatry: Epidemiological and Clinical Research, Inserm Unit 1061, Montpellier, France
| | - Emilie Olié
- Department of Emergency Psychiatry & Acute Care, CHU Montpellier, University of Montpellier, Montpellier, France.,Neuropsychiatry: Epidemiological and Clinical Research, Inserm Unit 1061, Montpellier, France
| |
Collapse
|
32
|
Nugent AC, Ballard ED, Park LT, Zarate CA. Research on the pathophysiology, treatment, and prevention of suicide: practical and ethical issues. BMC Psychiatry 2019; 19:332. [PMID: 31675949 PMCID: PMC6824024 DOI: 10.1186/s12888-019-2301-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite decades of research, the rate of death from suicide is rising in the United States. Suicide is a complex and multifactorial phenomenon and, to date, no validated biomarkers that predict suicidal behavior have been identified. Only one FDA-approved drug to prevent suicide exists, and it is approved only for patients with schizophrenia. Although anti-suicide psychotherapeutic techniques exist, treatment takes time, and only preliminary data exist for rapid-acting therapies. DISCUSSION While more research into suicidal ideation and acute suicidal behavior is clearly needed, this research is fraught with both practical and ethical concerns. As a result, many investigators and bioethicists have called for restrictions on the types of research that individuals with suicidal behavior can participate in, despite the fact that the available empirical evidence suggests that this research can be done safely. This manuscript presents background information on the phenomenology of suicide, discusses the current state of treatment and prevention strategies, and reviews the practical and ethical issues surrounding suicide research in the context of available empirical data. Currently, the causes of suicide are poorly understood, in part due to the fact that very few studies have investigated the acute suicidal crisis. Although some biomarkers for predicting risk have been developed, none have been sufficiently validated. The most successful current interventions involve means restriction. However, while numerous hurdles face researchers, these are not insurmountable. The available evidence suggests that research into suicide can be conducted both safely and ethically.
Collapse
Affiliation(s)
- Allison C. Nugent
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA ,0000 0004 0464 0574grid.416868.5Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth D. Ballard
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Lawrence T. Park
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Carlos A. Zarate
- 0000 0004 0464 0574grid.416868.5Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
33
|
Lennon JC. Etiopathogenesis of Suicide: A Conceptual Analysis of Risk and Prevention Within a Comprehensive, Deterministic Model. Front Psychol 2019; 10:2087. [PMID: 31572269 PMCID: PMC6751268 DOI: 10.3389/fpsyg.2019.02087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
Suicide is a rising global health concern receiving disproportionate attention in comparison to other health conditions. In spite of substantial technological and scientific advancements, suicide research has continued to move slowly in terms of clinical translation due to the complexity of neural mechanisms, and subjective experiences that seem to underpin this complex human behavior. This paper analyzes the concepts of risk and prevention in the context of suicide in an attempt to bridge the large methodological and theoretical gaps between the biological, psychological, and sociological dimensions. This paper aims to accomplish the following objectives: (1) operationalize the concepts of suicide risk and prevention as they relate to current knowledge and capabilities; (2) synthesize and integrate suicide research across biological, psychological, and sociological dimensions; (3) discuss limitations of each dimension in isolation; (4) suggest a model of etiopathogenesis that incorporates extant literature and bridges unnecessary gaps between dimensions; and (5) suggest future directions for multidimensional research through the inclusion of principles from the physical sciences. Ultimately, this paper provides a basis for a comprehensive model of suicide within a deterministic, chaotic system.
