1
|
Hernandez S, Hindorff LA, Morales J, Ramos EM, Manolio TA. Patterns of pharmacogenetic variation in nine biogeographic groups. Clin Transl Sci 2024; 17:e70017. [PMID: 39206687 PMCID: PMC11358764 DOI: 10.1111/cts.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Frequencies of pharmacogenetic (PGx) variants are known to differ substantially across populations but much of the available PGx literature focuses on one or a few population groups, often defined in nonstandardized ways, or on a specific gene or variant. Guidelines produced by the Clinical Pharmacogenetic Implementation Consortium (CPIC) provide consistent methods of literature extraction, curation, and reporting, including comprehensive curation of allele frequency data across nine defined "biogeographic groups" from the PGx literature. We extracted data from 23 CPIC guidelines encompassing 19 genes to compare the sizes of the populations from each group and allele frequencies of altered function alleles across groups. The European group was the largest in the curated literature for 16 of the 19 genes, while the American and Oceanian groups were the smallest. Nearly 200 alleles were detected in nonreference groups that were not reported in the largest (reference) group. The genes CYP2B6 and CYP2C9 were more likely to have higher frequencies of altered function alleles in nonreference groups compared to the reference group, while the genes CYP4F2, DPYD, SLCO1B1, and UGT1A1 were less likely to have higher frequencies in nonreference groups. PGx allele frequencies and function differ substantially across nine biogeographic groups, all but two of which are underrepresented in available PGx data. Awareness of these differences and increased efforts to characterize the breadth of global PGx variation are needed to ensure that implementation of PGx-guided drug selection does not further widen existing health disparities among populations currently underrepresented in PGx data.
Collapse
Affiliation(s)
- Sophia Hernandez
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Lucia A. Hindorff
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Joannella Morales
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Erin M. Ramos
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Teri A. Manolio
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
2
|
Suarez-Kurtz G. Pharmacogenomic implications of the differential distribution of CYP2C9 metabolic phenotypes among Latin American populations. Front Pharmacol 2023; 14:1246765. [PMID: 37693910 PMCID: PMC10488705 DOI: 10.3389/fphar.2023.1246765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
The CYP2C9 gene encodes the major drug metabolism enzyme CYP2C9. This gene is highly polymorphic, and no-function (CYP2C9*3) plus decreased function (CYP2C9*2, *5, *8 and *11) star alleles (haplotypes) are commonly used to predict CYP2C9 metabolic phenotypes. This study explores the pharmacogenomic implications of the differential distribution of genotype-predicted CYP2C9 phenotypes across Latin American populations. Data from 1,404 individuals from the South American countries Brazil, Colombia and Peru, from Puerto Rico in the Caribbean and from persons with Mexican ancestry living in North America were analysed. The results showed that the distribution of CYP2C9 alleles and diplotypes, and diplotype-predicted CYP2C9 phenotypes vary significantly across the distinct country cohorts, as well as among self-identified White, Brown and Black Brazilians. Differences in average proportions of biogeographical ancestry across the study groups, especially Native American and African ancestry, are the likely explanation for these results. The differential distribution of genotype-predicted CYP2C9 phenotypes has potentially clinically-relevant pharmacogenomic implications, through its influence on the proportion of individuals at high risk for adverse response to medications that are CYP2C9 substrates, the proportion on individuals with CPIC therapeutic recommendations for dosing and choice of nonsteroidal antinflammatory drugs (NSAIDs) and the number of individuals that need to be genotyped in order to prevent adverse effects of NSAIDs. Collectively, these findings are likely to impact the perceived benefits, cost-effectiveness and clinical adoption of pharmacogenomic screening for drugs that are predominantly metabolized by CYP2C9.
Collapse
|
3
|
Warfarin therapy in patients with coronary heart disease and atrial fibrillation: drug interactions and genetic sensitivity to warfarin. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Sosa-Macías M, Terán E, López-López M, Rodeiro I, Moya GE, Calzadilla LR, Ramírez-Roa R, Grazina M, Estévez-Carrizo FE, Barrantes R, LLerena A. Genomic Ancestry, CYP2D6, CYP2C9, and CYP2C19 Among Latin Americans. Clin Pharmacol Ther 2019; 107:257-268. [PMID: 31376146 DOI: 10.1002/cpt.1598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
We present the distribution of CYP2D6, CYP2C9, and CYP2C19 variants and predicted phenotypes in 33 native and admixed populations from Ibero-America (n > 6,000) in the context of genetic ancestry (n = 3,387). Continental ancestries are the major determinants of frequencies of the increased-activity allele CYP2C19*17 and CYP2C19 gUMs (negatively associated with Native American ancestry), decreased-activity alleles CYP2D6*41 and CYP2C9*2 (positively associated with European ancestry), and decreased-activity alleles CYP2D6*17 and CYP2D6*29 (positively associated with African ancestry). For the rare alleles, CYP2C9*2 and CYPC19*17, European admixture accounts for their presence in Native American populations, but rare alleles CYP2D6*5 (null-activity), CYP2D6-multiplication alleles (increased activity), and CYP2C9*3 (decreased-activity) were present in the pre-Columbian Americas. The study of a broad spectrum of Native American populations from different ethno-linguistic groups show how autochthonous diversity shaped the distribution of pharmaco-alleles and give insights on the prevalence of clinically relevant phenotypes associated with drugs, such as paroxetine, tamoxifen, warfarin, and clopidogrel.
