1
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
2
|
Patel R, Prajapati K, Goswami D, Saraf M. Probing the effects of streptomycin on Brassica napus germination and assessing its molecular interactions using extensive molecular dynamics (MD) simulations. Sci Rep 2023; 13:19066. [PMID: 37925515 PMCID: PMC10625591 DOI: 10.1038/s41598-023-46100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Antibiotics are chemical compounds that are used to treat and prevent disease in humans and animals. They have been used in animal feed for over 60 years and are widely used in industrial farming. Antibiotics can have negative environmental impacts, including the potential to contribute to the development of antibiotic-resistant organisms. They can enter the environment through various pathways, including the manufacturing process, the direct application of antibiotic-laden manure to fields, and through grazing animals. Antibiotics that are given to animals can be excreted from where they can enter soil and groundwater which enable their entry in plants. Streptomycin is an antibiotic that is used against a range of gram-positive and gram-negative bacteria, but its use has led to the development of antibiotic resistance in some pathogens. It has also been shown to have negative impacts on a range of plant species, including tobacco, tomato, and wheat. Although, the major effect of streptomycin on plant physiology have been studied, the molecular mechanisms at play are barely understood in plant body. In current study, we examined the impact of streptomycin on germination of Brassica napus and then using docking, MM-GBBSA and MD simulations identified key proteins that interact with streptomycin by performing rigorous computational screening of 106 different proteins. Our finding suggest that streptomycin might be interacting with acyl-CoA oxidases, protochlorophyllide reductase B and leucoanthocyanidin dioxygenase based on simulation and docking analysis.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Karan Prajapati
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
3
|
Sui S, Xie K, Guo R, Dai J, Yang L. Molecular Characterization of a Stereoselective and Promiscuous Flavanone 3-Hydroxylase from Carthamus tinctorius L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1679-1689. [PMID: 36633228 DOI: 10.1021/acs.jafc.2c07202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flavanone 3-hydroxylases (F3Hs) belong to the 2-oxoglutarate-dependent dioxygenase family and play an important role in plant flavonoid biosynthesis. However, the stereoselective catalytic mechanism and substrate promiscuity of this type of enzyme are not well understood. In this study, we identified and biochemically characterized CtF3H1, an F3H from Carthamus tinctorius, a plant used in traditional Chinese medicine that exhibits high stereoselectivity and substrate promiscuity toward structurally diverse (2S)-flavanones. Isothermal titration calorimetry revealed that CtF3H1 exhibits distinctly different binding behaviors with (2S)-flavanone (2S-naringenin) and (2R)-flavanone (2R-naringenin), and these differences govern its stereoselectivity. An investigation of the structure-activity relationships between the enzyme and its substrates demonstrated that 7-OH and/or 4'-OH are necessary for regio- and stereoselective 3-hydroxylation of (2S)-flavanones. Homology modeling and molecular docking combined with site-directed mutagenesis identified the amino acid residues necessary for hydroxylation. These findings demonstrate the potential versatility of CtF3H1 in regio- and stereohydroxylation and provide molecular insights into the catalytic mechanism of F3H for further enzyme engineering.
Collapse
Affiliation(s)
- Songyang Sui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ruimingqian Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lin Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
4
|
Dippe M, Davari MD, Weigel B, Heinke R, Vogt T, Wessjohann LA. Altering the Regiospecificity of a Catechol
O
‐methyltransferase through Rational Design: Vanilloid vs. Isovanilloid Motifs in the B‐ring of Flavonoids. ChemCatChem 2022. [DOI: 10.1002/cctc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Dippe
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Benjamin Weigel
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ramona Heinke
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| |
Collapse
|
5
|
Rajeev A, Balamurugan M, Sankaralingam M. Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogeneous Approach. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
6
|
Wang Z, Liu A, Liu J, Huang X, Xiao F, Tian M, Ding S, Qin S, Shan Y. Substrates and Loaded Iron Ions Relative Position Influence the Catalytic Characteristics of the Metalloenzymes Angelica archangelica Flavone Synthase I and Camellia sinensis Flavonol Synthase. Front Pharmacol 2022; 13:902672. [PMID: 35754498 PMCID: PMC9213739 DOI: 10.3389/fphar.2022.902672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Metalloenzymes are a class of enzymes that catalyze through the metal ions they load. Angelica archangelica flavone synthase I (AnFNS I) and Camellia sinensis flavonol synthase (CaFLS), both of which belong to metalloenzymes, have highly similar structures and metal catalytic cores. However, these two enzymes catalyze the same substrate to produce significantly different products. To identify the cause for the differences in the catalytic characteristics of AnFNS I and CaFLS, their protein models were constructed using homology modeling. Structural alignment and molecular docking was also used to elucidate the molecular basis of the differences observed. To analyze and verify the cause for the differences in the catalytic characteristics of AnFNS I and CaFLS, partial fragments of AnFNS I were used to replace the corresponding fragments on CaFLS, and the catalytic characteristics of the mutants were determined by bioconversion assay in E. coli and in vitro catalytic test. The results suggest that the difference in catalytic characteristics between AnFNS I and CaFLS is caused by the depth of the active pockets and the relative position of the substrate. Mutant 10 which present similar dock result with AnFNS I increased the proportion of diosmetin (a flavone) from 2.54 to 16.68% and decreased the proportion of 4′-O-methyl taxifolin (a flavanol) from 47.28 to 2.88%. It was also indicated that the atoms in the substrate molecule that determine the catalytic outcome may be H-2 and H-3, rather than C-2 and C-3. Moreover, it is speculated that the change in the catalytic characteristics at the changes relative spatial position of H-2/H-3 of hesperetin and the loaded carbonyl iron, caused by charged residues at the entrance of the active pocket, is the key factor for the biosynthesis of flavone from flavanone.