Collapse
Affiliation(s)
- Jack C Lennon
- Department of Psychology, Adler University, Chicago, IL, United States.,Section of Parkinson's Disease and Movement Disorders, Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States.,Department of Behavioral Sciences, Rush Neurobehavioral Center, Rush University Medical Center, Skokie, IL, United States
| |
Collapse
|
34
|
Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, Tominaga I, Setoyama D, Kang D, Mimura M, Kanba S, Kato TA. Suicide and Microglia: Recent Findings and Future Perspectives Based on Human Studies. Front Cell Neurosci 2019; 13:31. [PMID: 30814929 PMCID: PMC6381042 DOI: 10.3389/fncel.2019.00031] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
Suicide is one of the most disastrous outcomes for psychiatric disorders. Recent advances in biological psychiatry have suggested a positive relationship between some specific brain abnormalities and specific symptoms in psychiatric disorders whose organic bases were previously completely unknown. Microglia, immune cells in the brain, are regarded to play crucial roles in brain inflammation by releasing inflammatory mediators and are suggested to contribute to various psychiatric disorders such as depression and schizophrenia. Recently, activated microglia have been suggested to be one of the possible contributing cells to suicide and suicidal behaviors via various mechanisms especially including the tryptophan-kynurenine pathway. Animal model research focusing on psychiatric disorders has a long history, however, there are only limited animal models that can properly express psychiatric symptoms. In particular, to our knowledge, animal models of human suicidal behaviors have not been established. Suicide is believed to be limited to humans, therefore human subjects should be the targets of research despite various ethical and technical limitations. From this perspective, we introduce human biological studies focusing on suicide and microglia. We first present neuropathological studies using the human postmortem brain of suicide victims. Second, we show recent findings based on positron emission tomography (PET) imaging and peripheral blood biomarker analysis on living subjects with suicidal ideation and/or suicide-related behaviors especially focusing on the tryptophan-kynurenine pathway. Finally, we propose future perspectives and tasks to clarify the role of microglia in suicide using multi-dimensional analytical methods focusing on human subjects with suicidal ideation, suicide-related behaviors and suicide victims.
Collapse
Affiliation(s)
- Hisaomi Suzuki
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fabrice Chrétien
- Neuropathology Department, Sainte-Anne Hospital, Paris, France.,Human Histopathology and Animal Models Laboratory, Institute Pasteur, Paris, France
| | | | - Mitsumoto Onaya
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Itaru Tominaga
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Popova NK, Naumenko VS. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets 2019; 23:227-239. [DOI: 10.1080/14728222.2019.1572747] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nina K. Popova
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Vladimir S. Naumenko
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
36
|
Walther A, Breidenstein J, Miller R. Association of Testosterone Treatment With Alleviation of Depressive Symptoms in Men: A Systematic Review and Meta-analysis. JAMA Psychiatry 2019; 76:31-40. [PMID: 30427999 PMCID: PMC6583468 DOI: 10.1001/jamapsychiatry.2018.2734] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE Countering depressive disorders is a public health priority. Currently, antidepressants are the first-line treatment, although they show modest effects. In men, testosterone treatment is a controversial alternative or adjunct treatment option. OBJECTIVES To examine the association of testosterone treatment with alleviation of depressive symptoms in men and to clarify moderating effects of testosterone status, depression status, age, treatment duration, and dosage. DATA SOURCES English-language studies published in peer-reviewed journals identified from PubMed/Medline, Embase, Scopus, PsychINFO, and the Cochrane Controlled Trials Register from database inception to March 5, 2018, using the search terms testosterone, mood, administration, dosage, adverse effects, deficiency, standards, therapeutic use, therapy, treatment, and supplementation. STUDY SELECTION Randomized placebo-controlled clinical trials (RCTs) of testosterone treatment that together cover a broad age range and hypogonadal or eugonadal men reporting depressive symptoms on psychometrically validated depression scales. DATA EXTRACTION AND SYNTHESIS Of 7690 identified records, 469 were evaluated against full study inclusion criteria after removing duplicates, reviews, and studies that did not examine male patients or testosterone. Quality assessment and data extraction from the remaining 27 RCTs were performed. MAIN OUTCOMES AND MEASURES Primary outcomes were testosterone treatment effectiveness (standardized score difference after treatment), efficacy (proportion of patients who responded to testosterone treatment with a score reduction of 50% or greater), and acceptability (proportion of patients who withdrew for any reason). RESULTS Random-effects meta-analysis of 27 RCTs including 1890 men suggested that testosterone treatment is associated with a significant reduction in depressive symptoms compared with placebo (Hedges g, 0.21; 95% CI, 0.10-0.32), showing an efficacy of odds ratio (OR), 2.30 (95% CI, 1.30-4.06). There was no significant difference between acceptability of testosterone treatment and placebo (OR, 0.79; 95% CI, 0.61-1.01). Meta-regression models suggested significant interactions for testosterone treatment with dosage and symptom variability at baseline. In the most conservative bias scenario, testosterone treatment remained significant whenever dosages greater than 0.5 g/wk were administered and symptom variability was kept low. CONCLUSIONS AND RELEVANCE Testosterone treatment appears to be effective and efficacious in reducing depressive symptoms in men, particularly when higher-dosage regimens were applied in carefully selected samples. However, given the heterogeneity of the included RCTs, more preregistered trials are needed that explicitly examine depression as the primary end point and consider relevant moderators.