Collapse
Affiliation(s)
- Fernanda Rodrigues-Soares
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia, Genética e Evolução, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Eva M Peñas-Lledó
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Instituto de Investigación Biosanitaria de Extremadura, Universidad de Extremadura, SES, Badajoz, Extremadura, Spain
| | - Eduardo Tarazona-Santos
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Estudos Avançados Transdisciplinares, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Martha Sosa-Macías
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Instituto Politécnico Nacional, Durango, Mexico
| | - Enrique Terán
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Marisol López-López
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Idania Rodeiro
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Instituto de Ciencias del Mar, La Habana, Cuba
| | - Graciela E Moya
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Universidad Católica de Argentina, Buenos Aires, Argentina
| | - Luis R Calzadilla
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Centro Comunitario de Salud Mental, La Habana Vieja, La Habana, Cuba
| | - Ronald Ramírez-Roa
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Manuela Grazina
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Faculdade de Medicina & Centro de Neurociências e Biologia Celular, University of Coimbra, Coimbra, Portugal
| | - Francisco E Estévez-Carrizo
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Universidad de Montevideo, Montevideo, Uruguay
| | - Ramiro Barrantes
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Universidad de Costa Rica, San José, Costa Rica
| | - Adrián LLerena
- RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics, Badajoz, Extremadura, Spain.,Instituto de Investigación Biosanitaria de Extremadura, Universidad de Extremadura, SES, Badajoz, Extremadura, Spain
| | | |
Collapse
|
5
|
Cuautle-Rodríguez P, Rodríguez-Rivera N, De Andrés F, Castillo-Nájera F, Llerena A, Molina-Guarneros JA. Frequency of CYP2C9 ( *2, *3 and IVS8-109A>T) allelic variants, and their clinical implications, among Mexican patients with diabetes mellitus type 2 undergoing treatment with glibenclamide and metformin. Biomed Rep 2019; 10:283-295. [PMID: 31086662 PMCID: PMC6489535 DOI: 10.3892/br.2019.1204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
The majority of Mexican patients with diabetes mellitus type 2 (DMT2) (67.9-85.0%) are prescribed sulphonylureas (SUs), which are metabolized by cytochrome P450 2C9 (abbreviated as CYP2C9). SUs are a type of oral anti-diabetic compound which inhibit ATP-sensitive potassium channels, thus inducing glucose-independent insulin release by the β-pancreatic cells. The wide variability reported in SU responses has been attributed to the polymorphisms of CYP2C9. The present study aimed to describe CYP2C9 polymorphisms (*2, *3 and IVS8-109T) within a sample of Mexican patients with DMT2, while suggesting the potential clinical implications in terms of glibenclamide response variability. From a sample of 248 patients with DMT2 who initially consented to be studied, those ultimately included in the study were treated with glibenclamide (n=11), glibenclamide combined with metformin (n=112) or metformin (n=76), and were subsequently genotyped using a reverse transcription-quantitative polymerase chain reaction (PCR), end-point allelic discrimination and PCR amplifying enzymatic restriction fragment long polymorphism. Clinical data were gathered through medical record revision. The frequencies revealed were as follows: CYP2C9*1/*1, 87.5%; *1/*2, 6.5%; *1/*3, 5.2%; and CYP2C9, IVS8-109A>T, 16.1%. Glibenclamide significantly reduced the level of pre-prandial glucose (P<0.01) and the percentage of glycated hemoglobin (%HbA1c; P<0.01) for IVS8-109A>T compared with combined glibenclamide and metformin treatment. Concerning the various treatments with respect to the different genotypes, the percentages obtained were as follows: Glibenclamide A/A, HbA1c<6.5=33.3%; glibenclamide + metformin A/A, HbA1c<6.5=24.6%; glibenclamide A/T, HbA1c<6.5=33.3%; glibenclamide + metformin A/T, HbA1c<6.5=25%; glibenclamide T/T, HbA1c<6.5=100%; and glibenclamide + metformin T/T, HbA1c<6.5=12.5%. Altogether, these results revealed that, although genetically customized prescriptions remain a desirable goal to increase the chances of therapeutic success, within the studied population neither allelic variants nor dosages demonstrated a clear association with biomarker levels. A key limitation of the present study was the lack of ability to quantify either the plasma concentrations of SU or their metabolites; therefore, further, precise experimental and observational studies are required.
Collapse
Affiliation(s)
- Patricia Cuautle-Rodríguez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Nidia Rodríguez-Rivera
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Fernando De Andrés
- Centro de Investigación Clínica Área de Badajoz, SES Hospital Universitario, Universidad de Extremadura, Badajoz 06071, Spain
| | - Fernando Castillo-Nájera
- Centro de Salud T‑III Portales, Servicios de Salud Gobierno de la Ciudad de México, Ciudad de México 03660, México
| | - Adrián Llerena
- Centro de Investigación Clínica Área de Badajoz, SES Hospital Universitario, Universidad de Extremadura, Badajoz 06071, Spain
| | - Juan Arcadio Molina-Guarneros
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
6
|
|
7
|
Naranjo MEG, Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Fariñas H, Rodeiro I, Terán E, Grazina M, Moya GE, López-López M, Sarmiento AP, Calzadilla LR, Ramírez-Roa R, Ortiz-López R, Estévez-Carrizo FE, Sosa-Macías M, Barrantes R, LLerena A. Interethnic Variability in CYP2D6, CYP2C9, and CYP2C19 Genes and Predicted Drug Metabolism Phenotypes Among 6060 Ibero- and Native Americans: RIBEF-CEIBA Consortium Report on Population Pharmacogenomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:575-588. [PMID: 30183544 DOI: 10.1089/omi.2018.0114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacogenetic variation in Latin Americans is understudied, which sets a barrier for the goal of global precision medicine. The RIBEF-CEIBA Network Consortium was established to characterize interindividual and between population variations in CYP2D6, CYP2C9, and CYP2C19 drug metabolizing enzyme genotypes, which were subsequently utilized to catalog their "predicted drug metabolism phenotypes" across Native American and Ibero American populations. Importantly, we report in this study, a total of 6060 healthy individuals from Ibero-America who were classified according to their self-reported ancestry: 1395 Native Americans, 2571 Admixed Latin Americans, 96 Afro-Latin Americans, 287 white Latin Americans (from Cuba), 1537 Iberians, and 174 Argentinean Ashkenazi Jews. Moreover, Native Americans were grouped into North-, Central-, and South Amerindians (from Mexico, Costa Rica, and Peru, respectively). All subjects were studied for the most common and functional CYP2D6, CYP2C9, and CYP2C19 allelic variants, and grouped as genotype-predicted poor or ultrarapid metabolizer phenotypes (gPMs and gUMs, respectively). Native Americans showed differences from each ethnic group in at least two alleles of CYP2D6, CYP2C9, and CYP2C19. Native Americans had higher frequencies of wild-type alleles for all genes, and lower frequency of CYP2D6*41, CYP2C9*2, and CYP2C19*17 (p < 0.05). Native Americans also showed less CYP2C19 gUMs than the rest of the population sample. In addition, differences within Native Americans (mostly North vs. South) were also found. The interethnic differences described supports the need for population-specific personalized and precision medicine programs for Native Americans. To the best of our knowledge, this is the largest study carried out in Native Americans and other Ibero-American populations analyzing CYP2D6, CYP2C9, and CYP2C19 genetic polymorphisms. Population pharmacogenomics is a nascent field of global health and warrants further research and education.