Collapse
Affiliation(s)
- Zhen Wang
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - An Liu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Juan Liu
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xu Huang
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feiyao Xiao
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Miaomiao Tian
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shenghua Ding
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yang Shan
- Longping Branch Graduate School of Hunan University, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China.,Hunan Province International Joint Laboratory on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
7
|
Oxidative Transformation of Dihydroflavonols and Flavan-3-ols by Anthocyanidin Synthase from Vitis vinifera. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031047. [PMID: 35164310 PMCID: PMC8839691 DOI: 10.3390/molecules27031047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Twelve polyphenols from three distinct families (dihydroflavonols, flavan-3-ols, and flavanones) were studied as potential substrates of anthocyanidin synthase from Vitis vinifera (VvANS). Only flavan-3-ols of (2R,3S) configuration having either a catechol or gallol group on ring B are accepted as substrates. Only dihydroflavonols of (2R,3R) configuration are accepted as substrates, but a catechol or gallol group is not mandatory. Flavanones are not substrates of VvANS. HPLC and MS/MS analyses of the enzymatic products showed that the VvANS-catalyzed oxidative transformation of (+)-dihydroflavonols, such as dihydroquercetin, dihydrokaempferol and dihydromyricetin, leads only to the corresponding flavonols. Among the flavan-3-ols recognized as substrates, (+)-gallocatechin was only transformed into delphinidin by VvANS, whereas (+)-catechin was transformed into three products, including two major products that were an ascorbate-cyanidin adduct and a dimer of oxidized catechin, and a minor product that was cyanidin. Data from real-time MS monitoring of the enzymatic transformation of (+)-catechin suggest that its products are all derived from the initial C3-hydroxylation intermediate, i.e., a 3,3-gem-diol, and their most likely formation mechanism is discussed.
Collapse
|
8
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Jin SH, Lee H, Shin Y, Kim JH, Rhee S. Crystal structure of the indole-3-acetic acid-catabolizing enzyme DAO1 from Arabidopsis thaliana. J Struct Biol 2020; 212:107632. [PMID: 32980521 DOI: 10.1016/j.jsb.2020.107632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/01/2022]
Abstract
Indole-3-acetic acid (IAA), the major form of the plant hormone auxin, regulates almost every aspect of plant growth and development. Therefore, auxin homeostasis is an essential process in plants. Different metabolic routes are involved in auxin homeostasis, but the catabolic pathway has remained elusive until recent studies identified DIOXYGENASE FOR AUXIN OXIDATION (DAO) from rice and Arabidopsis thaliana. DAO, a member of the 2-oxoglutarate/Fe(II)-dependent oxygenase (2ODO) family, constitutes a major enzyme for IAA catabolism. This enzyme catalyzes, with the cosubstrate 2-oxoglutarate, the conversion of IAA into 2-oxoindole-3-acetic acid, a functionally inactive oxidative product of IAA. Here, we report a crystal structure of the unliganded DAO1 from A. thaliana (AtDAO1) and its complex with 2-oxoglutarate. AtDAO1 is structurally homologous with members of the 2ODO family but exhibits unique features in the prime substrate IAA binding site. We provide structural analyses of a putative binding site for IAA, supporting possible structural determinants for the substrate specificity of AtDAO1 toward IAA.
Collapse
Affiliation(s)
- So-Hee Jin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Haehee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yongho Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
It takes two to tango - The case of thebaine 6-O-demethylase. Int J Biol Macromol 2020; 163:718-729. [DOI: 10.1016/j.ijbiomac.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022]
|
11
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
12
|
Gomez-Cano L, Gomez-Cano F, Dillon FM, Alers-Velazquez R, Doseff AI, Grotewold E, Gray J. Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110364. [PMID: 31928683 DOI: 10.1016/j.plantsci.2019.110364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionalization, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments. Co-expression of biosynthesis genes with transcription factors discovered connections that provided candidate components for regulatory modules governing this pathway. Our study provides a comprehensive analysis of maize phenylpropanoid related genes, identifies major pathway contributors, and novel candidate enzymatic and regulatory modules of the metabolic network.
