1
|
Klučáková M, Enev V. Migration of copper(II) ions in humic systems-effect of incorporated calcium(II), magnesium(II), and iron(III) ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52996-53007. [PMID: 39167144 PMCID: PMC11379747 DOI: 10.1007/s11356-024-34758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The mobility of heavy metals in natural soil systems can be affected by the properties and compositions of those systems: the content and quality of organic matter as well as the character of inorganic constituents. In this work, the diffusion of copper(II) ions in humic hydrogels with incorporated calcium(II), magnesium(II), and iron(III) ions was investigated. The methods of instantaneous planar source and of constant source were used. Experimental data yielded the time development of the concentration in hydrogels and the values of effective diffusion coefficients. The coefficients include both the influence of the hydrogel structure and the interaction of diffusing particles with the hydrogel. Our results showed that the presence of natural metal ions such as calcium, magnesium, or iron can strongly affect the diffusivity of copper in humic systems. They indicate that the mobility of copper ions depends on their concentration. The mobility can be supported by higher contents of copper in the system. While the incorporation of Ca and Mg resulted in the decrease in the diffusivity of copper ions, the incorporation of Fe(III) into humic hydrogel resulted in an increase in the diffusivity of Cu(II) in the hydrogel in comparison with pure humic hydrogel.
Collapse
Affiliation(s)
- Martina Klučáková
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Vojtěch Enev
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
2
|
Chen J, Zhang H, Farooq U, Zhang Q, Ni J, Miao R, Chen W, Qi Z. Transport of dissolved organic matters derived from biomass-pyrogenic smoke (SDOMs) and their effects on mobility of heavy metal ions in saturated porous media. CHEMOSPHERE 2023; 336:139247. [PMID: 37330067 DOI: 10.1016/j.chemosphere.2023.139247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Biomass-pyrogenic smoke-derived dissolved organic matter (SDOMs) percolating into the underground environment profoundly impacts the transport and fate of environmental pollutants in groundwater systems. Herein, SDOMs were produced by pyrolyzing wheat straw at 300-900 °C to explore their transport properties and effects on Cu2+ mobility in quartz sand porous media. The results indicated that SDOMs exhibited high mobility in saturated sand. Meanwhile, the mobility of SDOMs was enhanced at a higher pyrolysis temperature due to the decrease in their molecular sizes and the declined H-bonding interactions between SDOM molecules and sand grains. Furthermore, the transport of SDOMs was elevated as pH values were raised from 5.0 to 9.0, which resulted from the strengthened electrostatic repulsion between SDOMs and quartz sand particles. More importantly, SDOMs could facilitate Cu2+ transport in the quartz sand, which stemmed from forming soluble Cu-SDOM complexes. Intriguingly, the promotional function of SDOMs for the mobility of Cu2+ was strongly dependent on the pyrolysis temperature. Generally, SDOMs generated at higher temperatures exhibited superior effects. The phenomenon was mainly due to the differences in the Cu-binding capacities of various SDOMs (e.g., cation-π attractive interactions). Our findings highlight that the high-mobility SDOM can considerably affect heavy metal ions' environmental fate and transport.
Collapse
Affiliation(s)
- Jiuyan Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Renhui Miao
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Chen J, Zhang H, Wei Q, Farooq U, Zhang Q, Lu T, Wang X, Chen W, Qi Z. Mobility of water-soluble aerosol organic matters (WSAOMs) and their effects on soil colloid-mediated transport of heavy metal ions in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129733. [PMID: 35969951 DOI: 10.1016/j.jhazmat.2022.129733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Water-soluble aerosol organic matters (WSAOMs) produced by biomass pyrolysis/burning can penetrate subsurface environment, and are anticipated to have a profound effect on the fate of contaminants in aquatic ecosystems. Herein, WSAOMs derived from corn straw (CS-WSAOMs) and pinewood sawdust (PW-WSAOMs) pyrolysis at 300-900 °C were utilized to investigate their mobility characteristics and impacts on the transport of heavy metal ions (i.e., Cd2+) in saturated quartz sand with or without soil colloids. This study clearly demonstrated that WSAOMs in subsurface systems exhibited high mobility, which increased as WSAOMs molecular sizes decreased and hydrogen-bond interactions between WSAOMs and sand grains declined. WSAOMs significantly improved heavy metal (i.e., Cd2+) and soil colloid-mediated Cd2+ mobility in the porous media, which stemmed from the increased binding affinities of colloids toward metal ions and the high mobility of WSAOMs. Interestingly, in terms of the mobility and colloid-facilitated transport of Cd2+, WSAOMs from higher pyrolysis temperatures exhibited enhanced effects; meanwhile, the PW-WSAOMs demonstrated stronger effects than the CS-WSAOMs. The trends were mainly attributed to the differences in the metal-binding affinities (e.g., cation-π interactions) and transport abilities of WSAOMs, as well as diverse Cd2+ adsorption capacities of colloids induced by various WSAOMs.