Collapse
Affiliation(s)
- María-Eugenia G Naranjo
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Fernanda Rodrigues-Soares
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,3 Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,4 Faculdade Uninassau , Manaus, Brazil
| | - Eva M Peñas-Lledó
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Eduardo Tarazona-Santos
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,3 Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,5 PRISMA , Lima, Peru
| | - Humberto Fariñas
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Idania Rodeiro
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,6 Instituto de Ciencias del Mar , La Habana, Cuba
| | - Enrique Terán
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,7 Universidad San Francisco de Quito , Quito, Ecuador
| | - Manuela Grazina
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,8 UC, CNC-Center for Neuroscience and Cell Biology, FMUC-Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Graciela E Moya
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,9 Universidad Católica de Argentina , Buenos Aires, Argentina
| | - Marisol López-López
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,10 Universidad Autónoma Metropolitana , Ciudad de México, Mexico
| | - Alba P Sarmiento
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,11 Pontifica Universidad Javeriana , Bogotá, Colombia
| | - Luis R Calzadilla
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,12 Centro Comunitario de SaludMental de la Habana Vieja, La Habana, Cuba
| | - Ronald Ramírez-Roa
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,13 Universidad Nacional Autónoma de Nicaragua , León, Nicaragua
| | - Rocío Ortiz-López
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,14 Tecnológico de Monterrey , Monterrey, Mexico
| | - Francisco E Estévez-Carrizo
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,15 Universidad de Montevideo , Montevideo, Uruguay
| | - Martha Sosa-Macías
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,16 Instituto Politécnico Nacional , Durango, Mexico
| | - Ramiro Barrantes
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,17 Universidad de Costa Rica , San José, Costa Rica
| | - Adrián LLerena
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | | |
Collapse
|
8
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Pharmacogenetics of adverse reactions to antiepileptic drugs. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2015.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Henderson LM, Claw KG, Woodahl EL, Robinson RF, Boyer BB, Burke W, Thummel KE. P450 Pharmacogenetics in Indigenous North American Populations. J Pers Med 2018; 8:jpm8010009. [PMID: 29389890 PMCID: PMC5872083 DOI: 10.3390/jpm8010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Indigenous North American populations, including American Indian and Alaska Native peoples in the United States, the First Nations, Métis and Inuit peoples in Canada and Amerindians in Mexico, are historically under-represented in biomedical research, including genomic research on drug disposition and response. Without adequate representation in pharmacogenetic studies establishing genotype-phenotype relationships, Indigenous populations may not benefit fully from new innovations in precision medicine testing to tailor and improve the safety and efficacy of drug treatment, resulting in health care disparities. The purpose of this review is to summarize and evaluate what is currently known about cytochrome P450 genetic variation in Indigenous populations in North America and to highlight the importance of including these groups in future pharmacogenetic studies for implementation of personalized drug therapy.
Collapse
Affiliation(s)
- Lindsay M Henderson
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Katrina G Claw
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Renee F Robinson
- Southcentral Foundation, Anchorage, AK 99508, USA.
- United States Public Health Service, Department of Human Services, Washington, DC 20201, USA.
| | - Bert B Boyer
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Wylie Burke
- Bioethics & Humanities, University of Washington, Seattle, WA 98195, USA.
| | - Kenneth E Thummel
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Interethnic variability of pharmacogenetic biomarkers in Mexican healthy volunteers: a report from the RIBEF (Ibero-American Network of Pharmacogenetics and Pharmacogenomics). Drug Metab Pers Ther 2017; 31:61-81. [PMID: 26812836 DOI: 10.1515/dmpt-2015-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Mexico presents a complex population diversity integrated by Mexican indigenous (MI) (7% of Mexico's population) and Mexican mestizos (MMs). This composition highlights the importance of pharmacogenetic studies in Mexican populations. The aims of this study were to analyze the reported frequencies of the most relevant pharmacogenetic biomarkers and metabolic phenotypes in healthy volunteers from Mexican populations and to assess its interethnic variability across MI and MM populations. After a literature search in PubMed, and according to previously defined inclusion criteria, 63 pharmacogenetic studies performed in Mexican healthy volunteers up to date were selected. These reports comprised 56,292 healthy volunteers (71.58% MM). Allele frequencies in 31 pharmacogenetic biomarkers, from 121 searched, are described. Nine of these biomarkers presented variation within MM and MI groups. The frequencies of CYP2D6*3, *4, *5, *10, *17, *35 and *41 alleles in the MM group were different from those reported in the MI group. CYP2C9*2 and *3 alleles were more frequent in MM than in MI populations (χ2 test, p<0.05). CYP2C19*3 allele was not found in the MM or MI populations reported. For UGT1A1*28, only one study was found. HLA-A*31:01 and HLA-B*15:02 were present in some MM and MI populations. Poor metabolizers for CYP2D6 and CYP2C9 were more frequent in MM than in MI groups (χ2 test, p<0.05). Only 26% of the relevant pharmacogenetic biomarkers searched have been studied in Mexican healthy volunteers; therefore, further studies are warranted. The frequency variation of biomarkers in MM and MI populations could be important for the clinical implementation of pharmacogenetics in Mexico.
