1
|
Johnson TG, Langton MJ. Molecular Machines For The Control Of Transmembrane Transport. J Am Chem Soc 2023; 145:27167-27184. [PMID: 38062763 PMCID: PMC10740008 DOI: 10.1021/jacs.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Nature embeds some of its molecular machinery, including ion pumps, within lipid bilayer membranes. This has inspired chemists to attempt to develop synthetic analogues to exploit membrane confinement and transmembrane potential gradients, much like their biological cousins. In this perspective, we outline the various strategies by which molecular machines─molecular systems in which a nanomechanical motion is exploited for function─have been designed to be incorporated within lipid membranes and utilized to mediate transmembrane ion transport. We survey molecular machines spanning both switches and motors, those that act as mobile carriers or that are anchored within the membrane, mechanically interlocked molecules, and examples that are activated in response to external stimuli.
Collapse
Affiliation(s)
- Toby G. Johnson
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| | - Matthew J. Langton
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| |
Collapse
|
2
|
Min Tay H, Johnson TG, Docker A, Langton MJ, Beer PD. Exploiting the Catenane Mechanical Bond Effect for Selective Halide Anion Transmembrane Transport. Angew Chem Int Ed Engl 2023; 62:e202312745. [PMID: 37772928 DOI: 10.1002/anie.202312745] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The first examples of [2]catenanes capable of selective anion transport across a lipid bilayer are reported. The neutral halogen bonding (XB) [2]catenanes were prepared via a chloride template-directed strategy in an unprecedented demonstration of using XB⋅⋅⋅anion interactions to direct catenane assembly from all-neutral components. Anion binding experiments in aqueous-organic solvent media revealed strong halide over oxoanion selectivity, and a marked enhancement in the chloride and bromide affinities of the catenanes relative to their constituent macrocycles. The catenanes additionally displayed an anti-Hofmeister binding preference for bromide over the larger iodide anion, illustrating the efficacy of employing sigma-hole interactions in conjunction with the mechanical bond effect to tune receptor selectivity. Transmembrane anion transport studies conducted in POPC LUVs revealed that the catenanes were more effective anion transporters than the constituent macrocycles, with high chloride over hydroxide selectivity, which is critical to potential therapeutic applications of anionophores. Remarkably these outperform existing acyclic halogen bonding anionophores with regards to this selectivity. Record chloride over nitrate anion transport selectivity was also observed. This represents a rare example of the direct translation of intrinsic anion binding affinities to anion transport behaviour, and demonstrates the key role of the catenane mechanical bond effect for enhanced anion transport selectivity.
Collapse
Affiliation(s)
- Hui Min Tay
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Toby G Johnson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Docker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
3
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
4
|
Biswas R, Samanta K, Ghorai S, Maji S, Natarajan R. Conformationally Flexible Cleft Receptor for Chloride Anion Transport. ACS OMEGA 2023; 8:19625-19631. [PMID: 37305253 PMCID: PMC10249377 DOI: 10.1021/acsomega.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
The design and synthesis of a cleft-shaped bis-diarylurea receptor for chloride anion transport is reported in this work. The receptor is based on the foldameric nature of N,N'-diphenylurea upon its dimethylation. The bis-diarylurea receptor exhibits a strong and selective affinity for chloride over bromide and iodide anions. A nanomolar quantity of the receptor efficiently transports the chloride across a lipid bilayer membrane as a 1:1 complex (EC50 = 5.23 nm). The work demonstrates the utility of the N,N'-dimethyl-N,N'-diphenylurea scaffold in anion recognition and transport.
Collapse
Affiliation(s)
- Raju Biswas
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishanu Samanta
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandipan Ghorai
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Maji
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramalingam Natarajan
- Organic
& Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Patel S, Bariya D, Mishra R, Mishra S. Bile acid-based receptors and their applications in recognition. Steroids 2022; 179:108981. [PMID: 35176289 DOI: 10.1016/j.steroids.2022.108981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Ion recognition has attracted great attention in the past decades because of its important role in biology, medicine, environment, and chemistry. The combination of rigidity, curved structure and amphiphilic nature makes bile acids a host system for ion recognition. In addition, the availability of hydroxyl groups in bile acids can be used for further derivatization to develop various ion recognition receptors. The detection of ions is revealed by the binding constant ka value, log approach, and UV-visible or 1H NMR titration, while visual detection is determined by gel-phase transition, colorimetric and fluorescent probes. In this review, we have discussed the bile acid-based receptors and their ion-recognition capability. These bile acid-based systems have the potential for the development of anion transport for biological activity.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India
| | - Dipakkumar Bariya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India
| | - Roli Mishra
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India.