Collapse
Affiliation(s)
- Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Francisco M Dillon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Andrea I Doseff
- Department of Physiology, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
13
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
14
|
Zeb N, Rashid MH, Mubarak MQE, Ghafoor S, de Visser SP. Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism. J Inorg Biochem 2019; 198:110728. [PMID: 31203088 DOI: 10.1016/j.jinorgbio.2019.110728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Plants produce flavonol compounds for vital functions regarding plant growth, fruit and flower colouring as well as fruit ripening processes. Several of these biosynthesis steps are stereo- and regioselective and are being carried out by nonheme iron enzymes. Using density functional theory calculations on a large active site model complex of flavanone-3β-hydroxylase (FHT), we established the mechanism for conversion of naringenin to its dihydroflavonol, which is a key step in the mechanism of flavonol biosynthesis. The reaction starts with dioxygen binding to the iron(II) centre and a reaction with α-ketoglutarate co-substrate gives succinate, an iron(IV)-oxo species and CO2 with large exothermicity and small reaction barriers. The rate-determining reaction step in the mechanism; however, is hydrogen atom abstraction of an aliphatic CH bond by the iron(IV)-oxo species. We identify a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium. In a final step the OH and substrate radicals combine to form the alcohol product with a barrier of several kcal mol-1. We show that the latter is the result of geometric constraints in the active site pocket. Furthermore, the calculations show that a weak tertiary CH bond is shielded from the iron(IV)-oxo species in the substrate binding position and therefore the enzyme is able to activate a stronger CH bond. As such, the flavanone-3β-hydroxylase enzyme reacts regioselectively with one specific CH bond of naringenin by avoiding activation of weaker bonds through tight substrate and oxidant positioning.
Collapse
Affiliation(s)
- Neelam Zeb
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad H Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Department of Chemistry, Government College University Faisalabad, Jhang Road, 3800 Faisalabad, Pakistan
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
15
|
Zhang JR, Trossat-Magnin C, Bathany K, Delrot S, Chaudière J. Oxidative Transformation of Leucocyanidin by Anthocyanidin Synthase from Vitis vinifera Leads Only to Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3595-3604. [PMID: 30865451 DOI: 10.1021/acs.jafc.8b06968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anthocyanidin synthase from Vitis vinifera ( VvANS) catalyzes the in vitro transformation of the natural isomer of leucocyanidin, 2 R,3 S,4 S- cis-leucocyanidin, into 2 R,4 S-flavan-3,3,4-triol ([M + H]+, m/ z 323) and quercetin. The C3-hydroxylation product 2 R,4 S-flavan-3,3,4-triol is first produced and its C3,C4-dehydration product is in tautomeric equilibrium with (+)-dihydroquercetin. The latter undergoes a second VvANS-catalyzed C3-hydroxylation leading to a 4-keto-2 R-flavan-3,3-gem-diol which upon dehydration gives quercetin. The unnatural isomer of leucocyanidin, 2 R,3 S,4 R- trans-leucocyanidin, is similarly transformed into quercetin upon C3,C4-dehydration, but unlike 3,4- cis-leucocyanidin, it also undergoes some C2,C3-dehydration followed by an acid-catalyzed hydroxyl group extrusion at C4 to give traces of cyanidin. Overall, the C3,C4- trans isomer of leucocyanidin is transformed into 2 R,4 R-flavan-3,3,4-triol (M + 1, m/ z 323), (+)-DHQ, (-)-epiDHQ, quercetin, and traces of cyanidin. Our data bring the first direct observation of 3,4- cis-leucocyanidin- and 3,4- trans-leucocyanidin-derived 3,3-gem-diols, supporting the idea that the generic function of ANS is to catalyze the C3-hydroxylation of its substrates. No cyanidin is produced with the natural cis isomer of leucocyanidin, and only traces with the unnatural trans isomer, which suggests that anthocyanidin synthase requires other substrate(s) for the in vivo formation of anthocyanidins.