Collapse
Affiliation(s)
- Andreas Walther
- Department of Biological Psychology, Technische Universität Dresden, Dresden, Germany,Department of Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland,Task Force on Men’s Mental Health of the World Federation of the Societies of Biological Psychiatry
| | - Jonas Breidenstein
- Department of Biological Psychology, Technische Universität Dresden, Dresden, Germany
| | - Robert Miller
- Department of Biological Psychology, Technische Universität Dresden, Dresden, Germany,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Franklin JC, Huang X, Bastidas D. Virtual reality suicide: Development of a translational approach for studying suicide causes. Behav Res Ther 2018; 120:103360. [PMID: 30616833 DOI: 10.1016/j.brat.2018.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 01/10/2023]
Abstract
Causal knowledge is crucial for understanding and preventing suicide. Unfortunately, we have little direct knowledge about suicide causes because we cannot conduct experiments that seek to make suicide more likely. In such situations, translational approaches can provide valuable, though tentative, information. We sought to establish a new translational approach by developing a laboratory approximation of suicide with new virtual reality (VR) technologies. Such an approach would allow researchers to tentatively investigate the causes of suicide by conducting experiments that introduce purported causes of suicide and observe their effects on VR suicide rates. Across three studies (total N = 498), results indicated that our two VR suicide scenarios (jumping from heights; shooting oneself) were safe; rated as unpleasant, realistic, and suicide-relevant; associated with several relevant predictors of VR suicide completion, including male sex, suicidal desire, suicidal capability, agitation, and prior suicidality; associated with reasons for not engaging in VR suicide that are similar to the reasons people give for not engaging in actual suicide; and produced 5% completion rates under neutral conditions and 25% completion rates after reward/avoid manipulations. We hope that future work further improves this approach and applies it to more directly test ideas about suicide causes and suicide prevention.
Collapse
|
38
|
Malhi GS, Das P, Outhred T, Irwin L, Morris G, Hamilton A, Lynch K, Mannie Z. Understanding suicide: Focusing on its mechanisms through a lithium lens. J Affect Disord 2018; 241:338-347. [PMID: 30142593 DOI: 10.1016/j.jad.2018.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Current intervention strategies have been slow in reducing suicide rates, particularly in mood disorders. Thus, for intervention and prevention, a new approach is necessary. Investigating the effects of a medication known for its anti-suicidal properties on neurobiological and neurocognitive substrates of suicidal thinking may provide a deeper and more meaningful understanding of suicide. METHOD A literature search of recognised databases was conducted to examine the intersection of suicide, mood disorders, and the mechanisms of lithium. RESULTS This review synthesises the extant evidence of putative suicide biomarkers and endophenotypes and melds these with known actions of lithium to provide a comprehensive picture of processes underlying suicide. Specifically, the central importance of glycogen synthase kinase-3β (GSK3β) is discussed in detail because it modulates multiple systems that have been repeatedly implicated in suicide, and which lithium also exerts effects on. LIMITATIONS Suicide also occurs outside of mood disorders but we limited our discussion to mood because of our focus on lithium and extending our existing model of suicidal thinking and behaviour that is contextualised within mood disorders. CONCLUSIONS Focusing on the neurobiological mechanisms underpinning suicidal thinking and behaviours through a lithium lens identifies important targets for assessment and intervention. The use of objective measures is critical and using these within a framework that integrates findings from different perspectives and domains of research is likely to yield replicable and validated markers that can be employed both clinically and for further investigation of this complex phenomenon.
Collapse
Affiliation(s)
- Gin S Malhi
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia.