Collapse
|
11
|
De Andrés F, Terán S, Hernández F, Terán E, LLerena A. To Genotype or Phenotype for Personalized Medicine? CYP450 Drug Metabolizing Enzyme Genotype–Phenotype Concordance and Discordance in the Ecuadorian Population. ACTA ACUST UNITED AC 2016; 20:699-710. [DOI: 10.1089/omi.2016.0148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fernando De Andrés
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Santiago Terán
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Francisco Hernández
- Facultad de Ciencias Médicas, Universidad Estatal de Guayaquil, Guayaquil, Ecuador
| | - Enrique Terán
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical School, Badajoz, Spain
| |
Collapse
|
12
|
Saldaña-Cruz AM, León-Moreno LC, Sánchez-Corona J, Santiago DAMD, Mendoza-Carrera F, Castro-Martínez XH, García-Zapién AG, Morán-Moguel MC, Flores-Martínez SE. CYP2C9 and CYP2C19 Allele and Haplotype Distributions in Four Mestizo Populations from Western Mexico: An Interethnic Comparative Study. Genet Test Mol Biomarkers 2016; 20:702-709. [DOI: 10.1089/gtmb.2016.0115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ana Miriam Saldaña-Cruz
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Lilia Carolina León-Moreno
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - José Sánchez-Corona
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | | | - Francisco Mendoza-Carrera
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Xochitl Helga Castro-Martínez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Alejandra Guadalupe García-Zapién
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - María Cristina Morán-Moguel
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - Silvia Esperanza Flores-Martínez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
13
|
Sánchez-Pozos K, Rivera-Santiago C, García-Rodríguez MH, Ortiz-López MG, Peña-Espinoza BI, Granados-Silvestre MDLÁ, Llerena A, Menjívar M. Genetic variability of CYP2C9*2 and CYP2C9*3 in seven indigenous groups from Mexico. Pharmacogenomics 2016; 17:1881-1889. [DOI: 10.2217/pgs-2016-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: CYP2C9 is one of the major drug metabolizing enzymes, however, little is known about polymorphisms in CYP2C9 gene and pharmacological implications in Mexican indigenous populations. Thus, frequencies of CYP2C9*2 and CYP2C9*3 alleles were evaluated in indigenous groups located in northwest (Cora), center (Mazahua and Teenek), south (Chatino and Mixteco) and southeast (Chontal and Maya) regions Mexico. Materials & methods: Allelic discrimination was performed by real-time PCR. Results: CYP2C9*2 allele was found only in Chontal and Maya groups, despite the low contribution of Caucasian component in these populations. CYP2C9*3 allele was present in all populations except in Mazahua, showing a wide genetic variability in the studied populations. Interestingly, we found significant differences between indigenous groups in CYP2C9*3 allele, even in groups located at the same region and belonging to the same linguistic family. Conclusion: These results contribute to laying the pharmacogenetic bases in Mexico, in addition to improving treatment, taking into account the genetic interethnic differences.
Collapse
Affiliation(s)
- Katy Sánchez-Pozos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México –Instituto Nacional de Medicina Genómica
| | - Carolina Rivera-Santiago
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México –Instituto Nacional de Medicina Genómica
| | - María Helena García-Rodríguez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México –Instituto Nacional de Medicina Genómica
| | | | - Barbara Itzel Peña-Espinoza
- Laboratorio de Diabetes, Facultad de Química, Unidad Académica de, Ciencias y Tecnología de la UNAM en Yucatán (PC&TY)
| | - María de los Ángeles Granados-Silvestre
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México –Instituto Nacional de Medicina Genómica
| | - Adrian Llerena
- Centro de Investigación Clínica, Área de Salud de Badajoz, SES, Servicio Extremeño de Salud, Hospital Universitario Infanta Cristina, Badajoz, España
| | - Marta Menjívar
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México –Instituto Nacional de Medicina Genómica
| |
Collapse
|
14
|
Sosa-Macías M, Teran E, Waters W, Fors MM, Altamirano C, Jung-Cook H, Galaviz-Hernández C, López-López M, Remírez D, Moya GE, Hernández F, Fariñas H, Ramírez R, Céspedes-Garro C, Tarazona-Santos E, LLerena A. Pharmacogenetics and ethnicity: relevance for clinical implementation, clinical trials, pharmacovigilance and drug regulation in Latin America. Pharmacogenomics 2016; 17:1741-1747. [PMID: 27790935 DOI: 10.2217/pgs-2016-0153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Congress of Pharmacogenetics and Personalized Medicine. Ethnicity, clinical implementation and regulatory environment (MESTIFAR 2016 Quito) Quito, Ecuador, 19-21 May 2016. The Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF) was created in 2006 with the main aim of promoting personalized medicine and collaborative pharmacogenetics research in Spanish- and Portuguese-speaking countries in America and the Iberian Peninsula. The final goal of this initiative was the inclusion of Latin American populations that may benefit from the implementation of personalized medicine in drug therapy. Several initiatives have been promoted including the MESTIFAR project, which aimed to analyze the ethnicity, genotype and/or metabolic phenotype in Ibero-American populations. To date, 6060 healthy volunteers have been analyzed; among them, 2571 were admixed, 1824 were Caucasians, 1395 were Native Americans, 174 were Jews and 96 were Afro-descendants. Due to the large genetic variability within Latin Americans, ethnicity may be a relevant factor for the clinical implementation of personalized medicine. Moreover, the present status of clinical implementation and the future perspectives of pharmacogenetics, pharmacovigilance and clinical trials for drug regulation in Latin America compared with the EMA-Pharmacogenomics Working Party and the US FDA initiatives were analyzed.