Collapse
Affiliation(s)
- Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/ School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Taotao Lu
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/ School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Amiel N, Dror I, Berkowitz B. Mobility and Retention of Rare Earth Elements in Porous Media. ACS OMEGA 2022; 7:19491-19501. [PMID: 35722013 PMCID: PMC9202298 DOI: 10.1021/acsomega.2c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
There is growing concern that rare earth elements (REEs) will become emerging soil-water contaminants because of their increased use in new technologies and products, which may lead to unavoidable release to the environment. To better understand the environmental behavior of REEs, a comprehensive set of adsorption and column transport experiments was conducted in quartz sand media. The retention and mobility of three representative REEs (La, Gd, and Er) were studied in the presence and absence of humic acid (HA; 5, 20, and 50 mg L-1) and under a range of pH conditions (5-8). Results show that REE mobility and retention are controlled by the amount of REE-HA complexes formed in a solution, which increases with increasing HA concentrations and solution pH. Gadolinium is the most mobile among the representative REEs, followed by Er and La, corresponding to the amount of (calculated) REE-HA complexes. Increasing HA concentrations in the REE solution inhibits REE retention in both the batch adsorption and column experiments. The same retardation trend was observed for lower HA concentrations (Gd > Er > La). In a fixed HA concentration, HA and REE adsorption decrease simultaneously as the solution pH increases, indicating the co-adsorption of REEs and HA on the sand. Scanning electron microscopy detection of elongated regions attached to the sand, where high REE and carbon (HA) concentrations were measured, further suggests the co-adsorption of REE-HA complexes. Modeling the column experiments shows that the time-dependent attachment is dominant at high HA concentrations, while at lower HA concentrations, both the time-dependent and spontaneous attachments play equal roles. These results provide a quantitative characterization of REE retention and mobility in sand media.
Collapse
|
5
|
Lippold H, Zedek L. Metal dissociation from humic colloids: Kinetics with time-dependent rate constants. CHEMOSPHERE 2021; 275:130045. [PMID: 33667773 DOI: 10.1016/j.chemosphere.2021.130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/07/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
The mobility of contaminant metals in aqueous subsurface environments is largely controlled by their interaction with humic substances as colloidal constituents of Dissolved Organic Matter. Transport models for predicting carrier-bound migration are based on a competitive partitioning process between solid surface and colloids. However, it has been observed that dissociation of multivalent metals from humic complexes is a slow kinetic process, which is even more impeded with increasing time of contact. Based on findings obtained in isotope exchange experiments, the convoluted time dependence of dissociation was fully described by a complex two-site approach, integrating rate "constants" that are in turn time-dependent. Thus, this study presents the treatment of a particular phenomenon: kinetics within kinetics. The analysis showed that the inertization process does not lead to irreversible binding. Consequently, thermodynamic concepts using equilibrium constants remain applicable in speciation and transport modeling if long time frames are appropriate.
