1
|
Yilmaz EG, Küçük BN, Aslan Y, Erdem Ö, Saylan Y, Inci F, Denizli A. Theranostic advances and the role of molecular imprinting in disease management. iScience 2025; 28:112186. [PMID: 40224001 PMCID: PMC11986986 DOI: 10.1016/j.isci.2025.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Molecular imprinting has become an effective technology in the realm of diagnosing diseases, providing unparalleled specificity and sensitivity. This method is a promising trend in current medical research. This review examines the utilization of molecularly imprinted polymers (MIPs) in theranostic that integrates diagnostic functionalities for personalized medicine. The present work briefly discusses the fundamental concepts of molecular imprinting and how it has evolved into a versatile platform. Subsequently, the utilization of MIPs in the advancement of biosensors is focused, specifically emphasizing their contribution to the detection and diagnosis of diseases. The therapeutic potential of MIPs, focusing on targeted drug delivery and controlled release systems and the integration of MIPs into theranostic platforms is explored through case studies, showcasing the technology's ability to simultaneously diagnose and treat diseases. Finally, we address the current challenges facing MIPs and discuss future perspectives, emphasizing the potential of this technology to revolutionize the next generation.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Beyza Nur Küçük
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yusuf Aslan
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Xie S, Chen Y, Guo J, Liu Y, Liu Y, Fan J, Wang H, Wu J, Xie J. Discriminative detection of various organophosphorus nerve agents and analogues based on self-trapping probe coupled with SERS. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137150. [PMID: 39808959 DOI: 10.1016/j.jhazmat.2025.137150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Organophosphorus nerve agents (OPNAs) are highly lethal chemical warfare agents (CWAs), which poses a serious threat to human health and safety. The accurate and rapid identification of OPNAs is crucial for medical diagnosis and effective treatment. However, distinguishing between various OPNAs and their analogues using on-site point-of-care testing (POCT) remains challenging. Herein, we present a novel Raman-enhanced strategy that employs a chemical capture probe through a structural differential amplification derivative probe coupled with handheld Raman spectrometry. In this method, 2-(dimethylamino methyl)-3-hydroxypyridine (2-DMAMPD) was designed and used to capture target OPNAs in the plasmonic hotspot for the first time. The formation of strong Au-N bonds between nanoparticles and pyridine significantly enhances the cross-section and specific Raman intensity of OPNAs, facilitating effective amplification and differentiation of subtle structural variations among different OPNAs. In practical application, the probe solution can be directly sprayed on the surfaces contaminated by agents, allowing the entire detection process to be completed within five minutes, with a detection limit of 2 ng/mL (equivalent to an absolute content of 50 pg). It is worth noting that during the process of detection, highly toxic OPNAs can be quickly transformed into low-toxic or non-toxic derivatives, which is of great significance for green detection and protection of the operator.
Collapse
Affiliation(s)
- Sizhe Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yichun Chen
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jing Guo
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China; Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yulong Liu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yanqin Liu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jiyong Fan
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Jianfeng Wu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
3
|
Tohora N, Ahamed S, Sultana T, Mahato M, Das SK. Fabrication of a re-useable ionic liquid-based colorimetric organo nanosensor for detection of nerve agents' stimulants. Talanta 2024; 266:124968. [PMID: 37517344 DOI: 10.1016/j.talanta.2023.124968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Nerve agents are highly poisonous organophosphorus chemicals, and the possibility of being used in terrorist attacks seriously threatens public safety. Thus, developing quick and straightforward detection techniques for these dangerous substances is paramount for the scientific communities. In this contribution, we have fabricated a sensitive and easily applicable ionic liquids (ILs) based colorimetric sensor for detecting various nerve agents' stimulants in solution and gas phases, respectively, based on methyl orange (MO)-based IL ([P66614]+[MO]-) derived from MO dye and trihexyltetradecylphosphonium chloride (P66614Cl) by a simple ion exchange mechanism. The developed [P66614]+[MO]- and water-suspended [P66614]+[MO]- nanoparticles are found to be very much sensitive to detecting various nerve agents' stimulants having detection limits in the μM range in any medium and could be identified based on the response times which is found to be superior to many chemosensors available in the literature. The naked eye observed a distinct color change from yellow to fuchsia in the presence of nerve agents' stimulants, which shows better sensitivity than the free organic indicator. Furthermore, a facile test strip with [P66614]+[MO]- and water-suspended [P66614]+[MO]- NPs has been fabricated that can achieve visual detection of various nerve agents' stimulants within the stockpiles of other analogous harmful analytes. Also, a dip-stick experiment has been performed to detect harmful toxic analytes vapor. The effectiveness of [P66614]+[MO]- and water-suspended [P66614]+[MO]- NPs in identifying and quantifying various nerve agents' stimulants demonstrated its potential for usage as a signal tool for real sample analysis.