Collapse
Affiliation(s)
- Martha Sosa-Macías
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Instituto Politéctico Nacional-CIIDIR, Unidad Durango, Academia de Genómica, Durango, Mexico
| | - Enrique Teran
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - William Waters
- Comité de Ética en Seres Humanos, Universidad San Francisco de Quito, Quito, Ecuador
| | - Martha M Fors
- Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
| | - Catalina Altamirano
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Universidad Nacional Autónoma de Nicaragua, León, Facultad de Medicina, Nicaragua
| | - Helgi Jung-Cook
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Facultad de Química, Universidad Nacional Autónoma de México, México
| | - Carlos Galaviz-Hernández
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Instituto Politéctico Nacional-CIIDIR, Unidad Durango, Academia de Genómica, Durango, Mexico
| | - Marisol López-López
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Xochimilco, México
| | - Diadelis Remírez
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Centro para el Control Estatal de Medicamentos, La Habana, Cuba
| | - Graciela E Moya
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Francisco Hernández
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Facultad de Ciencias Médicas, Universidad Estatal de Guayaquil, Guayaquil, Ecuador
| | - Humberto Fariñas
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - Ronald Ramírez
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Universidad Nacional Autónoma de Nicaragua, León, Facultad de Medicina, Nicaragua
| | - Carolina Céspedes-Garro
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Genetics Section, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Tarazona-Santos
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,Universidade Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Biologia Geral, Belo Horizonte, Brazil
| | - Adrián LLerena
- RIBEF, Ibero-American Network of Pharmacogenetics & Pharmacogenomics, Mérida, Badajoz, Spain.,CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| |
Collapse
|
15
|
Alrashid MH, Al-Serri A, Alshemmari SH, Koshi P, Al-Bustan SA. Association of Genetic Polymorphisms in the VKORC1 and CYP2C9 Genes with Warfarin Dosage in a Group of Kuwaiti Individuals. Mol Diagn Ther 2016; 20:183-90. [DOI: 10.1007/s40291-016-0190-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Claudio-Campos K, Duconge J, Cadilla CL, Ruaño G. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics. Drug Metab Pers Ther 2016; 30:87-105. [PMID: 25431893 DOI: 10.1515/dmdi-2014-0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022]
Abstract
Although the Hispanic population is continuously growing in the United States, they are underrepresented in pharmacogenetic studies. This review addresses the need for compiling available pharmacogenetic data in US Hispanics, discussing the prevalence of clinically relevant polymorphisms in pharmacogenes encoding for drug-metabolizing enzymes. CYP3A5*3 (0.245-0.867) showed the largest frequency in a US Hispanic population. A higher prevalence of CYP2C9*3, CYP2C19*4, and UGT2B7 IVS1+985 A>G was observed in US Hispanic vs. non-Hispanic populations. We found interethnic and intraethnic variability in frequencies of genetic polymorphisms for metabolizing enzymes, which highlights the need to define the ancestries of participants in pharmacogenetic studies. New approaches should be integrated in experimental designs to gain knowledge about the clinical relevance of the unique combination of genetic variants occurring in this admixed population. Ethnic subgroups in the US Hispanic population may harbor variants that might be part of multiple causative loci or in linkage-disequilibrium with functional variants. Pharmacogenetic studies in Hispanics should not be limited to ascertain commonly studied polymorphisms that were originally identified in their parental populations. The success of the Personalized Medicine paradigm will depend on recognizing genetic diversity between and within US Hispanics and the uniqueness of their genetic backgrounds.
Collapse
|
17
|
Marsh S, King CR, Van Booven DJ, Revollo JY, Gilman RH, McLeod HL. Pharmacogenomic assessment of Mexican and Peruvian populations. Pharmacogenomics 2016; 16:441-8. [PMID: 25916516 DOI: 10.2217/pgs.15.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Clinically relevant polymorphisms often demonstrate population-specific allele frequencies. Central and South America remain largely uncategorized in the context of pharmacogenomics. MATERIALS & METHODS We assessed 15 polymorphisms from 12 genes (ABCB1 3435C>T, ABCG2 Q141K, CYP1B1*3, CYP2C19*2, CYP3A4*1B, CYP3A5*3C, ERCC1 N118N, ERCC2 K751Q, GSTP1 I105V, TPMT 238G>C, TPMT 460G>A, TPMT 719A>G, TYMS TSER, UGT1A1*28 and UGT1A1 -3156G>A) in 81 Peruvian and 95 Mexican individuals. RESULTS Six polymorphism frequencies differed significantly between the two populations: ABCB1 3435C>T, CYP1B1*3, GSTP1 I105V, TPMT 460G>A, UGT1A1*28 and UGT1A1 -3156G>A. The pattern of observed allele frequencies for all polymorphisms could not be accurately estimated from any single previously studied population. CONCLUSION This highlights the need to expand the scope of geographic data for use in pharmacogenomics studies.
Collapse
Affiliation(s)
- Sharon Marsh
- Faculty of Pharmacy & Pharmaceutical Sciences, 3142F Katz Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Céspedes-Garro C, Naranjo MEG, Ramírez R, Serrano V, Fariñas H, Barrantes R, LLerena A. Pharmacogenetics in Central American healthy volunteers: interethnic variability. Drug Metab Pers Ther 2015; 30:19-31. [PMID: 25490028 DOI: 10.1515/dmdi-2014-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
Ethnicity is one of the major factors involved in interindividual variability to drug response. This study aims to describe the frequency of the most relevant pharmacogenetic biomarkers and metabolic phenotypes in Central American healthy volunteers and to determine its interethnic variability. Twenty-six original research articles on allelic, genotypes or metabolic phenotype frequencies were analyzed, in which a total number of 7611 Central American healthy volunteers were included (6118 were analyzed for genotype and 1799 for metabolic phenotype). No reports were available for population from Belize and Honduras. The CYP2D6*4 and *5 frequencies in Amerindian populations from Costa Rica have shown to be among the highest frequencies so far reported in the world. Furthermore, NAT2*5 and *6 presented higher frequencies in admixed populations than in Amerindians, but, inversely, the NAT2*7 was more frequent in Amerindians compared to an admixed population. Likewise, different patterns of distribution have been shown in HLA-A*02, *03 and HLA-B*07 among Native populations from Latin America. Reports on Central American populations were also found for the CYP2C19, LDLR, CYP2E1, MDR1, G6PD, TP53, CYP1A2, CYP3A4 and CYP3A5 biomarkers, but no data were available for the other 91 pharmacogenetic biomarkers revised in Central American populations. Differences in the frequency of some pharmacogenetic biomarkers and metabolic phenotypes were found, showing interethnic variability within Central American and with other Latin American populations.
Collapse
|
19
|
Céspedes-Garro C, Fricke-Galindo I, Naranjo MEG, Rodrigues-Soares F, Fariñas H, de Andrés F, López-López M, Peñas-Lledó EM, LLerena A. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin Drug Metab Toxicol 2015; 11:1893-905. [DOI: 10.1517/17425255.2015.1111871] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. THE PHARMACOGENOMICS JOURNAL 2015; 16:286-92. [DOI: 10.1038/tpj.2015.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 01/11/2023]
|
21
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Pharmacogenetics of adverse reactions to antiepileptic drugs. Neurologia 2015; 33:165-176. [PMID: 25976948 DOI: 10.1016/j.nrl.2015.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 03/04/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Adverse drug reactions (ADRs) are a major public health concern and a leading cause of morbidity and mortality in the world. In the case of antiepileptic drugs (AEDs), ADRs constitute a barrier to successful treatment since they decrease treatment adherence and impact patients' quality of life of patients. Pharmacogenetics aims to identify genetic polymorphisms associated with drug safety. This article presents a review of genes coding for drug metabolising enzymes and drug transporters, and HLA system genes that have been linked to AED-induced ADRs. DEVELOPMENT To date, several genetic variations associated with drug safety have been reported: CYP2C9*2 and *3 alleles, which code for enzymes with decreased activity, have been linked to phenytoin (PHT)-induced neurotoxicity; GSTM1 null alleles with hepatotoxicity induced by carbamazepine (CBZ) and valproic acid (VPA); EPHX1 polymorphisms with teratogenesis; ABCC2 genetic variations with CBZ- and VPA-induced neurological ADRs; and HLA alleles (e.g. HLA-B*15:02, -A*31:01, -B*15:11, -C*08:01) with cutaneous ADRs. CONCLUSIONS Published findings show that there are ADRs with a pharmacogenetic basis and a high interethnic variability, which indicates a need for future studies in different populations to gather more useful results for larger number of patients. The search for biomarkers that would allow predicting ADRs to AEDs could improve pharmacotherapy for epilepsy.