Collapse
Affiliation(s)
- Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (Research Site Leipzig), Permoserstr. 15, 04318, Leipzig, Germany.
| | - Lukáš Zedek
- Technical University of Liberec, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| |
Collapse
|
6
|
Kautenburger R. A new timescale dimension for migration experiments in clay: proof of principle for the application of miniaturized clay column experiments (MCCE). J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Seders Dietrich LA, McInnis DP, Bolster D, Maurice PA. Effect of polydispersity on natural organic matter transport. WATER RESEARCH 2013; 47:2231-2240. [PMID: 23490097 DOI: 10.1016/j.watres.2013.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
The mobility of humic-substance dominated natural organic matter (NOM) concentrated from a freshwater wetland by reverse osmosis was examined in sand columns at pH 5-8, in 0.001 M and 0.01 M NaClO4. Greater mobility was observed at higher pH and lower ionic strength, although breakthrough curves (BTCs) for bulk NOM exhibited extensive tailing under all conditions examined. Based on observations from previous batch experiments indicating preferential adsorption of intermediate to high molecular weight (MW) NOM, we postulate that 'adsorptive fractionation' of the NOM pool leads to the observed tailing behavior, and develop a novel approach to assess the effects of polydispersity on transport of NOM and associated contaminants. BTCs for different NOM fractions were constructed by separating column effluent MW distributions determined by high-pressure size exclusion chromatography into five discrete intervals or 'bins' and calculating the mass of NOM within each bin at four sampling times. Observed retardation factors (Ro), reflecting median arrival time relative to that of a nonreactive tracer, ranged from 1.4 to 7.9 for the various bins and generally increased with MW. NOM retarded transport of the contaminant metal Cd (2.5 ppm, in 0.01 M NaClO4) slightly at pH 5 and more substantially at pH 8. Although Cd had little or no effect on bulk NOM transport, retention of the more aromatic, IMW-HMW NOM appeared to be slightly enhanced by Cd. Study results demonstrate that heterogeneity in retardation as a function of MW is likely a major factor contributing to bulk NOM BTC tailing and may have important implications for contaminant transport.
Collapse
Affiliation(s)
- Lindsay A Seders Dietrich
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
8
|
May CC, Young L, Worsfold PJ, Heath S, Bryan ND, Keith-Roach MJ. The effect of EDTA on the groundwater transport of thorium through sand. WATER RESEARCH 2012; 46:4870-4882. [PMID: 22796006 DOI: 10.1016/j.watres.2012.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/06/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
The effect of the anthropogenic complexing agent EDTA on thorium transport in groundwater has been studied using sand-packed columns and flow rates in the range of 20-100 m y⁻¹. The concentrations injected into the columns were in the range of 0.4-4 mM for Th and 4-40 mM for EDTA, and with EDTA:Th ratios in the range 1:1 to 10:1. The results show that EDTA can significantly increase Th transport, but two very different behaviours are observed at Th concentrations of 0.4 and 4 mM. At the lower concentration, Th breakthrough is retarded with respect to a conservative tracer, with a peak width that is consistent with a single K(d) value, followed by a longer tail, and the behaviour is very sensitive to the flow rate. However at 4 mM Th, the breakthrough peak appears near to that of the tracer, and the width of the peak is consistent with a distribution of K(d) values and/or a larger dispersivity than the tracer. Speciation and transport modelling have been used to interpret the data, and a model was developed that could explain the 0.4 mM behaviour. This suggests that ternary surface complexes are important in these systems, with at least two different species involved, although the complexity of Th speciation in these systems leads to significant uncertainty in the values of the equilibrium and kinetic parameters. For the 4 mM systems, the rapid transport observed could not be explained by a simple chemical model; instead it is likely that EDTA plays an important role in stabilising and transporting thorium colloids and clusters.
Collapse
Affiliation(s)
- Colin C May
- Biogeochemistry Research Centre, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | | | | | | | | | | |
Collapse
|
9
|
Bruggeman C, Liu DJ, Maes N. Influence of Boom Clay organic matter on the adsorption of Eu3+ by illite – geochemical modelling using the component additivity approach. ACTA ACUST UNITED AC 2010. [DOI: 10.1524/ract.2010.1759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The solid–liquid distribution of europium (Eu) between an adsorptive surface and a solution phase containing a competitive colloid is the result of a delicate balance between several individual chemical reactions. In this study, adsorption isotherms of Eu in presence of dissolved Boom Clay natural organic matter were experimentally determined under conditions relevant for a geological repository (trace Eu concentrations, anoxic conditions, ∼0.014 mol l−1 NaHCO3 background electrolyte). It was found that both the concentration and size distribution (or operational cut-off used to discriminate between “mobile” and “immobile” colloids) of natural organic matter has a strong influence on the observed solid–liquid distribution.