Collapse
Affiliation(s)
- Najmin Tohora
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
4
|
Khairy GM, Ali EI, Saad EM. Development of an optical sensor for the determination of phenolic compounds in environmental samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6425-6434. [PMID: 37969098 DOI: 10.1039/d3ay01699d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A new optical sensor was developed for the rapid sensing of total phenolic content, which is simple, cheap, and sensitive, using the Eu(III)-(NTA)2-(Phen) complex [NTA = 1-(2-naphthoyl)-3,3,3-trifluoroacetone and Phen = 1,10 phenanthroline] as a luminescent probe at pH 7.5 using PIPES buffer. This method was based on luminescence quenching. The type of quenching during the reaction between the Eu(III)-(NTA)2-(Phen) complex and the phenolic compounds is dynamic quenching; the binding site is close to 1, and the reaction is endothermic, spontaneous, and involves hydrophobic attraction forces. The calibration curves were plotted using a sigmoidal fit giving an LOD of 0.01 μg mL-1, and the correlation coefficients are more than 0.99. For the first time, the time-resolved fluorescence technique was utilized in microtiter plates to enable the determination of 96 samples within two minutes with high sensitivity and selectivity. The proposed method was applied to three industrial wastewater samples and compared with the standard method for phenolic content determination, yielding high recoveries. This is the first luminescence method based on lanthanide complexes as probes for determining the total phenolic content in water samples.
Collapse
Affiliation(s)
- Gasser M Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt, +201022823954.
| | - Esraa I Ali
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt, +201022823954.
| | - Eman M Saad
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
5
|
Zelikovich D, Dery L, Sagi-Cohen H, Mandler D. Imprinting of nanoparticles in thin films: Quo Vadis? Chem Sci 2023; 14:9630-9650. [PMID: 37736620 PMCID: PMC10510851 DOI: 10.1039/d3sc02178e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.
Collapse
Affiliation(s)
- Din Zelikovich
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Linoy Dery
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Hila Sagi-Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
6
|
Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R. Molecularly imprinted polymers for environmental adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89923-89942. [PMID: 36370309 DOI: 10.1007/s11356-022-24025-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Molecular imprinting polymers (MIPs) are synthetic materials with pores or cavities to specifically retain a molecule of interest or analyte. Their synthesis consists of the generation of three-dimensional polymers with specific shapes, arrangements, orientations, and bonds to selectively retain a particular molecule called target. After target removal from the binding sites, it leaves empty cavities to be re-occupied by the analyte or a highly related compound. MIPs have been used in areas that require high selectivity (e.g., chromatographic methods, sensors, and contaminant removal). However, the most widely used application is their use as a highly selective extraction material because of its low cost, easy preparation, reversible adsorption and desorption, and thermal, mechanical, and chemical stability. Emerging pollutants are traces of substances recently found in wastewater, river waters, and drinking water samples that represent a special concern for human and ecological health. The low concentration in which these pollutants is found in the environment, and the complexity of their chemical structures makes the current wastewater treatment not efficient for complete degradation. Moreover, these substances are not yet regulated or controlled for their discharge into the environment. According to the literature, MIPs, as a highly selective adsorbent material, are a promising approach for the quantification and monitoring of emerging pollutants in complex matrices. Therefore, the main objective of this work was to give an overview of the actual state-of-art of applications of MIPs in the recovery and concentration of emerging pollutants.
Collapse
Affiliation(s)
- Diana Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, S.L.P, México
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Rogelio Flores-Ramíez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México.
| |
Collapse
|
7
|
Kumar V, Kim KH. Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118824. [PMID: 35016982 DOI: 10.1016/j.envpol.2022.118824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
As non-biological molecules, molecular imprinted polymers (MIPs) can be made as antibody mimics for the development of luminescence sensors for various targets. The combination of MIPs with nanomaterials is further recognized as a useful option to improve the sensitivity of luminescence sensors. In this work, the recent progresses made in the fabrication of fluorescence, phosphorescence, chemiluminescence, and electrochemiluminescence sensors based on such combination have been reviewed with emphasis on the detection of pesticides/herbicides. Accordingly, the materials that are most feasible for the detection of such targets are recommended based on the MIP technologies.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
8
|
Yang W, Ma Y, Sun H, Huang C, Shen X. Molecularly Imprinted Polymers Based Optical Fiber Sensors: A Review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The development of methodologies to sense glyphosate has gained momentum due to its toxicological and ecotoxicological effects. In this work, a red-emitting and polymerizable guanidinium benzoxadiazole probe was developed for the fluorescence detection of glyphosate. The interaction of the fluorescent probe and the tetrabutylammonium salt of glyphosate was studied via UV/vis absorption and fluorescence spectroscopy in chloroform and acetonitrile. The selective recognition of glyphosate was achieved by preparing molecularly imprinted polymers, able to discriminate against other common herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (dicamba), as thin layers on submicron silica particles. The limits of detection of 4.8 µM and 0.6 µM were obtained for the sensing of glyphosate in chloroform and acetonitrile, respectively. The reported system shows promise for future application in the sensing of glyphosate through further optimization of the dye and the implementation of a biphasic assay with water/organic solvent mixtures for sensing in aqueous environmental samples.