| | - Satyendra Mishra
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat, 382426 India.
| |
Collapse
|
6
|
Mondal D, Ahmad M, Panwaria P, Upadhyay A, Talukdar P. Anion Recognition through Multivalent C-H Hydrogen Bonds: Anion-Induced Foldamer Formation and Transport across Phospholipid Membranes. J Org Chem 2021; 87:10-17. [PMID: 34908424 DOI: 10.1021/acs.joc.1c01408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of triazole-cyanostilbene receptors were designed and synthesized. The receptor binds with the anions through various CH···anion hydrogen bonding interactions, where strong binding was observed for SO42- anions followed by Cl-, Br-, NO3-, and I-, calculated from the 1H NMR titration experiment. The NOESY NMR experiment of the receptor confirmed the formation of anion-induced folded conformation. The CH···anion hydrogen bonding interaction-mediated anion recognition and foldamer formation were further confirmed from geometry optimization studies of the anion-bound complex. The receptor transports Cl- anions efficiently compared to SO42- anions across the lipid bilayer membrane via a mobile carrier mechanism.
Collapse
Affiliation(s)
- Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Avisikta Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
7
|
Gilchrist AM, Wang P, Carreira-Barral I, Alonso-Carrillo D, Wu X, Quesada R, Gale PA. Supramolecular methods: the 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) transport assay. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1999956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Patrick Wang
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | - Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roberto Quesada
- Departmento De Química, Universidad De Burgos, Burgos, Spain
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc Natl Acad Sci U S A 2021; 118:2024855118. [PMID: 33619109 DOI: 10.1073/pnas.2024855118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrochemical water splitting stores energy as equivalents of hydrogen and oxygen and presents a potential route to the scalable storage of renewable energy. Widespread implementation of such energy storage, however, will be facilitated by abundant and accessible sources of water. We describe herein a means of utilizing impure water sources (e.g., saltwater) for electrochemical water splitting by leveraging forward osmosis. A concentration gradient induces the flow of water from an impure water source into a more concentrated designed electrolyte. This concentration gradient may subsequently be maintained by water splitting, where rates of water influx (i.e., forward osmosis) and effective outflux (i.e., water splitting) are balanced. This approach of coupling forward osmosis to water splitting allows for the use of impure and natural sources without pretreatment and with minimal losses in energy efficiency.
Collapse
|
9
|
Mori M, Sato K, Ekimoto T, Okumura S, Ikeguchi M, Tabata KV, Noji H, Kinbara K. Imidazolinium-based Multiblock Amphiphile as Transmembrane Anion Transporter. Chem Asian J 2021; 16:147-157. [PMID: 33247535 DOI: 10.1002/asia.202001106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Indexed: 01/13/2023]
Abstract
Transmembrane anion transport is an important biological process in maintaining cellular functions. Thus, synthetic anion transporters are widely developed for their biological applications. Imidazolinium was introduced as anion recognition site to a multiblock amphiphilic structure that consists of octa(ethylene glycol) and aromatic units. Ion transport assay using halide-sensitive lucigenin and pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) revealed that imidazolinium-based multiblock amphiphile (IMA) transports anions and showed high selectivity for nitrate, which plays crucial roles in many biological events. Temperature-dependent ion transport assay using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) indicated that IMA works as a mobile carrier. 1 H NMR titration experiments indicated that the C2 proton of the imidazolinium ring recognizes anions via a (C-H)+ ⋅⋅⋅X- hydrogen bond. Furthermore, all-atom molecular dynamics simulations revealed a dynamic feature of IMA within the membranes during ion transportation.
Collapse
Affiliation(s)
- Miki Mori
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinichi Okumura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,RIKEN Medical Science Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhito V Tabata
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Noji
- Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
10
|
Benke BP, Behera H, Madhavan N. Low Molecular Weight Di‐ to Tetrapeptide Transmembrane Cation Transporters. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bahiru P. Benke
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
| | - Harekrushna Behera
- Department of Chemistry Indian Institute of Technology Madras 600036 Chennai Tamil Nadu India
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Nandita Madhavan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
11
|
Marshall SR, Singh A, Wagner JN, Busschaert N. Enhancing the selectivity of optical sensors using synthetic transmembrane ion transporters. Chem Commun (Camb) 2020; 56:14455-14458. [PMID: 33146644 DOI: 10.1039/d0cc06437h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, we introduce a new method to optimize the properties of optical sensors, coined the transporter-liposome-fluorophore (TLF) approach. It is shown that this approach can greatly improve the selectivity of the sensor, increase the dynamic range and maintain the sensitivity of the original fluorophore.