| | - Pritha Das
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Tim Outhred
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Lauren Irwin
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Grace Morris
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Amber Hamilton
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| | - Katie Lynch
- NSW Health and Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Zola Mannie
- Academic Department of Psychiatry, Northern Sydney Local Health District, St Leonards, NSW Australia; Sydney Medical School Northern, University of Sydney, NSW Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW Australia
| |
Collapse
|
39
|
De Berardis D, Fornaro M, Valchera A, Cavuto M, Perna G, Di Nicola M, Serafini G, Carano A, Pompili M, Vellante F, Orsolini L, Fiengo A, Ventriglio A, Yong-Ku K, Martinotti G, Di Giannantonio M, Tomasetti C. Eradicating Suicide at Its Roots: Preclinical Bases and Clinical Evidence of the Efficacy of Ketamine in the Treatment of Suicidal Behaviors. Int J Mol Sci 2018; 19:E2888. [PMID: 30249029 PMCID: PMC6213585 DOI: 10.3390/ijms19102888] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the continuous advancement in neurosciences as well as in the knowledge of human behaviors pathophysiology, currently suicide represents a puzzling challenge. The World Health Organization (WHO) has established that one million people die by suicide every year, with the impressive daily rate of a suicide every 40 s. The weightiest concern about suicidal behavior is how difficult it is for healthcare professionals to predict. However, recent evidence in genomic studies has pointed out the essential role that genetics could play in influencing person's suicide risk. Combining genomic and clinical risk assessment approaches, some studies have identified a number of biomarkers for suicidal ideation, which are involved in neural connectivity, neural activity, mood, as well as in immune and inflammatory response, such as the mammalian target of rapamycin (mTOR) signaling. This interesting discovery provides the neurobiological bases for the use of drugs that impact these specific signaling pathways in the treatment of suicidality, such as ketamine. Ketamine, an N-methyl-d-aspartate glutamate (NMDA) antagonist agent, has recently hit the headlines because of its rapid antidepressant and concurrent anti-suicidal action. Here we review the preclinical and clinical evidence that lay the foundations of the efficacy of ketamine in the treatment of suicidal ideation in mood disorders, thereby also approaching the essential question of the understanding of neurobiological processes of suicide and the potential therapeutics.
Collapse
Affiliation(s)
- Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, "G. Mazzini" Hospital, p.zza Italia 1, 64100 Teramo, Italy.
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, 63100 Ascoli Piceno, Italy.
| | - Marilde Cavuto
- Department of Theory, Analysis and Composition, Music Conservatory "L. Canepa", 07100 Sassari, Italy.
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, 22032 Como, Italy.
- Department of Psychiatry and Neuropsychology, University of Maastricht, 6221 Maastricht, The Netherlands.
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Coral Gables, FL 33114, USA.
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Catholic University of Sacred Heart, 00118 Rome, Italy.
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy.
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "Madonna Del Soccorso", A.S.U.R. 12, 63074 San Benedetto del Tronto, Italy.
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, 00118 Rome, Italy.
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield SG141LZ, UK.
| | - Annastasia Fiengo
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASUR Marche AV5, Mental Health Unit, 63100 Ascoli Piceno, Italy.
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy.
| | - Kim Yong-Ku
- Department of Psychiatry, Korea University College of Medicine, Seoul 08826, Korea.
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Carmine Tomasetti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| |
Collapse
|
40
|
Abstract
The failure of traditional antidepressant medications to adequately target cognitive impairment is associated with poor treatment response, increased risk of relapse, and greater lifetime disability. Opioid receptor antagonists are currently under development as novel therapeutics for major depressive disorder (MDD) and other stress-related illnesses. Although it is known that dysregulation of the endogenous opioid system is observed in patients diagnosed with MDD, the impact of opioidergic neurotransmission on cognitive impairment has not been systematically evaluated. Here we review the literature indicating that opioid manipulations can alter cognitive functions in humans. Furthermore, we detail the preclinical studies that demonstrate the ability of mu-opioid receptor and kappa-opioid receptor ligands to modulate several cognitive processes. Specifically, this review focuses on domains within higher order cognitive processing, including attention and executive functioning, which can differentiate cognitive processes influenced by motivational state.
Collapse
|
41
|
Zebrafish models of epigenetic regulation of CNS functions. Brain Res Bull 2018; 142:344-351. [DOI: 10.1016/j.brainresbull.2018.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
|
42
|
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70:621-660. [PMID: 29945898 PMCID: PMC6020109 DOI: 10.1124/pr.117.015198] [Citation(s) in RCA: 673] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.