Collapse
|
10
|
共价有机框架分子印迹聚合物复合材料的制备及其用于牛奶中痕量诺氟沙星的选择性富集. Se Pu 2022; 40:1-9. [PMID: 34985210 PMCID: PMC9404097 DOI: 10.3724/sp.j.1123.2021.03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
诺氟沙星(NFX)作为一种常见的喹诺酮类兽药,被广泛应用于畜牧业中,但其会残留在动物体内,进而对人体健康造成危害,为此有许多国家和组织均对NFX残留量进行了严格限制。为实现对复杂体系中痕量NFX残留的准确与可靠分析,该文制备了一种以共价有机框架(COFs)为载体的分子印迹聚合物(MIPs)。首先,在室温条件下,以金属三氟酸盐为催化剂,对苯二甲醛和3,3'-二氨基联苯为原料快速合成了“席夫碱”型共价有机框架(DP-COF)。然后将NFX、甲基丙烯酸、乙二醇二甲基丙烯酸酯与DP-COF混合,利用偶氮二异丁腈引发聚合反应,即可得到DP-COF@MIPs。整个制备过程条件温和,耗时仅5 h。采用场发射扫描电镜、傅里叶红外光谱、X射线衍射仪、BET比表面积测试仪等对其进行了表征。结果证实成功制备出了DP-COF@MIPs,该材料表面粗糙,拥有介孔范围的孔径(17.79 nm)。通过吸附实验、重复使用性实验对材料性能进行评估,结果表明该材料表观吸附容量高达41.57 mg/g,对NFX具有良好的特异性和选择性识别能力,且重复使用率令人满意。结合HPLC-UV-Vis,实现对牛奶样品中痕量NFX的检测。在3个加标水平下(0.03、0.1、0.3 mg/L),平均回收率为88.8%~92.9%,相对标准偏差小于1.7%。结果表明,该方法可以实现在复杂基质中对兽药残留高选择性、高灵敏度及准确性的检测。
Collapse
|
11
|
Li Y, Wan M, Yan G, Qiu P, Wang X. A dual-signal sensor for the analysis of parathion-methyl using silver nanoparticles modified with graphitic carbon nitride. J Pharm Anal 2021; 11:183-190. [PMID: 34012694 PMCID: PMC8116212 DOI: 10.1016/j.jpha.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023] Open
Abstract
A highly sensitive and selective method was developed for both UV-vis spectrophotometric and fluorimetric determination of organophosphorus pesticides (OPs). This method used silver nanoparticles (AgNPs) modified with graphitic carbon nitride (g-C3N4). The AgNPs reduced the fluorescence intensity of g-C3N4. Acetylthiocholine (ATCh) could be catalytically hydrolyzed by acetylcholinesterase (AChE) to form thiocholine, which induces aggregation of the AgNPs. This aggregation led to the recovery of the blue fluorescence of g-C3N4, with excitation/emission peaks at 310/460 nm. This fluorescence intensity could be reduced again in the presence of OPs because of the inhibitory effect of OPs on the activity of AChE. The degree of reduction was found to be proportional to the concentration of OPs, and the limit of fluorometric detection was 0.0324 μg/L (S/N = 3). In addition, the absorption of the g-C3N4/AgNPs at 390 nm decreased because of the aggregation of the AgNPs, but was recovered in presence of OPs because of the inhibition of enzyme activity by OPs. This method was successfully applied to the analysis of parathion-methyl in real samples.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Mengqi Wan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Guosheng Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| | - Xiaolei Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, 330088, China
| |
Collapse
|
12
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
13
|
Wu MF, Tsai HP, Hsieh CH, Lu YC, Pan LC, Yang H. Water-Soluble Chemical Vapor Detection Enabled by Doctor-Blade-Coated Macroporous Photonic Crystals. SENSORS 2020; 20:s20195503. [PMID: 32992878 PMCID: PMC7582252 DOI: 10.3390/s20195503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
Water-soluble chemicals, involving a wide range of toxic chemicals in aqueous solutions, remain essential in both daily living or industrial uses. However, most toxicants are evaporated with water through their use and thus cause deleterious effects on the domestic environment and health in humans. Unfortunately, most current low-dose chemical vapor detection technologies are restricted by the use of sophisticated instruments and unable to promptly detect the quantity of diverse toxicants in a single analysis. To address these issues, this study reports the development of simple and fast chemical vapor detection using doctor-blade-coated macroporous poly(2-hydroxyethyl methacrylate)/poly(ethoxylated trimethylolpropane triacrylate) photonic crystals, in which the poly(2-hydroxyethyl methacrylate) has strong affinity to insecticide vapor owing to a favorable Gibbs free energy change for their mixing. The condensation of water-soluble chemical vapor therefore results in a significant reflection peak shift and an obvious color change. The visual colorimetric readout can be further improved by increasing the lattice spacing of the macroporous photonic crystals. Furthermore, the dependence of the reflection peak position on vapor pressure under actual conditions and the reproducibility of vapor detecting are also evaluated in this study.
Collapse
Affiliation(s)
- Min-Fang Wu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Hui-Ping Tsai
- Department of Civil Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan;
| | - Chia-Hua Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Yi-Cheng Lu
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Liang-Cheng Pan
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan; (M.-F.W.); (C.-H.H.); (Y.-C.L.); (L.-C.P.)
- Correspondence:
| |
Collapse
|
14
|
Chiappini A, Pasquardini L, Bossi AM. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5069. [PMID: 32906637 PMCID: PMC7570731 DOI: 10.3390/s20185069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Optical sensing, taking advantage of the variety of available optical structures, is a rapidly expanding area. Over recent years, whispering gallery mode resonators, photonic crystals, optical waveguides, optical fibers and surface plasmon resonance have been exploited to devise different optical sensing configurations. In the present review, we report on the state of the art of optical sensing devices based on the aforementioned optical structures and on synthetic receptors prepared by means of the molecular imprinting technology. Molecularly imprinted polymers (MIPs) are polymeric receptors, cheap and robust, with high affinity and selectivity, prepared by a template assisted synthesis. The state of the art of the MIP functionalized optical structures is critically discussed, highlighting the key progresses that enabled the achievement of improved sensing performances, the merits and the limits both in MIP synthetic strategies and in MIP coupling.