Collapse
Affiliation(s)
- Jia-Rong Zhang
- Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France
| | - Claudine Trossat-Magnin
- Institut des Sciences de la Vigne et du Vin (ISVV, UMR 1287) , Université de Bordeaux , 33140 Villenave d'Ornon , France
| | - Katell Bathany
- Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France
| | - Serge Delrot
- Institut des Sciences de la Vigne et du Vin (ISVV, UMR 1287) , Université de Bordeaux , 33140 Villenave d'Ornon , France
| | - Jean Chaudière
- Chimie et Biologie des Membranes et des Nano-objets (CBMN, UMR 5248) , Université de Bordeaux , 33615 Pessac , France
| |
Collapse
|
16
|
Wang Z, Wang S, Wu M, Li Z, Liu P, Li F, Chen Q, Yang A, Yang J. Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco. PLANTA 2019; 249:543-561. [PMID: 30293202 DOI: 10.1007/s00425-018-3019-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/23/2018] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION This study illustrates the differences in the gene structure of 2-oxoglutarate-dependent oxygenase involved in flavonoid biosynthesis (2ODD-IFB), and their potential roles in regulating tobacco flavonoid biosynthesis and plant growth. Flavonol synthase (FLS), anthocyanidin synthase (ANS), and flavanone 3β-hydroxylase belong to the 2-oxoglutarate-dependent (2ODD) oxygenase family, and each performs crucial functions in the biosynthesis of flavonoids. We identified two NtFLS genes, two NtANS genes, and four NtF3H genes from Nicotiana tabacum genome, as well as their homologous genes in the N. sylvestris and N. tomentosiformis genomes. Our phylogenetic analysis indicated that these three types of genes split from each other before the divergence of gymnosperms and angiosperms. FLS evolved faster in the eudicot plants, whereas ANS evolved faster in the monocot plants. Gene structure analysis revealed two fragment insertions occurred at different times in the intron one position of tobacco FLS genes. Homologous protein modeling revealed distinct structures in the N terminus of the tobacco 2ODD oxygenases. We found that the expression patterns of genes encoding tobacco 2ODD oxygenases in flavonoids biosynthesis (2ODD-IFB) did not determine the accumulation patterns of flavonoids among various tobacco tissues, but strongly affected the concentration of flavonoids in the tissues, where they were biosynthesized. More carbon resource flowed to the flavonol biosynthesis when NtANS gene was silenced, otherwise more anthocyanidin accumulated when NtFLS gene was repressed. This study illustrates the 2ODD-IFB gene structure evolution, differences among their protein structures, and provides a foundation for regulating plant development and altering flavonoid content and/or composition through the manipulation of plant 2ODD-IFB genes.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shanshan Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Kluza A, Niedzialkowska E, Kurpiewska K, Wojdyla Z, Quesne M, Kot E, Porebski PJ, Borowski T. Crystal structure of thebaine 6-O-demethylase from the morphine biosynthesis pathway. J Struct Biol 2018; 202:229-235. [PMID: 29408320 DOI: 10.1016/j.jsb.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 11/17/2022]
Abstract
Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum (opium poppy), which belongs to the non-heme 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODD) family, is a key enzyme in the morphine biosynthesis pathway. Initially, T6ODM was characterized as an enzyme catalyzing O-demethylation of thebaine to neopinone and oripavine to morphinone. However, the substrate range of T6ODM was recently expanded to a number of various benzylisoquinoline alkaloids. Here, we present crystal structures of T6ODM in complexes with 2-oxoglutarate (T6ODM:2OG, PDB: 5O9W) and succinate (T6ODM:SIN, PDB: 5O7Y). Both metal and 2OG binding sites display similarity to other proteins from the ODD family, but T6ODM is characterized by an exceptionally large substrate binding cavity, whose volume can partially explain the promiscuity of this enzyme. Moreover, the size of the cavity allows for binding of multiple molecules at once, posing a question about the substrate-driven specificity of the enzyme.
Collapse
Affiliation(s)
- Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Katarzyna Kurpiewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL-30387 Krakow, Poland
| | - Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Matthew Quesne
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Ewa Kot
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Przemyslaw J Porebski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
19
|
Liu Q. Improvement for agronomically important traits by gene engineering in sweetpotato. BREEDING SCIENCE 2017; 67:15-26. [PMID: 28465664 PMCID: PMC5407918 DOI: 10.1270/jsbbs.16126] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/24/2016] [Indexed: 05/05/2023]
Abstract
Sweetpotato is the seventh most important food crop in the world. It is mainly used for human food, animal feed, and for manufacturing starch and alcohol. This crop, a highly heterozygous, generally self-incompatible, outcrossing polyploidy, poses numerous challenges for the conventional breeding. Its productivity and quality are often limited by abiotic and biotic stresses. Gene engineering has been shown to have the great potential for improving the resistance to these stresses as well as the nutritional quality of sweetpotato. To date, an Agrobacterium tumefaciens-mediated transformation system has been developed for a wide range of sweetpotato genotypes. Several genes associated with salinity and drought tolerance, diseases and pests resistance, and starch, carotenoids and anthocyanins biosynthesis have been isolated and characterized from sweetpotato. Gene engineering has been used to improve abiotic and biotic stresses resistance and quality of this crop. This review summarizes major research advances made so far in improving agronomically important traits by gene engineering in sweetpotato and suggests future prospects for research in this field.
Collapse
Affiliation(s)
- Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University,
Beijing 100193,
China
| |
Collapse
|
20
|
Structural Insights into Substrate Specificity of Feruloyl-CoA 6'-Hydroxylase from Arabidopsis thaliana. Sci Rep 2015; 5:10355. [PMID: 25993561 PMCID: PMC4438608 DOI: 10.1038/srep10355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/09/2015] [Indexed: 01/13/2023] Open
Abstract
Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.