Collapse
Affiliation(s)
- Panos Zanos
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Jaclyn N Highland
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edson X Albuquerque
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
43
|
Kanekar S, Sheth CS, Ombach HJ, Olson PR, Bogdanova OV, Petersen M, Renshaw CE, Sung YH, D'Anci KE, Renshaw PF. Hypobaric hypoxia exposure in rats differentially alters antidepressant efficacy of the selective serotonin reuptake inhibitors fluoxetine, paroxetine, escitalopram and sertraline. Pharmacol Biochem Behav 2018; 170:25-35. [PMID: 29738811 DOI: 10.1016/j.pbb.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/19/2023]
Abstract
Treatment-resistant depression, a chronic condition that affects 30% of depressed patients on antidepressants, is highly linked to suicidal behavior. Chronic hypoxia exposure via living at altitude (hypobaric hypoxia) or with chronic hypoxic diseases is demographically linked to increased risk for depression and suicide. We previously demonstrated that housing rats at altitude for a week incrementally increases depression-like behavior in the forced swim test (FST) in females, but not males. In animal models, high altitude exposure reduces brain serotonin, and selective serotonin reuptake inhibitors (SSRIs) can lose efficacy when brain serotonin levels are low. To address whether residence at moderate altitude is detrimental to SSRI function, we examined SSRI efficacy in the FST after a week of housing rats at altitudes of 4500 ft. or 10,000 ft. as compared to at sea level. In females, the tricyclic antidepressant desipramine (positive control) functioned well in all groups, increasing latency to immobility and decreasing immobility, by increasing climbing. However, the SSRIs fluoxetine, paroxetine and escitalopram were ineffective in females in all groups: only paroxetine improved swimming in the FST as expected of a SSRI, while all three unexpectedly reduced climbing. Fluoxetine was also ineffective in male rats. Sertraline was the only SSRI with antidepressant efficacy at altitude in both females and males, increasing swimming, climbing and latency to immobility, and reducing immobility. Hypobaric hypoxia thus appears to be detrimental to efficacy of the SSRIs fluoxetine, paroxetine and escitalopram, but not of sertraline. Unlike the other SSRIs, sertraline can improve both serotonergic and dopaminergic transmission, and may be less impacted by a hypoxia-induced serotonin deficit. A targeted approach may thus be necessary for successful antidepressant treatment in patients with depression who live at altitude or with chronic hypoxic diseases, and that sertraline may be the SSRI of choice for prescription for this population.
Collapse
Affiliation(s)
- Shami Kanekar
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States; VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, United States; The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States.
| | - Chandni S Sheth
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Hendrik J Ombach
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Paul R Olson
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States
| | - Olena V Bogdanova
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States
| | - Matthew Petersen
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Chloe E Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Young-Hoon Sung
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | | | - Perry F Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States; VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, United States; The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, United States
| |
Collapse
|
44
|
Maurice-Gélinas C, Deslauriers J, Monpays C, Sarret P, Grignon S. The 5α-reductase inhibitor finasteride increases suicide-related aggressive behaviors and blocks clozapine-induced beneficial effects in an animal model of schizophrenia. Physiol Behav 2018; 191:65-72. [PMID: 29630964 DOI: 10.1016/j.physbeh.2018.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Death by suicide is 5 times higher among schizophrenia patients than in the general population. There is now compelling evidence suggesting that the pathophysiology of suicide in schizophrenia does not involve central serotonergic neurotransmission disturbances, as has been shown in other contexts. We recently developed and characterized a murine Two-Hit Model of Suicide-related behavior in a schizophrenia-like context (THMS) (gestational inflammation with polyI:C at gestational day 12 followed by post-weaning social isolation). In this THMS model, we have recently shown that the atypical antipsychotic clozapine normalized the prepulse inhibition (PPI) deficits as well suicide-related, impulsive aggressive and anxiety-like behaviors. While the mechanisms underlying the suicide-reducing benefits of clozapine in schizophrenic patients are not well understood, previous works have revealed that clozapine alters brain levels of neurosteroids, such as allopregnanolone. In the present study, we thus investigated the role of endogenous neurosteroids in clozapine action by evaluating whether the 5α-reductase inhibitor finasteride could overturn the ability of clozapine to reduce suicide-related behaviors. We found that clozapine significantly improved the PPI deficits in THMS mice, which could not be reversed by finasteride treatment. However, finasteride counteracted the ability of clozapine to decrease the exploratory behaviors in the open-field test. In the resident-intruder test, THMS mice showed exacerbated aggressiveness and impulsivity following finasteride alone. In this resident-intruder paradigm, clozapine alone effectively blocked the finasteride-enhanced effects on aggression and impulsivity. Altogether, these findings support the existence of a complex interaction between clozapine and neurosteroids in THMS mice. Further investigations are now required to clarify the details of the molecular mechanisms involved.