Collapse
Affiliation(s)
- Sarah R Marshall
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | | | | | | |
Collapse
|
12
|
Saha P, Madhavan N. Macrocyclic Transmembrane Anion Transporters via a One-Pot Condensation Reaction. Org Lett 2020; 22:5104-5108. [PMID: 32610925 DOI: 10.1021/acs.orglett.0c01699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic chloride transporters are potential therapeutic agents for cystic fibrosis and cancer. Reported herein are macrocyclic transmembrane chloride transporters prepared by a one-pot condensation reaction. The most efficient macrocycle possesses a fine balance of hydrophobicity for membrane permeation and hydrophilicity for ion recognition. The macrocycle transports chloride ions by forming channels in the membrane. Hydrogen bonds and anion-π interactions assist chloride transport.
Collapse
Affiliation(s)
- Parichita Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Nandita Madhavan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
13
|
Bąk KM, van Kolck B, Maslowska-Jarzyna K, Papadopoulou P, Kros A, Chmielewski MJ. Oxyanion transport across lipid bilayers: direct measurements in large and giant unilamellar vesicles. Chem Commun (Camb) 2020; 56:4910-4913. [PMID: 32238998 DOI: 10.1039/c9cc09888g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple di(thioamido)carbazole 1 serves as a potent multispecific transporter for various biologically relevant oxyanions, such as drugs, metabolites and model organic phosphate. The transport kinetics of a wide range of oxyanions can be easily quantified by a modified lucigenin assay in both large and giant unilamellar vesicles.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Bartjan van Kolck
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Panagiota Papadopoulou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| |
Collapse
|
14
|
Zhang F, Ma C, Jiao Z, Mu S, Zhang Y, Liu X, Zhang H. A NIR Turn-on Fluorescent Sensor For Detection of Chloride Ions in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117729. [PMID: 31740122 DOI: 10.1016/j.saa.2019.117729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
As the most abundant and significant anions in biosystem, chloride ions (Cl-) participate in many important physiological processes. Thus, designing and synthesizing of a simple, sensitive, selective and long wavelength turn-on sensor for the detection and imaging of Cl- in vitro and in vivo is very necessary. Herein, we have developed a simple porphyrin turn-on sensor 5, 10, 15, 20-Tetrakis (4-hydroxyphenyl) porphyrin (THPP) with near infrared emission wavelength (657 nm) for sensing chloride ions with remarkable sensitivity and selectivity. The detection of chloride ions was according to metal displacement assay (MDA) under physiological condition with a detection limit of 7.5 μM, and was applied to image Cl- in vitro and in vivo successfully.
Collapse
Affiliation(s)
- Fengyuan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Chen Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhijuan Jiao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yida Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Plajer AJ, Zhu J, Pröhm P, Rizzuto FJ, Keyser UF, Wright DS. Conformational Control in Main Group Phosphazane Anion Receptors and Transporters. J Am Chem Soc 2020; 142:1029-1037. [PMID: 31877039 DOI: 10.1021/jacs.9b11347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anion binding by receptor molecules is a central field of modern chemistry which impacts areas of catalysis as well as biological and materials chemistry. As binding often requires high chemical stability under aerobic and aqueous conditions for practical applications, carbon-based anion receptors have dominated this field, with main group element analogues receiving far less attention. The recent observation that the air- and moisture-stable amino-cyclophosph(V)azanes of the type [RN(E)P(μ-NR)]2 (E = O, S, Se) can exhibit halide binding that is competitive with topologically related organic receptors (such as squaramides and thioureas) has motivated us here to explore how the binding properties of phosphazane receptors can be enhanced further. Coordination of transition metals by the two P,N metal coordination sites of the phosph(III)azane dimer [(2-py)NHP(μ-NtBu)]2 not only activates the receptor for anion binding (by fixing the optimum exo-exo conformation and polarizing the endocyclic N-H substituents) but also stabilizes the P2N2 ring to hydrolysis and oxidation. We show how the binding properties of these receptors can be modulated by the coordinated metal fragments and that they can bind chloride 1 to 2 orders of magnitude stronger than the related squaramides and thioureas. These features can be utilized in anion transport through phospholipid bilayers under aqueous conditions for which transport can be improved by 1 order of magnitude compared to the previous best phosphazane and thiourea transporters. This study demonstrates how careful design of inorganic systems can result in potent supramolecular functionality, beyond that observed for organic counterparts.