Collapse
Affiliation(s)
- I Fricke-Galindo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, México D.F. , México
| | - H Jung-Cook
- Departamento de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Departamento de Farmacia, Universidad Nacional Autónoma de México, Tlalpan, México D.F., México
| | - A LLerena
- CICAB Centro de Investigación Clínica, Complejo Hospitalario Universitario y Facultad de Medicina, Universidad de Extremadura, Servicio Extremeño de Salud, Badajoz, España
| | - M López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, México D.F., México.
| |
Collapse
|
22
|
Villegas-Torres B, Sánchez-Girón F, Jaramillo-Villafuerte K, Soberón X, Gonzalez-Covarrubias V. Genotype frequencies of VKORC1 and CYP2C9 in Native and Mestizo populations from Mexico, potential impact for coumarin dosing. Gene 2015; 558:235-40. [DOI: 10.1016/j.gene.2014.12.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/11/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022]
|
23
|
Cuautle-Rodríguez P, Llerena A, Molina-Guarneros J. Present status and perspective of pharmacogenetics in Mexico. ACTA ACUST UNITED AC 2014; 29:37-45. [PMID: 24129103 DOI: 10.1515/dmdi-2013-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/26/2013] [Indexed: 11/15/2022]
Abstract
Drug costs account for up to 24% of the country's health expenditure and there are 13,000 registered drugs being prescribed. Diabetes is the main cause of death in the country, with over 85% of diabetic patients currently under drug treatment. The importance of knowing interindividual variability in drug metabolism on Mexican populations is thus evident. The purpose of this article is to provide an overlook of the current situation of pharmacogenetic research in Mexico, focusing on drug-metabolizing enzymes, and the possibility of developing a phenotyping cocktail for Mexican populations. So far, 21 pharmacogenetic studies on Mexican population samples (Mestizos and Amerindian) have been published. These have reported interindividual variability through phenotyping and/or genotyping cytochromes: CYP2D6, 2C19, 2C9, 2E1, and phase II enzymes UGT and NAT2. Some cytochromes with important clinical implications have not yet been phenotyped in Mexican populations. The development of a cocktail adapted to them could be a significant contribution to a larger knowledge on drug response variability at a lower price and shorter time. There are validated phenotyping cocktails that present several practical advantages, being valuable, safe, and inexpensive tools in drug metabolism characterization, which require only a single experiment to provide information on several cytochrome activities.
Collapse
|
24
|
Sosa-Macías M, Llerena A. Cytochrome P450 genetic polymorphisms of Mexican indigenous populations. ACTA ACUST UNITED AC 2014; 28:193-208. [PMID: 24145057 DOI: 10.1515/dmdi-2013-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 11/15/2022]
Abstract
This review focuses on the genetic polymorphisms of the cytochrome P450 (CYP) genes in Mexican indigenous populations, who are a part of the wide ethnic diversity of this country. These native groups have a particular historical trajectory that is different from the Mexican Mestizos. This variability may be reflected in the frequency distribution of polymorphisms in the CYP genes that encode enzymes involved in the metabolism of drugs and other xenobiotics. Therefore, these polymorphisms may affect drug efficacy and safety in indigenous populations in Mexico. The present study aimed to analyze the prevalence of CYP polymorphisms in indigenous Mexicans and to compare the results with studies in Mexican Mestizos. Because the extrapolation of pharmacogenetic data from Mestizos is not applicable to the majority of indigenous groups, pharmacogenetic studies directed at indigenous populations need to be developed. The Amerindians analyzed in this study showed a low phenotypic (CYP2D6) and genotypic (CYP2D6, CYP2C9) diversity, unlike Mexican Mestizos. The frequency of polymorphisms in the CYP1A1, CYP2C19, CYP2E1, and CYP3A4 genes was more similar among the Amerindians and Mexican Mestizos, with the exception of the CYP1A2 gene, whose *1F variant frequency in Mexican Amerindians was the highest described to date.
Collapse
|
25
|
Vicente J, González-Andrade F, Soriano A, Fanlo A, Martínez-Jarreta B, Sinués B. Genetic polymorphisms of CYP2C8, CYP2C9 and CYP2C19 in Ecuadorian Mestizo and Spaniard populations: a comparative study. Mol Biol Rep 2014; 41:1267-72. [PMID: 24430292 DOI: 10.1007/s11033-013-2971-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
Abstract
This study was designed to investigate the potential differences between Spaniards and Ecuadorian Mestizo people regarding CYP2C8, CYP2C9, and CYP2C19 genetic polymorphisms. DNA from 282 Spaniard and 297 Ecuadorian subjects were analyzed by either a previously reported pyrosequencing method (CY2C8*3, CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3) or a nested PCR technique (CYP2C19*17). Whereas CYP2C19*17 allele distribution was higher in Ecuadorians than in Spaniards (P < 0.001) and the frequency of CYP2C19*3 was similar in these two populations (P > 0.05), the other allelic variants were detected at significantly lower frequencies in Ecuadorians than in Spaniards (P < 0.05). According to the diplotype distributions, the prevalence of the presumed CYP2C9 and CYP2C8 extensive metabolizers was higher in Ecuadorians than in Spaniards (P < 0.05). Individuals genotyped CYP2C19*1/*17 and *17/*17 who were considered as ultrarapid metabolizers were overrepresented in Ecuadorians in relation to Spaniards (P < 0.001). By contrast, among Ecuadorians no poor metabolizers (PMs) of either CYP2C8 or CYP2C9 were found and only two individuals were CYP2C19 PMs. These data are compatible with a higher CYP2C8, CYP2C9, and CYP2C19 activity in Mestizo Ecuadorians as opposed to Spaniards, which could imply differences in dosage requirements for drugs metabolized by these cytochromes and should also be considered in allele-disease association studies.