Collapse
|
21
|
Functional characterization of aPlagiochasma appendiculatumflavone synthase I showing flavanone 2-hydroxylase activity. FEBS Lett 2014; 588:2307-14. [DOI: 10.1016/j.febslet.2014.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/29/2014] [Accepted: 05/10/2014] [Indexed: 12/22/2022]
|
22
|
Cheng AX, Han XJ, Wu YF, Lou HX. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int J Mol Sci 2014; 15:1080-95. [PMID: 24434621 PMCID: PMC3907857 DOI: 10.3390/ijms15011080] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/26/2013] [Accepted: 12/29/2013] [Indexed: 12/22/2022] Open
Abstract
Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism. They fulfil a variety of functions in plants and have health benefits for humans. During the synthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C ring are catalyzed by four of FeII and 2-oxoglutarate dependent (2-ODD) oxygenases, namely flavone synthase I (FNS I), flavonol synthase (FLS), anthocyanidin synthase (ANS) and flavanone 3β-hydroxylase (FHT). FNS I, FLS and ANS are involved in desaturation of C2–C3 of flavonoids and FHT in hydroxylation of C3. FNS I, which is restricted to the Apiaceae species and in rice, is predicted to have evolved from FHT by duplication. Due to their sequence similarity and substrate specificity, FLS and ANS, which interact with the α surface of the substrate, belong to a group of dioxygenases having a broad substrate specificity, while FNS I and FHT are more selective, and interact with the naringenin β surface. Here, we summarize recent findings regarding the function of the four 2-ODD oxygenases and the relationship between their catalytic activity, their polypeptide sequence and their tertiary structure.
Collapse
Affiliation(s)
- Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.
| | - Xiao-Juan Han
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.
| | - Yi-Feng Wu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.
| |
Collapse
|
23
|
Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ. Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the αKG-dependent oxygenases. Metallomics 2013; 5:287-301. [PMID: 23446356 PMCID: PMC4109655 DOI: 10.1039/c3mt20153h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe(ii)/αketoglutarate (αKG) dependent oxygenases catalyze a diverse range of reactions significant in biological processes such as antibiotic biosynthesis, lipid metabolism, oxygen sensing, and DNA and RNA repair. Although functionally diverse, the eight-stranded β-barrel (cupin) and HX(D/E)XnH facial triad motifs are conserved in this super-family of enzymes. Crystal structure analysis of 25 αKG oxygenases reveals two stereoisomers of the Fe cofactor, Anti and Clock, which differ in the relative position of the exchangeable ligand position and the primary substrate. Herein, we discuss the relationship between the chemical mechanism and the secondary coordination sphere of the αKG oxygenases, within the constraints of the stereochemistry of the Fe cofactor. Sequence analysis of the cupin barrel indicates that a small subset of positions constitute the second coordination sphere, which has significant ramifications for the structure of the ferryl intermediate. The competence of both Anti and Clock stereoisomers of Fe points to a ferryl intermediate that is 5 coordinate. The small number of conserved close contacts within the active sites of αKG oxygenases can be extended to chemically related enzymes, such as the αKG-dependent halogenases SyrB2 and CytC3, and the non-αKG dependent dioxygenases isopenicillin N synthase (IPNS) and cysteine dioxygenase (CDO).
Collapse
Affiliation(s)
- John A. Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Meaghan A. Valliere
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael J. Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
24
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 2013; 48:123-52. [PMID: 23350798 DOI: 10.3109/10409238.2012.758083] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenolic secondary metabolites are only produced by plants wherein they play important roles in both biotic and abiotic defense in seed plants as well as being potentially important bioactive compounds with both nutritional and medicinal benefits reported for animals and humans as a consequence of their potent antioxidant activity. During the long evolutionary period in which plants have adapted to the environmental niches in which they exist (and especially during the evolution of land plants from their aquatic algal ancestors), several strategies such as gene duplication and convergent evolution have contributed to the evolution of this pathway. In this respect, diversity and redundancy of several key genes of phenolic secondary metabolism such as polyketide synthases, cytochrome P450s, Fe(2+)/2-oxoglutarate-dependent dioxygenases and UDP-glycosyltransferases have played an essential role. Recent technical developments allowing affordable whole genome sequencing as well as a better inventory of species-by-species chemical diversity have resulted in a dramatic increase in the number of tools we have to assess how these pathways evolved. In parallel, reverse genetics combined with detailed molecular phenotyping is allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. In this review, phenolic metabolite-related gene sequences (for a total of 65 gene families including shikimate biosynthetic genes) are compared across 23 independent species, and the phenolic metabolic complement of various plant species are compared with one another, in attempt to better understand the evolution of diversity in this crucial pathway.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
25
|
Shin SY, Woo Y, Hyun J, Yong Y, Koh D, Lee YH, Lim Y. Relationship between the structures of flavonoids and their NF-κB-dependent transcriptional activities. Bioorg Med Chem Lett 2011; 21:6036-41. [PMID: 21907578 DOI: 10.1016/j.bmcl.2011.08.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 11/26/2022]