The experimental data were subsequently modelled using a component additive approach with two well-established sorption/interaction models: the 2 SPNE SC/CE model for describing Eu adsorption on illite, and Humic Ion-Binding Model VI for describing Eu complexation to natural organic matter. Model parameters were gathered from dedicated measurements in batch systems containing only Eu and the interacting phase under study, under similar conditions as in the ternary isotherm experiments. Mutual interactions between illite and natural organic matter were studied and quantified. Under the experimental conditions of this study, it was found that these interactions were only of minor importance.
The two models were subsequently combined to blind predict the Eu solid–liquid distribution in the ternary batch experiments. Within an error margin of 0.5logߙK
d units, the additivity approach succeeded well in predicting Eu uptake in all experimental systems studied. A sensitivity analysis was performed to select the most important model parameters influencing the Eu uptake, and the robustness of the model. This study has shown that the component additivity approach for describing and predicting uptake of trivalent lanthanides/actinides under Boom Clay conditions, is promising, and may help in unraveling the complex behaviour of these radionuclides witnessed in migration experiments.
Collapse
Affiliation(s)
- C. Bruggeman
- Belgian Nuclear Research Centre SCKCEN, Mol, Belgien
| | - D. J. Liu
- Belgian Nuclear Research Centre SCKCEN, Mol, Belgien
| | | |
Collapse
|
10
|
Crançon P, Pili E, Charlet L. Uranium facilitated transport by water-dispersible colloids in field and soil columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2118-2128. [PMID: 20178885 DOI: 10.1016/j.scitotenv.2010.01.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 05/28/2023]
Abstract
The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the <50 microm mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both (238)U initially present in the soil column and (233)U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.
Collapse
Affiliation(s)
- P Crançon
- CEA, DAM, DIF, F-91297 Arpajon, France.
| | | | | |
Collapse
|
11
|
Handley-Sidhu S, Bryan ND, Worsfold PJ, Vaughan DJ, Livens FR, Keith-Roach MJ. Corrosion and transport of depleted uranium in sand-rich environments. CHEMOSPHERE 2009; 77:1434-1439. [PMID: 19783278 DOI: 10.1016/j.chemosphere.2009.08.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/24/2009] [Accepted: 08/28/2009] [Indexed: 05/28/2023]
Abstract
The firing of depleted uranium (DU) weapons during conflicts and military testing has resulted in the deposition of DU in a variety of sand-rich environments. In this study, DU-amended dune sand microcosm and column experiments were carried out to investigate the corrosion of DU and the transport of corrosion products. Under field-moist conditions, DU corroded to metaschoepite ((UO(2))(8)O(2)(OH)(12).(H(2)O)(10)) at a rate of 0.10+/-0.012 g cm(-2)y(-1). This loosely bound corrosion product detached easily from the coupon and became distributed heterogeneously within the sand. The corrosion of DU caused significant changes in the geochemical environment, with NO(3)(-) and Fe(III) reduction observed. Column experiments showed that transport of metaschoepite was mainly dependent on its dissolution and the subsequent interaction of the resulting dissolved uranyl (UO(2)(2+)) species with sand particles. The modelling results predict that the transport of U released from metaschoepite dissolution is retarded, due to a slowly desorbing surface species (first order desorption rate constant=5.0 (+/-1.0)x10(-8)s(-1)). The concentrations of U eluting from the metaschoepite column were orders of magnitude higher than the World Health Organisation's recommended maximum admissible concentration for U in drinking water of 15 microg L(-1). Therefore, a relatively high level of mobile U contamination would be expected in the immediate proximity of a corroding penetrator in a sand-rich environment.