Collapse
Affiliation(s)
- Jorge Vicente
- Department of Pharmacology, University of Zaragoza, 50009, Saragossa, Spain,
| | | | | | | | | | | |
Collapse
|
26
|
Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenet Genomics 2014; 23:403-14. [PMID: 23778323 DOI: 10.1097/fpc.0b013e3283629ce9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. METHODS We resequenced CYP2D6 in 187 CSKT individuals and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT individuals. RESULTS We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9, and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. CONCLUSION These results highlight the importance of carrying out pharmacogenomic research in AI/AN populations and show that extrapolation from other populations is not appropriate. This information could help optimize drug therapy for the CSKT population.
Collapse
|
27
|
Llerena A, Alvarez M, Dorado P, González I, Peñas-LLedó E, Pérez B, Cobaleda J, Calzadilla LR. Interethnic differences in the relevance of CYP2C9 genotype and environmental factors for diclofenac metabolism in Hispanics from Cuba and Spain. THE PHARMACOGENOMICS JOURNAL 2013; 14:229-34. [DOI: 10.1038/tpj.2013.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/24/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
|
28
|
Dorado P, Beltrán LJ, Machín E, Peñas-Lledó EM, Terán E, Llerena A. Losartan hydroxylation phenotype in an Ecuadorian population: influence of CYP2C9 genetic polymorphism, habits and gender. Pharmacogenomics 2013; 13:1711-7. [PMID: 23171336 DOI: 10.2217/pgs.12.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To describe for the first time CYP2C9 hydroxylation phenotype with CYP2C9 genotypes in a Hispanic (Ecuadorian) population using losartan; and the relevance of gender, tobacco, ethanol and caffeine consumption on the enzyme hydroxylation capacity. METHODS Ecuadorian healthy volunteers (n = 194) received a single oral dose of 25 mg losartan. Losartan metabolic ratio was defined as losartan:E3174 concentration. CYP2C9 alleles *2, *3, *4, *5 and *6 were analyzed. RESULTS No phenotypically poor metabolizers were found. The metabolic ratio (mean ± standard deviation) was higher (p < 0.05) in CYP2C9*1/*3 carriers (12.4 ± 13.8; n = 6) versus CYP2C9*1/*1 (4.9 ± 7.0; n = 167), as well as in females versus males (6.72 ± 9.72 and 3.76 ± 4.48, respectively; p < 0.05). Only the following genotypes, CYP2C9*1/*1, CYP2C9*1/*2 and CYP2C9*1/*3, were found with a frequency of 86.1%, 10.8% and 3.1%, respectively. CONCLUSION Despite the mean metabolic ratio being higher in this population than in others previously studied across genotypes, no poor metabolizers, either phenotypically or genotypically, were found.
Collapse
Affiliation(s)
- Pedro Dorado
- CICAB Centro de Investigación Clínica, University of Extremadura, SES Servicio Extremeño de Salud, Hospital Universitario Infanta Cristina, 06080 Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Céspedes-Garro C, Dorado P, Jiménez-Arce G, Naranjo M, Barrantes R, LLerena A. PP157—CYP2C9 Allele Frequencies Among Three Costa Rican Ethnic Groups Compared With Hispanic Populations. Clin Ther 2013. [DOI: 10.1016/j.clinthera.2013.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Castelán-Martínez OD, Hoyo-Vadillo C, Sandoval-García E, Sandoval-Ramírez L, González-Ibarra M, Solano-Solano G, Gómez-Díaz RA, Parra EJ, Cruz M, Valladares-Salgado A. Allele frequency distribution of CYP2C9 2 and CYP2C9 3 polymorphisms in six Mexican populations. Gene 2013; 523:167-72. [PMID: 23587916 DOI: 10.1016/j.gene.2013.03.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/24/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
Allele frequency differences of functional CYP2C9 polymorphisms are responsible for some of the variation in drug response observed in human populations. The most relevant CYP2C9 functional variants are CYP2C9*2 (rs1799853) and CYP2C9 3 (rs1057910). These polymorphisms show variation in allele frequencies among different population groups. The present study aimed to analyze these polymorphisms in 947 Mexican-Mestizo from Mexico City and 483 individuals from five indigenous Mexican populations: Nahua, Teenek, Tarahumara, Purepecha and Huichol. The CYP2C9*2 allele frequencies in the Mestizo, Nahua and Teenek populations were 0.051, 0.007 and 0.005, respectively. As for CYP2C9 3, the allelic frequencies in the Mestizo, Nahua and Teenek populations were 0.04, 0.005 and 0.005, respectively. The CYP2C9 2 and CYP2C9 3 alleles were not observed in the Tarahumara, Purepecha and Huichol populations. These findings are in agreement with previous studies reporting very low allele frequencies for these polymorphisms in American Indigenous populations.