Abstract
It has been previously shown that some flavonoids inhibit NF-κB; however, the structure-activity relationships between chalcone, flavanone, flavone, and isoflavone derivatives and their TNFα induced NF-κB inhibitory effects on HCT116 human colon cancer cells have not yet been reported. Therefore, in this study, the effects of flavonoid structure on inhibition of NF-κB were investigated. Based on the combined results of this study, the structure of the flavonoids was shown to affect NF-κB activation.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biomedical Science and Technology, SMART-Institute of Advanced Biomedical Science, RCTC, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Chiari ME, Vera DMA, Palacios SM, Carpinella MC. Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans. Bioorg Med Chem 2011; 19:3474-82. [DOI: 10.1016/j.bmc.2011.04.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/07/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
|
27
|
Chalumeau C, Deffieux D, Chaignepain S, Quideau S. Development of an Affinity-Based Proteomic Strategy for the Elucidation of Proanthocyanidin Biosynthesis. Chembiochem 2011; 12:1193-7. [DOI: 10.1002/cbic.201100044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Indexed: 11/08/2022]
|
28
|
Chemometric studies on natural products as potential inhibitors of the NADH oxidase from Trypanosoma cruzi using the VolSurf approach. Molecules 2010; 15:7363-77. [PMID: 20966878 PMCID: PMC6259467 DOI: 10.3390/molecules15107363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/05/2010] [Accepted: 10/11/2010] [Indexed: 11/16/2022] Open
Abstract
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Collapse
|
29
|
Martens S, Preuss A, Matern U. Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. PHYTOCHEMISTRY 2010; 71:1040-9. [PMID: 20457455 DOI: 10.1016/j.phytochem.2010.04.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 05/20/2023]
Abstract
Flavonols and conditionally also anthocyanins, aside from flavonols, are the predominant polyphenols accumulated in various tissues of the model plant Arabidopsis thaliana L. In vitro experiments suggested that the dioxygenases involved in their biosynthesis, flavonol synthase and anthocyanidin synthase, are "multifunctional" enzymes showing distinct side activities. The in vivo relevance of the additional activities attributed to these enzymes, however, has remained obscure. In this review we summarize the most recent results and present final proof of the complementing activities of these synthases for flavonol and anthocyanidin formation in the model plant A. thaliana. The impact of their modification on the biosynthetic pathway and the pattern of flavonoids in different plant tissues are discussed.
Collapse
Affiliation(s)
- Stefan Martens
- Institut für Pharmazeutische Biologie, Philipps Universität Marburg, Deutschhausstr. 17A, D-35037 Marburg/Lahn, Germany.
| | | | | |
Collapse
|
30
|
Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S. Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 2009; 583:1981-6. [PMID: 19433090 DOI: 10.1016/j.febslet.2009.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/27/2009] [Accepted: 05/04/2009] [Indexed: 02/09/2023]
Abstract
Arabidopsis thaliana L. produces flavonoid pigments, i.e. flavonols, anthocyanidins and proanthocyanidins, from dihydroflavonol substrates. A small family of putative flavonol synthase (FLS) genes had been recognized in Arabidopsis, and functional activity was attributed only to FLS1. Nevertheless, other FLS activities must be present, because A. thalianafls1 mutants still accumulate significant amounts of flavonols. The recombinant FLSs and leucoanthocyanidin dioxygenase (LDOX) proteins were therefore examined for their enzyme activities, which led to the identification of FLS3 as a second active FLS. This enzyme is therefore likely responsible for the formation of flavonols in the ldox/fls1-2 double mutant. These double mutant and biochemical data demonstrate for the first time that LDOX is capable of catalyzing the in planta formation of flavonols.
Collapse
Affiliation(s)
- Anja Preuss
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Marburg/Lahn, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Owens DK, Crosby KC, Runac J, Howard BA, Winkel BSJ. Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:833-43. [PMID: 18657430 DOI: 10.1016/j.plaphy.2008.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 05/04/2023]
Abstract
Flavanone 3beta-hydroxylase (F3H; EC 1.14.11.9) is a 2-oxoglutarate dependent dioxygenase that catalyzes the synthesis of dihydrokaempferol, the common precursor for three major classes of 3-hydroxy flavonoids, the flavonols, anthocyanins, and proanthocyanidins. This enzyme also competes for flux into the 3-deoxy flavonoid branch pathway in some species. F3H genes are increasingly being used, often together with genes encoding other enzymes, to engineer flavonoid synthesis in microbes and plants. Although putative F3H genes have been cloned in a large number of plant species, only a handful have been functionally characterized. Here we describe the biochemical properties of the Arabidopsis thaliana F3H (AtF3H) enzyme and confirm the activities of gene products from four other plant species previously identified as having high homology to F3H. We have also investigated the surprising "leaky" phenotype of AtF3H mutant alleles, uncovering evidence that two related flavonoid enzymes, flavonol synthase (EC 1.14.11.23) and anthocyanidin synthase (EC 1.14.11.19), can partially compensate for F3H in vivo. These experiments further indicate that the absence of F3H in these lines enables the synthesis of uncommon 3-deoxy flavonoids in the Arabidopsis seed coat.