Collapse
Affiliation(s)
- Caroline Maurice-Gélinas
- Departement of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States
| | - Cécile Monpays
- Departement of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Departement of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Sylvain Grignon
- Departement of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada; Department of Psychiatry, Centre Hospitalier Universitaire de Sherbrooke, 580 Bowen Sud, Sherbrooke, QC J1G 2E8, Canada.
| |
Collapse
|
45
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
46
|
Sheth C, Ombach H, Olson P, Renshaw PF, Kanekar S. Increased Anxiety and Anhedonia in Female Rats Following Exposure to Altitude. High Alt Med Biol 2018; 19:81-90. [PMID: 29431475 DOI: 10.1089/ham.2017.0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sheth, Chandni, Hendrik Ombach, Paul Olson, Perry F. Renshaw, and Shami Kanekar. Increased anxiety and anhedonia in female rats following exposure to altitude. High Alt Med Biol. 19:81-90, 2018.-Anxiety disorders are chronic, highly prevalent conditions, often comorbid with depression. Both anxiety and depression form major risk factors for suicide. Living at altitude is associated with higher rates of depression and suicide, leading us to address whether anxiety disorders may also be amplified at altitude. Using a novel translational animal model, we previously showed that depression-like behavior increases with altitude of housing in female, but not male rats. We now use this model to examine the effects of altitude on both anxiety-like behavior and anhedonia, a core symptom of depression. After housing for a week at sea level, 4500 or 10,000 ft, rats were evaluated for anxiety in the open-field test or the elevated plus maze, and anhedonia in the sucrose preference test. Another group was tested at baseline. Anxiety-like behavior increased in females housed at altitude. In females, lower sucrose preference was seen in those housed at 10,000 ft versus those at sea level. Males showed no change in anxiety or anhedonia across groups. These data suggest that living at moderate-high altitude may pose a risk factor for those vulnerable to anxiety disorders, with the potential to be particularly detrimental to females at altitude.
Collapse
Affiliation(s)
- Chandni Sheth
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Hendrik Ombach
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Paul Olson
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah
| | - Perry F Renshaw
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah.,2 VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC) , Salt Lake City Veterans Health Administration, Salt Lake City, Utah
| | - Shami Kanekar
- 1 Diagnostic Neuroimaging, Department of Psychiatry, University of Utah School of Medicine , Salt Lake City, Utah.,2 VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC) , Salt Lake City Veterans Health Administration, Salt Lake City, Utah
| |
Collapse
|
47
|
Georgiou P, Zanos P, Bhat S, Tracy JK, Merchenthaler IJ, McCarthy MM, Gould TD. Dopamine and Stress System Modulation of Sex Differences in Decision Making. Neuropsychopharmacology 2018; 43:313-324. [PMID: 28741626 PMCID: PMC5729565 DOI: 10.1038/npp.2017.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022]
Abstract
Maladaptive decision making is associated with several neuropsychiatric disorders, including problem gambling and suicidal behavior. The prevalence of these disorders is higher in men vs women, suggesting gender-dependent regulation of their pathophysiology underpinnings. We assessed sex differences in decision making using the rat version of the Iowa gambling task. Female rats identified the most optimal choice from session 1, whereas male rats from session 5. Male, but not female rats, progressively improved their advantageous option responding and surpassed females. Estrus cycle phase did not affect decision making. To test whether pharmacological manipulations targeting the dopaminergic and stress systems affect decision making in a sex-dependent manner, male and female rats received injections of a dopamine D2 receptor (D2R) antagonist (eticlopride), D2R agonist (quinpirole), corticotropin-releasing factor 1 (CRF1) antagonist (antalarmin), and α2-adrenergic receptor antagonist (yohimbine; used as a pharmacological stressor). Alterations in mRNA levels of D2R and CRF1 were also assessed. Eticlopride decreased advantageous responding in male, but not female rats, whereas quinpirole decreased advantageous responding specifically in females. Yohimbine dose-dependently decreased advantageous responding in female rats, whereas decreased advantageous responding was only observed at higher doses in males. Antalarmin increased optimal choice responding only in female rats. Higher Drd2 and Crhr1 expression in the amygdala were observed in female vs male rats. Higher amygdalar Crhr1 expression was negatively correlated with advantageous responding specifically in females. This study demonstrates the relevance of dopaminergic- and stress-dependent sex differences to maladaptive decision making.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Panos Zanos