Collapse
Affiliation(s)
- Andrea Chiappini
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, via alla Cascata 56/C, 38123 Povo Trento, Italy;
| | | | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
15
|
Zhang C, Liang X, Lu Y, Li H, Xu X. Performance of CuAl-LDH/Gr Nanocomposite-Based Electrochemical Sensor with Regard to Trace Glyphosate Detection in Water. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4146. [PMID: 32722519 PMCID: PMC7435834 DOI: 10.3390/s20154146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
Glyphosate, which has been widely reported to be a toxic pollutant, is often present at trace amounts in the environment. In this study, a novel copper-aluminum metal hydroxide doped graphene nanoprobe (labeled as CuAl-LDH/Gr NC) was first developed to construct a non-enzymatic electrochemical sensor for detection trace glyphosate. The characterization results showed that the synthesized CuAl-LDH had a high-crystallinity flowered structure, abundant metallic bands and an intercalated functional group. After mixed with Gr, the nanocomposites provided a larger surface area and better conductivity. The as-prepared CuAl-LDH/Gr NC dramatically improved the enrichment capability for glyphosate to realize the stripping voltammetry detection. The logarithmic linear detection range of the sensor was found to be 2.96 × 10-9-1.18 × 10-6 mol L-1 with the detection limit of 1 × 10-9 mol L-1 with excellent repeatability, good stability and anti-interference ability. Further, the sensor achieved satisfactory recovery rates in spiked surface water, ranging from 97.64% to 108.08%, demonstrating great accuracy and practicality.
Collapse
Affiliation(s)
- Chuxuan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (X.X.)
| | - Xinqiang Liang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (X.X.)
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Hangzhou 310058, China
| | - Yuanyuan Lu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK;
| | - Hua Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Xiangyang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (C.Z.); (X.X.)
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Hangzhou 310058, China
| |
Collapse
|
16
|
Rizzato S, Leo A, Monteduro AG, Chiriacò MS, Primiceri E, Sirsi F, Milone A, Maruccio G. Advances in the Development of Innovative Sensor Platforms for Field Analysis. MICROMACHINES 2020; 11:E491. [PMID: 32403362 PMCID: PMC7281440 DOI: 10.3390/mi11050491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Sustainable growth, environmental preservation, and improvement of life quality are strategic fields of worldwide interest and cornerstones of international policies. Humanity health and prosperity are closely related to our present choices on sustainable development. The main sources of pollution concern industry, including mining, chemical companies, and refineries, wastewater treatment; and consumers themselves. In order to guide and evaluate the effects of environmental policies, diffuse monitoring campaigns and detailed (big) data analyses are needed. In this respect, the development and availability of innovative sensor platforms for field analysis and remote sensing are of crucial relevance. In this review, we provide an overview of the area, analyzing the major needs, available technologies, novel approaches, and perspectives. Among environmental pollutants that threaten the biosphere, we focus on inorganic and organic contaminants, which affect air and water quality. We describe the technologies for their assessment in the environment and then draw some conclusions and mention future perspectives opened by the integration of sensing technologies with robotics and the Internet of Things. Without the ambition to be exhaustive in such a rapidly growing field, this review is intended as a support for researchers and stakeholders looking for current, state-of-the-art, and key enabling technologies for environmental monitoring.
Collapse
Affiliation(s)
- Silvia Rizzato
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Angelo Leo
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Anna Grazia Monteduro
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Maria Serena Chiriacò
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Elisabetta Primiceri
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Fausto Sirsi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Angelo Milone
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| | - Giuseppe Maruccio
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (A.G.M.); (F.S.); (A.M.); (G.M.)
- Institute of Nanotechnology, CNR-Nanotec, Omnics Research Group, Via per Monteroni, 73100 Lecce, Italy; (M.S.C.); (E.P.)
| |
Collapse
|
17
|
Stavra E, Petrou PS, Koukouvinos G, Economou A, Goustouridis D, Misiakos K, Raptis I, Kakabakos SE. Fast, sensitive and selective determination of herbicide glyphosate in water samples with a White Light Reflectance Spectroscopy immunosensor. Talanta 2020; 214:120854. [PMID: 32278411 DOI: 10.1016/j.talanta.2020.120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 01/21/2023]
Abstract
An optical immunosensor based on White Light Reflectance Spectroscopy is described for the determination of the herbicide glyphosate in drinking water samples. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. Glyphosate determination is accomplished by functionalizing the chip with a protein conjugate of the herbicide followed by a competitive immunoassay format. Prior to the assay, glyphosate derivatization in the calibrators and/or the samples was performed through reaction with succinic anhydride. Under the optimized assay protocol, a detection limit of 10 pg mL-1 was achieved. Recovery values ranging from 90.0 to 110% were determined in spiked bottled and tap water samples, demonstrating the accuracy of the method. In addition, the sensor could be regenerated and re-used for at least 14 times without statistically significant effect on the assay sensitivity and accuracy. The excellent analytical performance and short analysis time (approx. 25 min), combined with the small sensor size, should be helpful for the fast on-site determination of glyphosate in drinking water samples.