Collapse
Affiliation(s)
- Alex J Plajer
- Chemistry Department , Cambridge University , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Jinbo Zhu
- Cavendish Laboratory, Department of Physics , Cambridge University , J. J. Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Patrick Pröhm
- Institut für Chemie und Biochemie , Freie Universitaet Berlin Fabeckstr , 34-36 14159 Berlin , Germany
| | - Felix J Rizzuto
- Department of Chemistry , McGill University , 801 Sherbrooke Street W , Montreal , Quebec H3A 0B8 , Canada
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics , Cambridge University , J. J. Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Dominic S Wright
- Chemistry Department , Cambridge University , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
16
|
Fuertes A, Amorín M, Granja JR. Versatile symport transporters based on cyclic peptide dimers. Chem Commun (Camb) 2020; 56:46-49. [DOI: 10.1039/c9cc06644f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the synthesis and transmembrane transport properties of a new family of tris-pyridine-decorated cyclic peptides.
Collapse
Affiliation(s)
- Alberto Fuertes
- Singular Research Centre in Chemical Biology and Molecular Materials
- (CIQUS), Organic Chemistry Department
- University of Santiago de Compostela (USC)
- Santiago de Compostela
- Spain
| | - Manuel Amorín
- Singular Research Centre in Chemical Biology and Molecular Materials
- (CIQUS), Organic Chemistry Department
- University of Santiago de Compostela (USC)
- Santiago de Compostela
- Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials
- (CIQUS), Organic Chemistry Department
- University of Santiago de Compostela (USC)
- Santiago de Compostela
- Spain
| |
Collapse
|
17
|
Li H, Valkenier H, Thorne AG, Dias CM, Cooper JA, Kieffer M, Busschaert N, Gale PA, Sheppard DN, Davis AP. Anion carriers as potential treatments for cystic fibrosis: transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem Sci 2019; 10:9663-9672. [PMID: 32055336 PMCID: PMC6984391 DOI: 10.1039/c9sc04242c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Defective anion transport is a hallmark of the genetic disease cystic fibrosis (CF). One approach to restore anion transport to CF cells utilises alternative pathways for transmembrane anion transport, including artificial anion carriers (anionophores). Here, we screened 22 anionophores for biological activity using fluorescence emission from the halide-sensitive yellow fluorescent protein. Three compounds possessed anion transport activity similar to or greater than that of a bis-(p-nitrophenyl)ureidodecalin previously shown to have promising biological activity. Anion transport by these anionophores was concentration-dependent and persistent. All four anionophores mediated anion transport in CF cells, and their activity was additive to rescue of the predominant disease-causing variant F508del-CFTR using the clinically-licensed drugs lumacaftor and ivacaftor. Toxicity was variable but minimal at the lower end. The results provide further evidence that anionophores, by themselves or together with other treatments that restore anion transport, offer a potential therapeutic strategy for CF.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology , Pharmacology and Neuroscience , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Hennie Valkenier
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Abigail G Thorne
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Christopher M Dias
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - James A Cooper
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | - Marion Kieffer
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| | | | - Philip A Gale
- Chemistry , University of Southampton , Southampton SO17 1BJ , UK .
| | - David N Sheppard
- School of Physiology , Pharmacology and Neuroscience , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Anthony P Davis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK .
| |
Collapse
|
18
|
Burade SS, Pawar SV, Saha T, Kumbhar N, Kotmale AS, Ahmad M, Talukdar P, Dhavale DD. Sugar-derived oxazolone pseudotetrapeptide as γ-turn inducer and anion-selective transporter. Beilstein J Org Chem 2019; 15:2419-2427. [PMID: 31666876 PMCID: PMC6808195 DOI: 10.3762/bjoc.15.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/23/2019] [Indexed: 12/02/2022] Open
Abstract
The intramolecular cyclization of a C-3-tetrasubstituted furanoid sugar amino acid-derived linear tetrapeptide afforded an oxazolone pseudo-peptide with the formation of an oxazole ring at the C-terminus. A conformational study of the oxazolone pseudo-peptide showed intramolecular C=O···HN(II) hydrogen bonding in a seven-membered ring leading to a γ-turn conformation. This fact was supported by a solution-state NMR and molecular modeling studies. The oxazolone pseudotetrapeptide was found to be a better Cl--selective transporter for which an anion-anion antiport mechanism was established.