Collapse
Affiliation(s)
- Stephanie Handley-Sidhu
- Biogeochemistry and Environmental Analytical Chemistry Research Group, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Lippold H, Lippmann-Pipke J. Effect of humic matter on metal adsorption onto clay materials: testing the linear additive model. JOURNAL OF CONTAMINANT HYDROLOGY 2009; 109:40-48. [PMID: 19712995 DOI: 10.1016/j.jconhyd.2009.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 06/15/2009] [Accepted: 07/30/2009] [Indexed: 05/28/2023]
Abstract
Migration of contaminants with low affinity for the aqueous phase is essentially governed by interaction with mobile carriers such as humic colloids. Their impact is, however, not sufficiently described by interaction constants alone since the humic carriers themselves are subject to a solid-liquid distribution that depends on geochemical parameters. In our study, co-adsorption of the REE terbium (as an analogue of trivalent actinides) and humic acid onto three clay materials (illite, montmorillonite, Opalinus clay) was investigated as a function of pH. (160)Tb(III) and (131)I-labelled humic acid were employed as radiotracers, allowing experiments at very low concentrations to mimic probable conditions in the far-field of a nuclear waste repository. Humate complexation of Tb was examined by anion and cation exchange techniques, also considering competitive effects of metals leached from the clay materials. The results revealed that desorption of metals from clay barriers, occurring in consequence of acidification processes, is generally counteracted in the presence of humic matter. For all clay materials under study, adsorption of Tb was found to be enhanced in neutral and acidic systems with humic acid, which is explained by additional adsorption of humic-bound Tb. A commonly used composite approach (linear additive model) was tested for suitability in reconstructing the solid-liquid distribution of Tb in ternary systems (Tb/humic acid/clay) on the basis of data determined for binary subsystems. The model can qualitatively explain the influence of humic acid as a function of pH, but it failed to reproduce our experimental data quantitatively. It appears that the elementary processes (metal adsorption, metal-humate complexation, humic acid adsorption) cannot be considered to be independent of each other. Possible reasons are discussed.
Collapse
Affiliation(s)
- Holger Lippold
- Institut für Interdisziplinäre Isotopenforschung, Permoserstr. 15, 04318 Leipzig, Germany
| | | |
Collapse
|
13
|
Bryan ND, Jones DLM, Keepax RE, Farrelly DH, Abrahamsen LG, Pitois A, Ivanov P, Warwick P, Evans N. The role of humic non-exchangeable binding in the promotion of metal ion transport in groundwaters in the environment. ACTA ACUST UNITED AC 2007; 9:329-47. [PMID: 17410308 DOI: 10.1039/b701891f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions form strong complexes with humic substances. When the metal ion is first complexed by humic material, it is bound in an 'exchangeable' mode. The metal ion in this fraction is strongly bound, however, if the metal-humic complex encounters a stronger binding site on a surface, then the metal ion may dissociate from the humic substance and be immobilised. However, over time, exchangeably-bound metal may transfer to a 'non-exchangeable' mode. Transfer into this mode and dissociation from it are slow, regardless of the strength of the competing sink, and so immobilisation may be hindered. A series of coupled chemical transport calculations has been performed to investigate the likely effects of non-exchangeable binding upon the transport of metal ions in the environment. The calculations show that metal in the non-exchangeable mode will have a significantly higher mobility than that in the exchangeable mode. The critical factor is the ratio of the non-exchangeable first-order dissociation rate constant and the residence time in the groundwater column, metal ion mobility increasing with decreasing rate constant. A second series of calculations has investigated the effect of the sorption to surfaces of humic/metal complexes on the transport of the non-exchangeably bound metal. It was found that such sorption may reduce mobility, depending upon the humic fraction to which the metal ion is bound. For the more weakly sorbing humic fractions, under ambient conditions (humic concentration etc.) the non-exchangeable fraction may still transport significantly. However, for the more strongly sorbed fractions, the non-exchangeable fraction has little effect upon mobility. In addition to direct retardation, sorption also increases the residence time of the non-exchangeable fraction, giving more time for dissociation and immobilisation. The non-exchangeable dissociation reaction, and the sorption reaction have been classified in terms of two Damkohler numbers, which can be used to determine the importance of chemical kinetics during transport calculations. These numbers have been used to develop a set of rules that determine when full chemical kinetic calculations are required for a reliable prediction, and when equilibrium may be assumed, or when the reactions are sufficiently slow that they may be ignored completely.
Collapse
Affiliation(s)
- Nick D Bryan
- Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester, UKM13 9PL.
| | | | | | | | | | | | | | | | | |
Collapse
|