Collapse
Affiliation(s)
- Eleftheria Stavra
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341, Aghia Paraskevi, Greece; Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - Panagiota S Petrou
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341, Aghia Paraskevi, Greece.
| | - Georgios Koukouvinos
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341, Aghia Paraskevi, Greece
| | - Anastasios Economou
- Analytical Chemistry Lab, Department of Chemistry, University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | | | - Konstantinos Misiakos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15341, Aghia Paraskevi, Greece
| | - Ioannis Raptis
- ThetaMetrisis S.A., Polydefkous 14, 12243 Egaleo, Greece
| | - Sotirios E Kakabakos
- Immunoassays-Immunosensors Lab, INRASTES, NCSR "Demokritos", 15341, Aghia Paraskevi, Greece
| |
Collapse
|
18
|
ReddyPrasad P, Naidoo EB, Sreedhar NY. Electrochemical preparation of a novel type of C-dots/ZrO2 nanocomposite onto glassy carbon electrode for detection of organophosphorus pesticide. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Aghoutane Y, Diouf A, Österlund L, Bouchikhi B, El Bari N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 2019; 132:107404. [PMID: 31911357 DOI: 10.1016/j.bioelechem.2019.107404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Malathion (MAL) is an organophosphorus (OP) insecticide. It is a cholinesterase inhibitor, which can pose serious health and environmental problems. In this study, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrodes (Au-SPE) for MAL detection in olive oils and fruits, was devised. The MIP sensor was prepared using acrylamide as the functional monomer and MAL as the template. Subsequently, the morphology of the electrode surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical characterization of the developed MIP sensor was performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The operational repeatability and stability of the sensor were studied. It was found to have a dynamic concentration range of (0.1 pg mL-1-1000 pg mL-1) and a low limit of detection (LOD) of 0.06 pg mL-1. Furthermore, the sensor was employed to determine MAL content in olive oil with a recovery rate of 87.9% and a relative standard deviation of 8%. It was successfully applied for MAL determination in real samples and promise to open new opportunities for the detection of OP pesticides residues in various food products, as well as in environmental applications.
Collapse
Affiliation(s)
- Youssra Aghoutane
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco; Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco
| | - Alassane Diouf
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco; Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco
| | - Lars Österlund
- Dept. Engineering Sciences, The Ångström Laboratory, Uppsala University, P. O. Box 534, SE-75121 Uppsala, Sweden
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco
| | - Nezha El Bari
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes, Morocco.
| |
Collapse
|
20
|
Tan J, Peng B, Tang L, Feng C, Wang J, Yu J, Ouyang X, Zhu X. Enhanced photoelectric conversion efficiency: A novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon. Biosens Bioelectron 2019; 142:111546. [PMID: 31387026 DOI: 10.1016/j.bios.2019.111546] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 01/10/2023]
Abstract
This work presents a novel hexagonal boron nitride (h-BN) based self-powered photoelectrochemical (PEC) aptasensor for ultrasensitive detection of diazinon (DZN) with excellent photoelectric conversion efficiency. It was the first time that h-BN based materials were applied to PEC aptasensor, in which the construction of Z-scheme heterojunction of h-BN and graphitic carbon nitride (CN) via doping sulfur into h-BN was innovatively proposed. Meanwhile, Au nanoparticles (AuNPs) were utilized for the surface plasmon resonance (SPR) effect and the formation of new recombination centers. The charge transfer mechanism was expounded and verified by the electron spin resonance (ESR) spin-trap technique. The proposed PEC aptasensor for determination of DZN exhibited a wide linear range from 0.01 to 10000 nM and a low detection limit of 6.8 pM with superb selectivity and remarkable stability. Moreover, the constructed PEC aptasensor performed well with excellent recoveries in three different real samples. This work illustrated that PEC aptasensor is a promising alternative to conventional analytical technologies for the detection of DZN and other organophosphorus (OP) pesticides. The designing ideas of the proposed h-BN based material can provide a foothold for the innovative construction of photoactive materials for PEC bioanalysis.
Collapse
Affiliation(s)
- Jisui Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Bo Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
21
|
What are the Main Sensor Methods for Quantifying Pesticides in Agricultural Activities? A Review. Molecules 2019; 24:molecules24142659. [PMID: 31340442 PMCID: PMC6680408 DOI: 10.3390/molecules24142659] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
In recent years, there has been an increase in pesticide use to improve crop production due to the growth of agricultural activities. Consequently, various pesticides have been present in the environment for an extended period of time. This review presents a general description of recent advances in the development of methods for the quantification of pesticides used in agricultural activities. Current advances focus on improving sensitivity and selectivity through the use of nanomaterials in both sensor assemblies and new biosensors. In this study, we summarize the electrochemical, optical, nano-colorimetric, piezoelectric, chemo-luminescent and fluorescent techniques related to the determination of agricultural pesticides. A brief description of each method and its applications, detection limit, purpose—which is to efficiently determine pesticides—cost and precision are considered. The main crops that are assessed in this study are bananas, although other fruits and vegetables contaminated with pesticides are also mentioned. While many studies have assessed biosensors for the determination of pesticides, the research in this area needs to be expanded to allow for a balance between agricultural activities and environmental protection.