Collapse
Affiliation(s)
- Sachin S Burade
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Sushil V Pawar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Tanmoy Saha
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Navanath Kumbhar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Amol S Kotmale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Manzoor Ahmad
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Pinaki Talukdar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Dilip D Dhavale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| |
Collapse
|
19
|
Tapia L, Pérez Y, Bolte M, Casas J, Solà J, Quesada R, Alfonso I. pH‐Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew Chem Int Ed Engl 2019; 58:12465-12468. [DOI: 10.1002/anie.201905965] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR FacilityIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Michael Bolte
- Institut für Anorganische ChemieJ.-W.-Goethe-Universität Max-von-Laue-Str.7 60438 Frankfurt/Main Germany
| | - Josefina Casas
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
- CIBER Enfermedades Hepaticas y Digestivas (CIBEREHD) Spain
| | - Jordi Solà
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Roberto Quesada
- Departamento de QuímicaFacultad de CienciasUniversidad de Burgos 09001 Burgos Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| |
Collapse
|
20
|
Tapia L, Pérez Y, Bolte M, Casas J, Solà J, Quesada R, Alfonso I. pH‐Dependent Chloride Transport by Pseudopeptidic Cages for the Selective Killing of Cancer Cells in Acidic Microenvironments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR FacilityIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Michael Bolte
- Institut für Anorganische ChemieJ.-W.-Goethe-Universität Max-von-Laue-Str.7 60438 Frankfurt/Main Germany
| | - Josefina Casas
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
- CIBER Enfermedades Hepaticas y Digestivas (CIBEREHD) Spain
| | - Jordi Solà
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| | - Roberto Quesada
- Departamento de QuímicaFacultad de CienciasUniversidad de Burgos 09001 Burgos Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryIQAC-CSIC Jordi Girona, 18–26 08034 Barcelona Spain
| |
Collapse
|
21
|
Howe ENW, Gale PA. Fatty Acid Fueled Transmembrane Chloride Transport. J Am Chem Soc 2019; 141:10654-10660. [DOI: 10.1021/jacs.9b02116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ethan N. W. Howe
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
22
|
Grauwels G, Valkenier H, Davis AP, Jabin I, Bartik K. Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angew Chem Int Ed Engl 2019; 58:6921-6925. [DOI: 10.1002/anie.201900818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Glenn Grauwels
- Université libre de Bruxelles (ULB)Engineering Molecular NanoSystems Avenue F. Roosevelt 50 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB)Engineering Molecular NanoSystems Avenue F. Roosevelt 50 1050 Brussels Belgium
| | - Anthony P. Davis
- University of BristolSchool of Chemistry Cantock's Close Bristol BS8 1TS UK
| | - Ivan Jabin
- Université libre de Bruxelles (ULB)Laboratoire de Chimie Organique Avenue F. Roosevelt 50 1050 Brussels Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB)Engineering Molecular NanoSystems Avenue F. Roosevelt 50 1050 Brussels Belgium
| |
Collapse
|
23
|
Plajer AJ, Zhu J, Proehm P, Bond AD, Keyser UF, Wright DS. Tailoring the Binding Properties of Phosphazane Anion Receptors and Transporters. J Am Chem Soc 2019; 141:8807-8815. [DOI: 10.1021/jacs.9b00504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Alex J. Plajer
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jinbo Zhu
- Cavendish Laboratory, Department of Physics, Cambridge University, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Patrick Proehm
- Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, Fabeckstraße 34-36 14159 Berlin, Germany
| | - Andrew D. Bond
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ulrich F. Keyser
- Cavendish Laboratory, Department of Physics, Cambridge University, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Dominic S. Wright
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
24
|
Grauwels G, Valkenier H, Davis AP, Jabin I, Bartik K. Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Glenn Grauwels
- Université libre de Bruxelles (ULB)Engineering Molecular NanoSystems Avenue F. Roosevelt 50 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB)Engineering Molecular NanoSystems Avenue F. Roosevelt 50 1050 Brussels Belgium
| | - Anthony P. Davis
- University of BristolSchool of Chemistry Cantock's Close Bristol BS8 1TS UK
| | - Ivan Jabin
- Université libre de Bruxelles (ULB)Laboratoire de Chimie Organique Avenue F. Roosevelt 50 1050 Brussels Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB)Engineering Molecular NanoSystems Avenue F. Roosevelt 50 1050 Brussels Belgium
| |
Collapse
|
25
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen C. Artificial K
+
Channels Formed by Pillararene‐Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| | - Chang‐Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug InnovationKey Laboratory of Green Chemical Media and Reactions of Ministry of EducationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsHenan Normal University Xinxiang 453007 China
| |
Collapse
|
26
|
Affiliation(s)
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Australia
| |
Collapse
|
27
|
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen CP. Artificial K + Channels Formed by Pillararene-Cyclodextrin Hybrid Molecules: Tuning Cation Selectivity and Generating Membrane Potential. Angew Chem Int Ed Engl 2019; 58:2779-2784. [PMID: 30648810 DOI: 10.1002/anie.201813797] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Indexed: 01/10/2023]
Abstract
A class of artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+ ), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+ , and generated stable membrane potential across lipid bilayers.