Collapse
Affiliation(s)
- Daniel K Owens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
32
|
Yan Y, Li Z, Koffas MAG. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 2008; 100:126-40. [PMID: 18023053 DOI: 10.1002/bit.21721] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthocyanins are red, purple, or blue plant water-soluble pigments. In the past two decades, anthocyanins have received extensive studies for their anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective properties. In the present study, anthocyanin biosynthetic enzymes from different plant species were characterized and employed for pathway construction leading from inexpensive precursors such as flavanones and flavan-3-ols to anthocyanins in Escherichia coli. The recombinant E. coli cells successfully achieved milligram level production of two anthocyanins, pelargonidin 3-O-glucoside (0.98 mg/L) and cyanidin 3-O-gluside (2.07 mg/L) from their respective flavanone precursors naringenin and eriodictyol. Cyanidin 3-O-glucoside was produced at even higher yields (16.1 mg/L) from its flavan-3-ol, (+)-catechin precursor. Further studies demonstrated that availability of the glucosyl donor, UDP-glucose, was the key metabolic limitation, while product instability at normal pH was also identified as a barrier for production improvement. Therefore, various optimization strategies were employed for enhancing the homogenous synthesis of UDP-glucose in the host cells while at the same time stabilizing the final anthocyanin product. Such optimizations included culture medium pH adjustment, the creation of fusion proteins and the rational manipulation of E. coli metabolic network for improving the intracellular UDP-glucose metabolic pool. As a result, production of pelargonidin 3-O-glucoside at 78.9 mg/L and cyanidin 3-O-glucoside at 70.7 mg/L was achieved from their precursor flavan-3-ols without supplementation with extracellular UDP-glucose. These results demonstrate the efficient production of the core anthocyanins for the first time and open the possibility for their commercialization for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Yajun Yan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 904 Furnas Hall, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
33
|
Ferrer JL, Austin MB, Stewart C, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:356-70. [PMID: 18272377 PMCID: PMC2860624 DOI: 10.1016/j.plaphy.2007.12.009] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Indexed: 05/18/2023]
Abstract
As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4',5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure-function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights into the architecture and mechanistic underpinnings of phenylpropanoid metabolizing enzymes contribute to our understanding of the emergence and on-going evolution of specialized phenylpropanoid products, and underscore the molecular basis of metabolic biodiversity at the chemical level. Finally, the detailed knowledge of the structure, function and evolution of these enzymes of specialized metabolism provide a set of experimental templates for the enzyme and metabolic engineering of production platforms for diverse novel compounds with desirable dietary and medicinal properties.
Collapse
Affiliation(s)
- J-L Ferrer
- Institut de Biologie Structurale, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier, Groupe Synchrotron, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | |
Collapse
|
34
|
Chua CS, Biermann D, Goo KS, Sim TS. Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. PHYTOCHEMISTRY 2008; 69:66-75. [PMID: 17719613 DOI: 10.1016/j.phytochem.2007.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/04/2007] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
Arabidopsis thaliana flavonol synthase (aFLS) catalyzes the production of quercetin, which is known to possess multiple medicinal properties. aFLS is classified as a 2-oxoglutarate dependent dioxygenase as it requires ferrous iron and 2-oxoglutarate for catalysis. In this study, the putative residues for binding ferrous iron (H221, D223 and H277), 2-oxoglutarate (R287 and S289) and dihydroquercetin (H132, F134, K202, F293 and E295) were identified via computational analyses. To verify the proposed roles of the identified residues, 15 aFLS mutants were constructed and their activities were examined via a spectroscopic assay designed in this study. Mutations at H221, D223, H277 and R287 completely abolished enzymes activities, supporting their importance in binding ferrous iron and 2-oxoglutarate. However, mutations at the proposed substrate binding residues affected the enzyme catalysis differently such that the activities of K202 and F293 mutants drastically decreased to approximately 10% of the wild-type whereas the H132F mutant exhibited approximately 20% higher activity than the wild-type. Kinetic analyses established an improved substrate binding affinity in H132F mutant (Km: 0.027+/-0.0028 mM) compared to wild-type (Km: 0.059+/-0.0063 mM). These observations support the notion that aFLS can be selectively mutated to improve the catalytic activity of the enzyme for quercetin production.