Collapse
|
22
|
Molecularly imprinted mesoporous silica nanoparticles for specific extraction and efficient identification of Amadori compounds. Anal Chim Acta 2018; 1019:65-73. [DOI: 10.1016/j.aca.2018.02.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
|
23
|
Chen J, Ma XH, Yao GL, Zhang WT, Zhao Y. Microemulsion-based anthocyanin systems: effect of surfactants, cosurfactants, and its stability. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1485032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jian Chen
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Xin-hui Ma
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Guang-long Yao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Wen-ting Zhang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Ying Zhao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
24
|
Li H, Feng Y, Li X, Zeng D. Analytical Confirmation of Various Herbicides in Drinking Water Resources in Sugarcane Production Regions of Guangxi, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:815-820. [PMID: 29564484 DOI: 10.1007/s00128-018-2324-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
This work investigated drinking water contamination by 11 commonly used herbicides in sugarcane production areas in Guangxi, China. The work developed an analytical method for determination of these herbicides in environmental waters. This work studied herbicide residues in drinking water in Guangxi, China. The maximum residues and percent of detects were: (0.091 µg/L, 29.2%, atrazine), (0.018 µg/L, 8.3%, ametryne), (0.188 µg/L, 8.3%, aetolaehlor), (0.139 µg/L, 4%, simazine), (0.585 µg/L, 62.5%, atrazine), (0.311 µg/L, 33.3%, acetochlor), (0.341 µg/L, 58.3%, ametryne), (1.312 µg/L, 29.2%, metolachlor), (0.088 µg/L, 4.2%, alachlor), (0.127 µg/L, 14.3%, atrazine), and (0.453 µg/L, 7.1%, metolachlor), respectively. The results demonstrated that agricultural herbicides were detected in all water samples, including tap, surface and groundwater samples. Since the residues are generally below the safe limits established by the government authorities, the monitored 11 herbicides do not significantly affect the quality of the human environment. This work will provide scientific understanding of pesticide residues in drinking water standards in terms of its consistency with precautionary human health and environmental safety.
Collapse
Affiliation(s)
- Honghong Li
- Institute of Pesticide and Environmental Toxicology, Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Yujie Feng
- Institute of Pesticide and Environmental Toxicology, Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Xuesheng Li
- Institute of Pesticide and Environmental Toxicology, Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China
| | - Dongqiang Zeng
- Institute of Pesticide and Environmental Toxicology, Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
25
|
Sarkar HS, Ghosh A, Das S, Maiti PK, Maitra S, Mandal S, Sahoo P. Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor. Sci Rep 2018; 8:3402. [PMID: 29467435 PMCID: PMC5821826 DOI: 10.1038/s41598-018-21780-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/09/2018] [Indexed: 01/23/2023] Open
Abstract
A chemosensor, 3-aminophenol-based rhodamine conjugate (ARC) has been developed for visualisation of diethylchlorophosphate (DCP), mimic of a chemical warfare agent, in Catfish brain. The simple detection of DCP by "turn-on" fluorescence property of the chemosensor makes it unique for easy and rapid in vivo and in vitro detection of DCP with the detection limit of 5.6 nM.
Collapse
Affiliation(s)
| | - Ayndrila Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India
| | - Sujoy Das
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India
| | - Pulak Kumar Maiti
- Department of Microbiology, University of Calcutta, Kolkata, 700019, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, Kolkata, 700019, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
26
|
Pei DN, Zhang AY, Pan XQ, Si Y, Yu HQ. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. Anal Chem 2018; 90:3165-3173. [DOI: 10.1021/acs.analchem.7b04466] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Qiang Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| |
Collapse
|
27
|
Samsidar A, Siddiquee S, Shaarani SM. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 2018; 176:465-478. [DOI: 10.1016/j.talanta.2017.08.067] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
|
29
|
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali MR, Norouzi P, Hosseini M, Abdollahi M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 2018; 99:122-135. [DOI: 10.1016/j.bios.2017.07.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023]
|
30
|
Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. SENSORS 2017; 17:s17112689. [PMID: 29160798 PMCID: PMC5713634 DOI: 10.3390/s17112689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.