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Shambhu Bhat
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J Kathleen Tracy
- Departments of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA,Maryland Center of Excellence on Problem Gambling University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Istvan J Merchenthaler
- Departments of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Margaret M McCarthy
- Departments of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, MSTF 936; 685 W. Baltimore St., Baltimore, MD 21201, USA, Tel: +1 (410) 706-5585, E-mail:
| |
Collapse
|
48
|
Pulley JM, Jerome RN, Zaleski NM, Shirey-Rice JK, Pruijssers AJ, Lavieri RR, Chettiar SN, Naylor HM, Aronoff DM, Edwards DA, Niswender CM, Dugan LL, Crofford LJ, Bernard GR, Holroyd KJ. When Enough Is Enough: Decision Criteria for Moving a Known Drug into Clinical Testing for a New Indication in the Absence of Preclinical Efficacy Data. Assay Drug Dev Technol 2017; 15:354-361. [PMID: 29193979 DOI: 10.1089/adt.2017.821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many animal models of disease are suboptimal in their representation of human diseases and lack of predictive power in the success of pivotal human trials. In the context of repurposing drugs with known human safety, it is sometimes appropriate to conduct the "last experiment first," that is, progressing directly to human investigations. However, there are not accepted criteria for when to proceed straight to humans to test a new indication. We propose a specific set of criteria to guide the decision-making around when to initiate human proof of principle without preclinical efficacy studies in animal models. This approach could accelerate the transition of novel therapeutic approaches to human applications.
Collapse
Affiliation(s)
- Jill M Pulley
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Rebecca N Jerome
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Nicole M Zaleski
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Jana K Shirey-Rice
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Andrea J Pruijssers
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Robert R Lavieri
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Somsundaram N Chettiar
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Helen M Naylor
- 2 Center for Knowledge Management, Vanderbilt University Medical Center , Nashville, Tennessee
| | - David M Aronoff
- 3 Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - David A Edwards
- 4 Division of Pain Medicine, Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Colleen M Niswender
- 5 Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center , Nashville, Tennessee.,6 Vanderbilt Kennedy Center for Research on Human Development , Nashville Tennessee
| | - Laura L Dugan
- 7 Division of Geriatric Medicine, Department of Medicine, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Leslie J Crofford
- 8 Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Gordon R Bernard
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Kenneth J Holroyd
- 1 Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center , Nashville, Tennessee.,9 Center for Technology Transfer and Commercialization, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
49
|
Stein MB, Ware EB, Mitchell C, Chen C, Borja S, Cai T, Dempsey CL, Fullerton CS, Gelernter J, Heeringa SG, Jain S, Kessler RC, Naifeh JA, Nock MK, Ripke S, Sun X, Beckham JC, Kimbrel NA, Ursano RJ, Smoller JW. Genomewide association studies of suicide attempts in US soldiers. Am J Med Genet B Neuropsychiatr Genet 2017; 174:786-797. [PMID: 28902444 PMCID: PMC5685938 DOI: 10.1002/ajmg.b.32594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Suicide is a global public health problem with particular resonance for the US military. Genetic risk factors for suicidality are of interest as indicators of susceptibility and potential targets for intervention. We utilized population-based nonclinical cohorts of US military personnel (discovery: N = 473 cases and N = 9778 control subjects; replication: N = 135 cases and N = 6879 control subjects) and a clinical case-control sample of recent suicide attempters (N = 51 cases and N = 112 control subjects) to conduct GWAS of suicide attempts (SA). Genomewide association was evaluated within each ancestral group (European-, African-, Latino-American) and study using logistic regression models. Meta-analysis of the European ancestry discovery samples revealed a genomewide significant locus in association with SA near MRAP2 (melanocortin 2 receptor accessory protein 2) and CEP162 (centrosomal protein 162); 12 genomewide significant SNPs in the region; peak SNP rs12524136-T, OR = 2.88, p = 5.24E-10. These findings were not replicated in the European ancestry subsamples of the replication or suicide attempters samples. However, the association of the peak SNP remained significant in a meta-analysis of all studies and ancestral subgroups (OR = 2.18, 95%CI 1.70, 2.80). Polygenic risk score (PRS) analyses showed some association of SA with bipolar disorder. The association with SNPs encompassing MRAP2, a gene expressed in brain and adrenal cortex and involved in neural control of energy homeostasis, points to this locus as a plausible susceptibility gene for suicidality that should be further studied. Larger sample sizes will be needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Murray B. Stein