Collapse
Affiliation(s)
- Chun Song Chua
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
35
|
Border ZM, Marais C, Bezuidenhoudt BCB, Steenkamp JA. Studies Towards the Stereoselective α-Hydroxylation of Flavanones. Biosynthetic Significance. Aust J Chem 2008. [DOI: 10.1071/ch07325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enolates of various propiophenones, chromanones, and also analogues of naturally occurring flavanones were stereoselectively hydroxylated at the α-position, by employing commercially available enantiopure oxaziridines, to afford the desired α-hydroxylated target molecules in good to exceptional stereoselectivities and in moderate to good chemical yields. A mechanistic rationale is presented to account for the stereoselectivities achieved. These in vitro results were tentatively related to the stereoselective biosynthesis of enantio-enriched dihydroflavonols while questions were raised about the authenticity of certain natural compounds.
Collapse
|
36
|
Lättig J, Böhl M, Fischer P, Tischer S, Tietböhl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. J Comput Aided Mol Des 2007; 21:473-83. [PMID: 17701137 DOI: 10.1007/s10822-007-9129-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/09/2007] [Indexed: 11/28/2022]
Abstract
The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.
Collapse
Affiliation(s)
- Jens Lättig
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gebhardt YH, Witte S, Steuber H, Matern U, Martens S. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis. PLANT PHYSIOLOGY 2007; 144:1442-54. [PMID: 17535823 PMCID: PMC1914147 DOI: 10.1104/pp.107.098392] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).
Collapse
Affiliation(s)
- Yvonne Helen Gebhardt
- Institut für Pharmazeutische Biologie , Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
38
|
Purpero V, Moran GR. The diverse and pervasive chemistries of the alpha-keto acid dependent enzymes. J Biol Inorg Chem 2007; 12:587-601. [PMID: 17431691 DOI: 10.1007/s00775-007-0231-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 03/15/2007] [Indexed: 12/01/2022]
Abstract
The number of identified and confirmed alpha-keto acid dependent oxygenases is increasing rapidly. All of these enzymes have a relatively simple liganding arrangement for a single ferrous ion but collectively conduct a highly diverse set of chemistries. While hydroxylations and a variety of oxidation reactions have been most commonly observed, new reactions involving dealkylations, epimerizations and halogenations have recently been discovered. In this minireview we present what is known of the alpha-keto acid dependent enzymes and offer an argument that the chemistry that is unique to each enzyme occurs only after the production of a pivotal ferryl-oxo intermediate.
Collapse
Affiliation(s)
- Vincent Purpero
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211-3029, USA
| | | |
Collapse
|
39
|
Nakajima JI, Sato Y, Hoshino T, Yamazaki M, Saito K. Mechanistic Study on the Oxidation of Anthocyanidin Synthase by Quantum Mechanical Calculation. J Biol Chem 2006; 281:21387-21398. [PMID: 16702218 DOI: 10.1074/jbc.m600303200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthocyanidin synthase (ANS), a member of the 2-oxoglutarate-dependent dioxygenase family in flavonoid biosynthesis, catalyzes the conversion of leucoanthocyanidins (e.g. 2R,3S,4S-cis-leucocyanidin, LCD) to flav-2-en-3,4-diols, a direct precursor of colored anthocyanidins via flavan-3,3,4-triols. The detailed oxygenation mechanism of 2R,3S,4S-cis-LCD to flav-2-en-3,4-diols was investigated using the density functional theory method. An initial model for the calculation was constructed from a structure obtained by a 100-ps molecular dynamics simulation of Arabidopsis ANS under physiological conditions. This model consisted of an LCD molecule as the substrate together with an iron atom, two histidine residues, an aspartic acid residue, a succinate, and an oxygen atom as ligands of the iron atom. The results of the calculation indicated that both the C-3 and C-4 positions of LCD can be oxidized, although C-4 oxidation is preferable. The C-3 oxidation required several steps to form flavan-3,3,4-triol: 1) formation of Fe(III)-OH and a substrate C-3 radical via hydrogen atom abstraction by Fe(IV)=O, 2) formation of a C-3 ketone and a water molecule, 3) addition of OH(-) into the C-3 position of the ketone, and 4) addition of H(+) to form flavan-3,3,4-triol. On the other hand, C-4 oxidation of 2R,3S,4S-cis-LCD resulted in the direct formation of 2R,3R-trans-dihydroquercetin. These results suggest that the oxidation at C-3 of LCD, a key reaction for coloring in anthocyanin biosynthesis, can be regarded as a "side reaction" from the viewpoint of quantum mechanics of enzymatic reactions. Molecular evolutional implications of ANS and related proteins are discussed in terms of reaction dynamics.
Collapse
Affiliation(s)
- Jun-Ichiro Nakajima
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan; Tokiwa Phytochemical Co., Ltd., Chiba 285-0801, Japan
| | - Yoshiharu Sato
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan; Integrated Database Team, Japan Biological Information Research Center (JBIRC), Tokyo 135-0064, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Mami Yamazaki
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Kazuki Saito
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan; RIKEN Plant Science Center, Yokohama 230-0045, Japan.
| |
Collapse
|