Collapse
|
31
|
Akyüz D, Keleş T, Biyiklioglu Z, Koca A. Electrochemical pesticide sensors based on electropolymerized metallophthalocyanines. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Akkbik M, Hazer O. Novel Molecularly Imprinted Polymer for the Determination of Carbendazim From Water and Food by Solid-Phase Extraction and High-Performance Liquid Chromatography. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1284859] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Akkbik
- Science and Technology Application and Research Center, Bozok University, Yozgat, Turkey
| | - Orhan Hazer
- Faculty of Arts and Sciences, Department of Chemistry, Bozok University, Yozgat, Turkey
| |
Collapse
|
33
|
Ganjavi F, Ansari M, Kazemipour M, Zeidabadinejad L. Computer-aided design and synthesis of a highly selective molecularly imprinted polymer for the extraction and determination of buprenorphine in biological fluids. J Sep Sci 2017; 40:3175-3182. [DOI: 10.1002/jssc.201700213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Farideh Ganjavi
- Department of Chemistry, Kerman Branch; Islamic Azad University; Kerman Iran
| | - Mehdi Ansari
- Department of Drug and food control, Faculty of Pharmacy; Kerman University of Medical Sciences; Kerman Iran
| | - Maryam Kazemipour
- Department of Chemistry, Kerman Branch; Islamic Azad University; Kerman Iran
| | | |
Collapse
|
34
|
Wu J, Liang X, Hao L, Wang C, Wu Q, Wang Z. Graphene oxide cross-linked with phytic acid: an efficient adsorbent for the extraction of carbamates. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2413-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Keleş T, Akyüz D, Biyiklioglu Z, Koca A. Electropolymerization of Metallophthalocyanines Carrying Redox Active Metal Centers and their Electrochemical Pesticide Sensing Application. ELECTROANAL 2017. [DOI: 10.1002/elan.201700249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Turgut Keleş
- Department of Chemistry; Faculty of Science, Karadeniz Technical University; Trabzon Turkey
| | - Duygu Akyüz
- Department of Chemistry, Faculty of Science and Letters; Marmara University; Istanbul Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry; Faculty of Science, Karadeniz Technical University; Trabzon Turkey
| | - Atıf Koca
- Department of Chemical Engineering, Faculty of Engineering; Marmara University; Istanbul Turkey
| |
Collapse
|
36
|
Chen J, Zhang WT, Shu Y, Ma XH, Cao XY. Detection of Organophosphorus Pesticide Residues in Leaf Lettuce and Cucumber Through Molecularly Imprinted Solid-Phase Extraction Coupled to Gas Chromatography. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0875-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Stanton ALD, Serrano KA, Braun PV, Bailey RC. Polymer Brush-Modified Microring Resonators for Partition-Enhanced Small Molecule Chemical Detection. ChemistrySelect 2017. [DOI: 10.1002/slct.201700082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandria L. D. Stanton
- Department of Chemistry; University of Illinois at Urbana-Champaign; 600 S. Mathews Ave. Urbana, IL 61801
| | - Kali A. Serrano
- Department of Chemistry; University of Illinois at Urbana-Champaign; 600 S. Mathews Ave. Urbana, IL 61801
| | - Paul V. Braun
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; 1304 W. Green St. Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry; University of Illinois at Urbana-Champaign; 600 S. Mathews Ave. Urbana, IL 61801
- Current address: Department of Chemistry; University of Michigan; 930 N. University Ave. Ann Arbor, MI 48109
| |
Collapse
|
38
|
Hassani S, Momtaz S, Vakhshiteh F, Maghsoudi AS, Ganjali MR, Norouzi P, Abdollahi M. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol 2017; 91:109-130. [DOI: 10.1007/s00204-016-1875-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
|
39
|
Singh A, Raj P, Singh N. Benzimidazolium-Based Self-Assembled Fluorescent Aggregates for Sensing and Catalytic Degradation of Diethylchlorophosphate. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28641-28651. [PMID: 27731616 DOI: 10.1021/acsami.6b09983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The unregulated use of chemical weapons has aroused researchers to develop sensors for chemical warfare agents (CWA) and likewise to abolish their harmful effects, the degradation through catalysis has great advantage. Chemically, the CWAs are versatile; however, mostly they contain organophosphates that act on inhibition of acetyl cholinesterase. In this work, we have designed and synthesized some novel benzimidazolium based fluorescent cations and their fluorescent aggregates were fabricated using anionic surfactants (SDS and SDBS) in aqueous medium. The prepared fluorescent aggregates have shown aggregation induced emission enhancement, which was further used as detection of chemical warfare agent in aqueous medium. The aggregates (Benz-2/SDBS and Benz-3/SDBS) have shown significant changes in emission profile upon interaction with diethylchlorophosphate. Contrarily, the pure dipodal receptor Benz-4 has not shown any response in emission after interaction with organophosphate, and consequently, it was concluded that benzimidazolium cation plays a decisive role in sensing. The mechanism of sensing was fully validated using 31P NMR spectroscopy as well as GC-MS, which highlights the transformation of diethylchlorophosphate into diethylhydrogen phosphate. The aggregates selectively interact with diethylchlorophosphate over other biological important phosphates.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Pushap Raj
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute Technology , Ropar, Punjab 140001, India
| |
Collapse
|
40
|
Ye H, Chen X, Feng Z. Preparations of magnetic molecularly imprinted polymer for selective recognition and determination of 4-methylimidazole in soft beverage by high performance liquid chromatography. ADSORPT SCI TECHNOL 2016. [DOI: 10.1177/0263617416667361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Helin Ye
- School of Chemistry & Environmental Science, Lanzhou City University, China
| | - Xiaofen Chen
- Analysis and Testing Center, Lanzhou University, China
| | - Zufei Feng
- Department of Applied Chemistry, Xi’an University of Technology, China
| |
Collapse
|
41
|
Chakrabarty PP, Giri S, Sen K, Saha S, Jana AD, Granda SG, Haldar S, Bera M. A phenoxo–azido assorted Schiff base copper(II) bridged dimer in trace level fluorescence sensing of a pesticide: a DFT supported phenomenon. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1223844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Partha Pratim Chakrabarty
- Department of Chemistry, University of Calcutta, Kolkata, India
- Department of Chemistry, Acharya Prafulla Chandra College, Kolkata, India
| | - Sanjib Giri
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Sandip Saha
- Department of Chemistry, Acharya Prafulla Chandra College, Kolkata, India
| | | | | | - Shobhraj Haldar
- Department of Chemistry, University of Kalyani, Kalyani, India
| | | |
Collapse
|
42
|
Serio N, Roque J, Badwal A, Levine M. Rapid and efficient pesticide detection via cyclodextrin-promoted energy transfer. Analyst 2016; 140:7503-7. [PMID: 26436147 DOI: 10.1039/c5an01471a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclodextrins facilitate non-covalent fluorescence energy transfer from a variety of pesticides to high quantum-yield fluorophores, resulting in a rapid, sensitive detection scheme for these compounds with detection limits as low as two micromolar. Such a facile detection tool has significant potential applications in agriculture and public health research.