Collapse
|
31
|
Influence of admixture components on CYP2C9*2 allele frequency in eight indigenous populations from Northwest Mexico. THE PHARMACOGENOMICS JOURNAL 2013; 13:567-72. [DOI: 10.1038/tpj.2012.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/20/2012] [Accepted: 11/16/2012] [Indexed: 11/09/2022]
|
32
|
Roco A, Quiñones L, Agúndez JAG, García-Martín E, Squicciarini V, Miranda C, Garay J, Farfán N, Saavedra I, Cáceres D, Ibarra C, Varela N. Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the chilean population: comparison with caucasian and asian populations. Front Genet 2012; 3:229. [PMID: 23130019 PMCID: PMC3487109 DOI: 10.3389/fgene.2012.00229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide. The cancer incidence rate in Chile is 133.7/100,000 inhabitants and it is the second cause of death, after cardiovascular diseases. Most of the antineoplastic drugs are metabolized to be detoxified, and some of them to be activated. Genetic polymorphisms of drug-metabolizing enzymes can induce deep changes in enzyme activity, leading to individual variability in drug efficacy and/or toxicity. The present research describes the presence of genetic polymorphisms in the Chilean population, which might be useful in public health programs for personalized treatment of cancer, and compares these frequencies with those reported for Asian and Caucasian populations, as a contribution to the evaluation of ethnic differences in the response to chemotherapy. We analyzed 23 polymorphisms in a group of 253 unrelated Chilean volunteers from the general population. The results showed that CYP2A6*2, CYP2A6*3, CYP2D6*3, CYP2C19*3, and CYP3A4*17 variant alleles are virtually absent in Chileans. CYP1A1*2A allele frequency (0.37) is similar to that of Caucasians and higher than that reported for Japanese people. Allele frequencies for CYP3A5*3(0.76) and CYP2C9*3(0.04) are similar to those observed in Japanese people. CYP1A1*2C(0.32), CYP1A2*1F(0.77), CYP3A4*1B(0.06), CYP2D6*2(0.41), and MTHFR T(0.52) allele frequencies are higher than the observed either in Caucasian or in Japanese populations. Conversely, CYP2C19*2 allelic frequency (0.12), and genotype frequencies for GSTT1 null (0.11) and GSTM1 null (0.36) are lower than those observed in both populations. Finally, allele frequencies for CYP2A6*4(0.04), CYP2C8*3(0.06), CYP2C9*2(0.06), CYP2D6*4(0.12), CYP2E1*5B(0.14), CYP2E1*6(0.19), and UGT2B7*2(0.40) are intermediate in relation to those described in Caucasian and in Japanese populations, as expected according to the ethnic origin of the Chilean population. In conclusion, our findings support the idea that ethnic variability must be considered in the pharmacogenomic assessment of cancer pharmacotherapy, especially in mixed populations and for drugs with a narrow safety range.
Collapse
Affiliation(s)
- Angela Roco
- Center of Pharmacological and Toxicological Research (IFT), Molecular and Clinical Pharmacology Program, Instituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile ; School of Pharmacy, Faculty of Medicine, Andrés Bello University Santiago, Chile ; San Juan de Dios Hospital Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
López M, Dorado P, Monroy N, Alonso ME, Jung-Cook H, Machín E, Peñas-Lledó E, Llerena A. Pharmacogenetics of the antiepileptic drugs phenytoin and lamotrigine. ACTA ACUST UNITED AC 2012; 26:5-12. [PMID: 21557672 DOI: 10.1515/dmdi.2011.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Patients treated with antiepileptic drugs can exhibit large interindividual variability in clinical efficacy or adverse effects. This could be partially due to genetic variants in genes coding for proteins that function as drug metabolizing enzymes, drug transporters or drug targets. The purpose of this article is to provide an overview of the current knowledge on the pharmacogenetics of two commonly prescribed antiepileptic drugs with similar mechanisms of action; phenytoin (PHT) and lamotrigine (LTG). These two drugs have been selected in order to model the pharmacogenetics of Phase I and Phase II metabolism for PHT and LTG, respectively. In light of the present evidence, patients treated with PHT could benefit from CYP2C9 and CYP2C19 genotyping/phenotyping. For those under treatment with LTG, UGT1A4 and UGT2B7 genotyping might be of clinical use and could contribute to the interindividual variability in LTG concentration to dose ratio in epileptic patients.
Collapse
Affiliation(s)
- Marisol López
- Department of Biological Systems, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
34
|
CYP3A5 polymorphism in Mexican renal transplant recipients and its association with tacrolimus dosing. Arch Med Res 2012; 43:283-7. [PMID: 22704849 DOI: 10.1016/j.arcmed.2012.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Variability in CYP3A5 expression associated with differences in tacrolimus bioavailability has been documented. The wild-type allele CYP3A5*1 expresses the functional protein, whereas the CYP3A5*3 allele is a splice variant with a premature stop codon and encodes a truncated nonfunctional protein. The aim of the study was to determine the frequency of CYP3A5*1 and CYP3A5*3 in 291 (124 adults, 167 pediatric) Mexican renal transplant recipients, evaluate the tacrolimus dose requirements by genotype and compare genotype frequency data with that of other populations. METHODS We carried out a multicenter study. Patients were recruited from three institutions located in Mexico City. Genotyping of the CYP3A5*1 and CYP3A5*3 alleles was performed by direct DNA sequencing. RESULTS Eighteen patients (6.2%) were CYP3A5*1*1 homozygous carriers or functional protein expresser homozygous, 121 patients (41.6 %) were CYP3A5*1*3 were heterozygous carriers or heterozygous expressers, and 152 patients (52.2%) were CYP3A5*3*3 homozygous carriers or homozygous nonexpressers. There was a statistically significant difference in frequency of the functional and nonfunctional expresser phenotypes from those reported for Black and Caucasian, but not for South Asian populations. The CYP3A5 phenotype had a significant impact in tacrolimus bioavailability, as wild-type carriers required higher dosing compared to mutated carriers to achieve similar drug trough levels. Patients with CYP3A5*1*1 genotype had a median dose requirement of 0.16 mg/kg/day, CYP3A5*1*3 patients had a median tacrolimus dose of 0.13 mg/kg/day and CYP3A5*3*3 had a median dose of 0.07 mg/kg/day (Kruskal-Wallis, p <0.0001). CONCLUSIONS Of the Mexican transplant recipients, 52.2% were CYP3A5*3*3 and required significantly lower tacrolimus dose than those with CYP3A5*1 allele.
Collapse
|
35
|
Dorado P, Machín E, de Andrés F, Naranjo MEG, Peñas-Lledó EM, LLerena A. Development of a HPLC method for the determination of losartan urinary metabolic ratio to be used for the determination of CYP2C9 hydroxylation phenotypes. ACTA ACUST UNITED AC 2012; 27:217-33. [DOI: 10.1515/dmdi-2012-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/25/2012] [Indexed: 11/15/2022]
|
36
|
Suarez-Kurtz G. Pharmacogenomic Applications in the Developing World: The American Continent. ADVANCES IN MICROBIAL ECOLOGY 2012. [DOI: 10.1007/978-1-4614-2182-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Vargens DD, Petzl-Erler ML, Suarez-Kurtz G. Distribution of CYP2C Polymorphisms in an Amerindian Population of Brazil. Basic Clin Pharmacol Toxicol 2011; 110:396-400. [DOI: 10.1111/j.1742-7843.2011.00807.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|