- Department of PsychiatryUniversity of California San Diego and VA San Diego Healthcare SystemLa JollaCalifornia
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCalifornia
| | - Erin B. Ware
- Institute for Social ResearchUniversity of MichiganAnn ArborMichigan
| | - Colter Mitchell
- Institute for Social ResearchUniversity of MichiganAnn ArborMichigan
| | - Chia‐Yen Chen
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusetts
| | - Susan Borja
- National Institute of Mental HealthBethesdaMaryland
| | - Tianxi Cai
- Harvard T.H. Chan School of Public HealthBostonMassachusetts
| | | | | | - Joel Gelernter
- Departments of Psychiatry, Genetics, and NeurobiologyYale UniversityNew HavenConnecticut
| | | | - Sonia Jain
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCalifornia
| | - Ronald C. Kessler
- Department of Health Care PolicyHarvard Medical SchoolBostonMassachusetts
| | - James A. Naifeh
- Uniformed Services University of the Health SciencesBethesdaMaryland
| | - Matthew K. Nock
- Department of PsychologyHarvard UniversityCambridgeMassachusetts
| | - Stephan Ripke
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusetts
| | - Xiaoying Sun
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCalifornia
| | - Jean C. Beckham
- Durham Veterans Affairs Health Care System and Duke University Health SystemDurhamNorth Carolina
- VA MIRECCDurhamNorth Carolina
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Health Care System and Duke University Health SystemDurhamNorth Carolina
- VA MIRECCDurhamNorth Carolina
| | - Robert J Ursano
- Uniformed Services University of the Health SciencesBethesdaMaryland
| | - Jordan W. Smoller
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusetts
| | | |
Collapse
|
50
|
Wadhawan A, Dagdag A, Duffy A, Daue ML, Ryan KA, Brenner LA, Stiller JW, Pollin TI, Groer MW, Huang X, Lowry CA, Mitchell BD, Postolache TT. Positive association between Toxoplasma gondii IgG serointensity and current dysphoria/hopelessness scores in the Old Order Amish: a preliminary study. Pteridines 2017; 28:185-194. [PMID: 29657363 DOI: 10.1515/pterid-2017-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii (T. gondii) IgG seropositivity and serointensity have been previously associated with suicidal self-directed violence (SSDV). Although associations with unipolar depression have also been investigated, the results have been inconsistent, possibly as a consequence of high heterogeneity. We have now studied this association in a more homogeneous population, [that is (i.e.) Old Order Amish (OOA)] with previously reported high T. gondii seroprevalence. In 306 OOA with a mean age of 46.1 ± 16.7 years, including 191 (62.4%) women in the Amish Wellness Study, we obtained both T. gondii IgG titers (by enzyme-linked immunosorbent assay [ELISA]), and depression screening questionnaires (Patient Health Questionnaire [PHQ-9] [n = 280] and PHQ-2 [n = 26]). Associations between T. gondii IgG and dysphoria/hopelessness and anhedonia scores on depression screening questionnaires were analyzed using multivariable linear methods with adjustment for age and sex. Serointensity was associated with both current dysphoria/hopelessness (p = 0.045) and current combined anhedonia and dysphoria/hopelessness (p = 0.043), while associations with simple anhedonia and past/lifelong (rather than current) phenotypes were not significant. These results indicate the need for larger longitudinal studies to corroborate the association between dysphoria/hopelessness and T. gondii IgG-titers. Current hopelessness is a known risk factor for SSDV which responds particularly well to cognitive behavioral therapy, and may be a focused treatment target for T. gondii-positive individuals at high-risk for SSDV.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; and Saint Elizabeths' Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allyson Duffy
- College of Nursing, University of South Florida College of Nursing, Tampa, FL, USA
| | - Melanie L Daue
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Kathy A Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine and Rehabilitation, and Neurology, University of Colorado, Anschutz School of Medicine, Denver, CO, USA; and Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO, USA
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Saint Elizabeths' Hospital, Department of Neurology, Washington, DC, USA; and Maryland State Athletic Commission, Baltimore, MD, USA
| | - Toni I Pollin
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maureen W Groer
- College of Nursing, University of South Florida College of Nursing, Tampa, FL, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; and Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; and Geriatrics Research and Education Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran. Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO, USA; and Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|