Collapse
Affiliation(s)
- Nicole Serio
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| | - John Roque
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| | - Andrew Badwal
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| |
Collapse
|
43
|
Hussein BHM, Khairy GM, Kamel RM. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 158:34-42. [PMID: 26802539 DOI: 10.1016/j.saa.2016.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples.
Collapse
Affiliation(s)
- Belal H M Hussein
- Chemistry Department, Faculty of Science& Arts, Al Ula, Taibah University, Al Madina Al, Monawarah, Saudi Arabia; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Gasser M Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Rasha M Kamel
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
44
|
Patra S, Roy E, Das R, Karfa P, Kumar S, Madhuri R, Sharma PK. RETRACTED: Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5′-phosphate imprinted polymer modified high throughput electrochemical sensor. Biosens Bioelectron 2015; 73:234-244. [DOI: 10.1016/j.bios.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
45
|
Highly selective nanocomposite sorbents for the specific recognition of S-ibuprofen from structurally related compounds. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0476-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
MIPs as Tools in Environmental Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 150:183-205. [DOI: 10.1007/10_2015_311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
47
|
Design and fabrication of molecularly imprinted polymer-based potentiometric sensor from the surface modified multiwalled carbon nanotube for the determination of lindane (γ-hexachlorocyclohexane), an organochlorine pesticide. Biosens Bioelectron 2015; 64:586-93. [DOI: 10.1016/j.bios.2014.09.074] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022]
|
48
|
Verma N, Bhardwaj A. Biosensor technology for pesticides--a review. Appl Biochem Biotechnol 2015; 175:3093-119. [PMID: 25595494 DOI: 10.1007/s12010-015-1489-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and biochips technology. Also, the major technological advancements of nanotechnology in the field of biosensor technology are discussed. Various biosensors mentioned in manuscript are found to exhibit storage stability of biocomponent ranging from 30-60 days, detection limit of 10(-6) - 10(-16) M, response time of 1-20 min and applications of developed biosensors in environmental samples (water, food, vegetables, milk, and juice samples, etc.) are also discussed. Researchers all over the globe are working towards the development of different biosensing techniques based on contrast approaches for the detection of pesticides in various environmental samples.
Collapse
Affiliation(s)
- Neelam Verma
- Biosensor Technology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147002, India,
| | | |
Collapse
|
49
|
Javidi J, Esmaeilpour M, Khansari MR. Synthesis, characterization and application of core–shell magnetic molecularly imprinted polymers for selective recognition of clozapine from human serum. RSC Adv 2015. [DOI: 10.1039/c5ra10356h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this article, a magnetic molecularly imprinted polymer (MMIPs) based on Fe3O4@SiO2 has been synthesized for simply extraction of clozapine (CLZ) from human serum.
Collapse
Affiliation(s)
- Jaber Javidi
- Department of Pharmaceutics
- School of Pharmacy
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| | | | - Mehdi Rajabnia Khansari
- Department of Pharmaceutics
- School of Pharmacy
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
50
|
Prasad BB, Jauhari D, Tiwari MP. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate. Biosens Bioelectron 2014; 59:81-8. [PMID: 24704689 DOI: 10.1016/j.bios.2014.03.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
A rapid, selective, and sensitive double-template imprinted polymer nanofilm-modified pencil graphite electrode was fabricated for the simultaneous analysis of phosphorus-containing amino acid-type herbicides (glyphosate and glufosinate) in soil and human serum samples. Since both herbicides respond overlapped oxidation peaks and only glyphosate is prone to nitrosation, n-nitroso glyphosate and glufosinate were used as templates for obtaining the well-resolved quantitative differential pulse anodic stripping voltammetric peaks on the proposed sensor. Toward sensor fabrication, a nano-structured polymer film was first grown directly on the electrode via initial immobilization of gold nanoparticles at its surface. This was followed by linking of monomeric (N-methacryloyl-l-cysteine) molecules through S-Au bonds. Subsequently, these molecules were subjected to free radical polymerization, in the presence of templates, cross linker, initiator, and multiwalled carbon nanotubes as pre-polymer mixture. The modified sensor observed wide linear ranges (3.98-176.23 ng mL(-1) and 0.54-3.96 ng mL(-1)) of simultaneous analysis with detection limits as low as 0.35 and 0.19 ng mL(-1) (S/N=3) for glyphosate and glufosinate, respectively, in aqueous samples. The respective oxidation peak potentials of both analytes were found to be substantially apart by 265 mV. This enabled the simultaneous determination of one target in the presence of other, without any cross reactivity, interferences, and false-positives, in real samples.
Collapse
Affiliation(s)
- Bhim Bali Prasad
- Analytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Darshika Jauhari
- Analytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mahavir Prasad Tiwari
- Analytical Division, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|