Collapse
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Huiyuan Kong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Lingyu Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haodong Fang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Haofeng Zhu
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
28
|
Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Cl−/HCO3− Antiporters. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Shinde SV, Talukdar P. Transmembrane H+/Cl− cotransport activity of bis(amido)imidazole receptors. Org Biomol Chem 2019; 17:4483-4490. [DOI: 10.1039/c9ob00554d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bis(amide) appended imidazole having a sickle-shaped trivalent hydrogen-bonding structure reported as a transmembrane H+/Cl− symporter.
Collapse
Affiliation(s)
- Sopan Valiba Shinde
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
30
|
Motloch P, Guerreiro A, Azeredo CQ, Bernardes GJL, Hunter CA, Kocsis I. Triaminopyrimidine derivatives as transmembrane HCl transporters. Org Biomol Chem 2019; 17:5633-5638. [DOI: 10.1039/c9ob00725c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of triaminopyrimidine-based anion transporters has been described, capable of diminishing proton gradients across lipid bilayers at physiologically relevant pH.
Collapse
Affiliation(s)
- Petr Motloch
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Ana Guerreiro
- Instituto de Medicina Molecular
- Faculdade de Medicina da Universidade de Lisboa
- 1649-028 Lisboa
- Portugal
| | - Carolina Q. Azeredo
- Instituto de Medicina Molecular
- Faculdade de Medicina da Universidade de Lisboa
- 1649-028 Lisboa
- Portugal
| | - Gonçalo J. L. Bernardes
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
- Instituto de Medicina Molecular
| | | | - Istvan Kocsis
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
31
|
Malla JA, Roy A, Talukdar P. Anion Selective Ion Channel Constructed from a Self-Assembly of Bis(cholate)-Substituted Fumaramide. Org Lett 2018; 20:5991-5994. [DOI: 10.1021/acs.orglett.8b02115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | - Arundhati Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| |
Collapse
|
32
|
Li Y, Zheng S, Legrand Y, Gilles A, Van der Lee A, Barboiu M. Structure‐Driven Selection of Adaptive Transmembrane Na
+
Carriers or K
+
Channels. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yu‐Hao Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Shaoping Zheng
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Yves‐Marie Legrand
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Arnaud Gilles
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Arie Van der Lee
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
33
|
Li YH, Zheng S, Legrand YM, Gilles A, Van der Lee A, Barboiu M. Structure-Driven Selection of Adaptive Transmembrane Na + Carriers or K + Channels. Angew Chem Int Ed Engl 2018; 57:10520-10524. [PMID: 29900647 DOI: 10.1002/anie.201802570] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Indexed: 01/06/2023]
Abstract
Self-assembled alkyl-ureido-benzo-15-crown-5-ethers are selective ionophores for K+ cations, which are preferred to Na+ cations. The transport mechanism is determined by the optimal coordination rather than classical dimensional compatibility between the crown ether hole and the cation diameter. Herein, we demonstrate that systematic changes of the structure lead to unexpected modifications in the cation-transport activity and suffice to produce adaptive selection. We show that the main contribution to performance arises from optimal constraints on the conformational freedom, which are determined by the binding macrocycles, the nature of the hydrogen-bonding groups, and the hydrophobic tails. Simple changes to the flexible 15-crown-5-ether lead to selective carriers for Na+ . Hydrophobic stabilization of the channels through mutual interactions between lipids and variable hydrophobic tails appears to be an important cause of increased activity. Oppositely, restricted translocation is achieved when constrained hydrogen-bonded macrocyclic relays are less dynamic in a pore superstructure.
Collapse
Affiliation(s)
- Yu-Hao Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoping Zheng
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yves-Marie Legrand
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Arnaud Gilles
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Arie Van der Lee
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.,Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
34
|
Synthesis, anionophoric activity and apoptosis-inducing bioactivity of benzimidazolyl-based transmembrane anion transporters. Eur J Med Chem 2018; 152:115-125. [DOI: 10.1016/j.ejmech.2018.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022]
|
35
|
Dias CM, Valkenier H, Davis AP. Anthracene Bisureas as Powerful and Accessible Anion Carriers. Chemistry 2018; 24:6262-6268. [PMID: 29493830 PMCID: PMC5947650 DOI: 10.1002/chem.201800508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Synthetic anion carriers (anionophores) have potential as biomedical research tools and as treatments for conditions arising from defective natural transport systems (notably cystic fibrosis). Highly active anionophores that are readily accessible and easily deliverable are especially valuable. Previous work has resulted in steroid and trans-decalin based anionophores with exceptional activity for chloride/nitrate exchange in vesicles, but poor accessibility and deliverability. This work shows that anthracene 1,8-bisureas can fulfil all three criteria. In particular, a bis-nitrophenyl derivative is prepared in two steps from commercial starting materials, yet shows comparable transport activity to the best currently known. Moreover, unlike earlier highly active systems, it does not need to be preincorporated in test vesicles but can be introduced subsequent to vesicle formation. This transporter also shows the ability to transfer between vesicles, and is therefore uniquely effective for anion transport at low transporter loadings. The results suggest that anthracene bisureas are promising candidates for application in biological research and medicine.
Collapse
Affiliation(s)
| | - Hennie Valkenier
- Université Libre de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| | - Anthony P. Davis
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
36
|
Andersen NN, Lisbjerg M, Eriksen K, Pittelkow M. Hemicucurbit[n
]urils and Their Derivatives - Synthesis and Applications. Isr J Chem 2018. [DOI: 10.1002/ijch.201700129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nicolaj N. Andersen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Micke Lisbjerg
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Kristina Eriksen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Michael Pittelkow
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| |
Collapse
|
37
|
Affiliation(s)
- Ofer Reany
- Department of Natural Sciences; The Open University of Israel; 1 University Rd Ra'anana 43537 Israel
| | - Amar Mohite
- Department of Natural Sciences; The Open University of Israel; 1 University Rd Ra'anana 43537 Israel
| | - Ehud Keinan
- Schulich Faculty of Chemistry; Technion - Israel Institute of Technology; Technion City Haifa 32000 Israel
| |
Collapse
|
38
|
Mondal D, Sathyan A, Shinde SV, Mishra KK, Talukdar P. Tripodal cyanurates as selective transmembrane Cl− transporters. Org Biomol Chem 2018; 16:8690-8694. [DOI: 10.1039/c8ob01345d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tris-carboxyamide and tris-sulfonamide-based anion receptors with cyanuric acid core are developed for transmembrane chloride transport.
Collapse
Affiliation(s)
- Debashis Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Anjana Sathyan
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Sopan V. Shinde
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Kamal K. Mishra
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
39
|
Shinde SV, Talukdar P. An anion receptor that facilitates transmembrane proton–anion symport by deprotonating its sulfonamide N–H proton. Chem Commun (Camb) 2018; 54:10351-10354. [DOI: 10.1039/c8cc04044c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Indole-based amide-sulfonamide derivatives were synthesized. The X-ray crystal structure and chloride binding studies in solution showed a 1 : 1 stoichiometry. The ion transport study indicated the proton–anion symport across the lipid bilayer membrane.
Collapse
Affiliation(s)
- Sopan Valiba Shinde
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
40
|
Haynes CJE, Zhu J, Chimerel C, Hernández-Ainsa S, Riddell IA, Ronson TK, Keyser UF, Nitschke JR. Blockable Zn10
L15
Ion Channels through Subcomponent Self-Assembly. Angew Chem Int Ed Engl 2017; 56:15388-15392. [DOI: 10.1002/anie.201709544] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Cally J. E. Haynes
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Jinbo Zhu
- Cavendish Laboratory; University of Cambridge; JJ Thompson Avenue Cambridge CB3 0HE UK
| | - Catalin Chimerel
- Cavendish Laboratory; University of Cambridge; JJ Thompson Avenue Cambridge CB3 0HE UK
| | | | - Imogen A. Riddell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
- Current address: School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Tanya K. Ronson
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Ulrich F. Keyser
- Cavendish Laboratory; University of Cambridge; JJ Thompson Avenue Cambridge CB3 0HE UK
| | - Jonathan R. Nitschke
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
41
|
Haynes CJE, Zhu J, Chimerel C, Hernández-Ainsa S, Riddell IA, Ronson TK, Keyser UF, Nitschke JR. Blockable Zn10
L15
Ion Channels through Subcomponent Self-Assembly. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cally J. E. Haynes
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Jinbo Zhu
- Cavendish Laboratory; University of Cambridge; JJ Thompson Avenue Cambridge CB3 0HE UK
| | - Catalin Chimerel
- Cavendish Laboratory; University of Cambridge; JJ Thompson Avenue Cambridge CB3 0HE UK
| | | | - Imogen A. Riddell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
- Current address: School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Tanya K. Ronson
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Ulrich F. Keyser
- Cavendish Laboratory; University of Cambridge; JJ Thompson Avenue Cambridge CB3 0HE UK
| | - Jonathan R. Nitschke
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
42
|
Valkenier H, Dias CM, Butts CP, Davis AP. A folding decalin tetra-urea for transmembrane anion transport. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Basak D, Sridhar S, Bera AK, Madhavan N. A minimalistic tetrapeptide amphiphile scaffold for transmembrane pores with a preference for sodium. Bioorg Med Chem Lett 2017; 27:2886-2889. [DOI: 10.1016/j.bmcl.2017.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 11/25/2022]
|
44
|
Benke BP, Aich P, Kim Y, Kim KL, Rohman MR, Hong S, Hwang IC, Lee EH, Roh JH, Kim K. Iodide-Selective Synthetic Ion Channels Based on Shape-Persistent Organic Cages. J Am Chem Soc 2017; 139:7432-7435. [DOI: 10.1021/jacs.7b02708] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bahiru Punja Benke
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Pulakesh Aich
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Younghoon Kim
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kyung Lock Kim
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Md Rumum Rohman
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Soonsang Hong
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - In-Chul Hwang
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Eun Hui Lee
- Department
of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Ho Roh
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
45
|
Shinde SV, Talukdar P. A Dimeric Bis(melamine)-Substituted Bispidine for Efficient Transmembrane H+/Cl−Cotransport. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sopan Valiba Shinde
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
46
|
Shinde SV, Talukdar P. A Dimeric Bis(melamine)-Substituted Bispidine for Efficient Transmembrane H+/Cl−Cotransport. Angew Chem Int Ed Engl 2017; 56:4238-4242. [DOI: 10.1002/anie.201700803] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Sopan Valiba Shinde
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
47
|
Xin P, Tan S, Wang Y, Sun Y, Wang Y, Xu Y, Chen CP. Functionalized hydrazide macrocycle ion channels showing pH-sensitive ion selectivities. Chem Commun (Camb) 2017; 53:625-628. [DOI: 10.1039/c6cc08943g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The protonation and deprotonation of multiple amines and carboxyls in channels change the charge distribution, which leads to pH-sensitive ion selectivity.
Collapse
Affiliation(s)
- Pengyang Xin
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Si Tan
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yaodong Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yonghui Sun
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yan Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Yuqing Xu
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| |
Collapse
|
48
|
Gale PA, Davis JT, Quesada R. Anion transport and supramolecular medicinal chemistry. Chem Soc Rev 2017; 46:2497-2519. [DOI: 10.1039/c7cs00159b] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New approaches to the transmembrane transport of anions are discussed in this review.
Collapse
Affiliation(s)
- Philip A. Gale
- School of Chemistry (F11)
- The University of Sydney
- Australia
| | - Jeffery T. Davis
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Roberto Quesada
- Departmento de Química
- Universidad de Burgos
- 09001 Burgos
- Spain
| |
Collapse
|
49
|
Yang Y, Wu X, Busschaert N, Furuta H, Gale PA. Dissecting the chloride–nitrate anion transport assay. Chem Commun (Camb) 2017; 53:9230-9233. [DOI: 10.1039/c7cc04912a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chloride/nitrate selectivity of anion transporters in both binding and membrane transport is examined revealing the limitations of chloride–nitrate anion exchange assay.
Collapse
Affiliation(s)
- Yufeng Yang
- Chemistry
- University of Southampton
- Southampton
- UK
- Department of Chemistry and Biochemistry
| | - Xin Wu
- School of Chemistry
- The University of Sydney
- Australia
| | | | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry
- Kyushu University
- Fukuoka
- Japan
| | | |
Collapse
|
50
|
Lang C, Mohite A, Deng X, Yang F, Dong Z, Xu J, Liu J, Keinan E, Reany O. Semithiobambus[6]uril is a transmembrane anion transporter. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc04026a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bambus[6]uril analogs are excellent anion binders but only the sulfur analog is also an effective anion transporter capable of polarizing lipid membranes through selective anion uniport.
Collapse
Affiliation(s)
- Chao Lang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Amar Mohite
- Department of Natural Sciences
- The Open University of Israel
- Ra'anana
- Israel
| | - Xiaoli Deng
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Ehud Keinan
- The Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Technion city
- Israel
| | - Ofer Reany
- Department of Natural Sciences
- The Open University of Israel
- Ra'anana
- Israel
| |
Collapse
|