1
|
Kokkosi A, Garofallidou E, Zacharopoulos N, Tsoureas N, Diamanti K, Thomaidis NS, Cheilari A, Machalia C, Emmanouilidou E, Philippopoulos AI. Ruthenium p-Cymene Complexes Incorporating Substituted Pyridine-Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties. Molecules 2024; 29:3215. [PMID: 38999167 PMCID: PMC11243419 DOI: 10.3390/molecules29133215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)-arene complexes incorporating substituted pyridine-quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl- (1-Cl), PF6- (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl- (3-Cl), PF6- (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV-Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 μΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.
Collapse
Affiliation(s)
- Afroditi Kokkosi
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Elpida Garofallidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Zacharopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos Tsoureas
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Konstantina Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Christina Machalia
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Athanassios I Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
2
|
Thangavel SK, Mohamed Kasim MS, Rengan R. Promoting the Anticancer Activity with Multidentate Furan-2-Carboxamide Functionalized Aroyl Thiourea Chelation in Binuclear Half-Sandwich Ruthenium(II) Complexes. Inorg Chem 2024; 63:7520-7539. [PMID: 38590210 DOI: 10.1021/acs.inorgchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 μM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.
Collapse
Affiliation(s)
- Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
3
|
Franco Machado J, Cordeiro S, Duarte JN, Costa PJ, Mendes PJ, Garcia MH, Baptista PV, Fernandes AR, Morais TS. Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents. Inorg Chem 2024; 63:5783-5804. [PMID: 38502532 PMCID: PMC10988555 DOI: 10.1021/acs.inorgchem.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.
Collapse
Affiliation(s)
- João Franco Machado
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Joana N. Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI
− Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J. Mendes
- LAQV-REQUIMTE
(Polo de Évora), Escola de Ciências e Tecnologia, Universidade de Évora, R. Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Maria Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Tânia S. Morais
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
5
|
Kanyora AK, Omondi RO, Ongoma P, Omolo JO, Welsh A, Prince S, Gichumbi J, Mambanda A, Smith GS. Mononuclear η 6-arene ruthenium(II) complexes with pyrazolyl-pyridazine ligands: synthesis, CT-DNA binding, reactivity towards glutathione, and cytotoxicity. J Biol Inorg Chem 2024; 29:251-264. [PMID: 38494554 DOI: 10.1007/s00775-024-02043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
Organometallic η6-arene ruthenium(II) complexes with 3-chloro-6-(1H-pyrazol-1-yl)pyridazine (Ru1, Ru2, and Ru5) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (Ru3-4) N,N' heterocyclic and η6-arene (cymene (Ru1-4) or toluene (Ru 5)) have been synthesized. The ruthenium(II) complexes have common "three-legged piano-stool" pseudo-octahedral structures known for half-sandwich complexes. Evolution of their UV-Visible absorption spectra in PBS buffer or DMSO over 24 h confirmed their good solvolysis stability. Titrations of the complexes with the calf thymus DNA (CT-DNA) were monitored using UV-Visible absorption and fluorescence spectroscopies. The complexes interact moderately with CT-DNA and their binding constants are in the order of 104 M-1. Competitive binding of the complexes to a DNA-Hoechst 33,258 depicted competitive displacement of Hoechst from DNA's minor grooves. These complexes bind to glutathione forming GSH-adducts through S coordination by replacement of a halide, with the iodo-analogues having higher binding constants than the chloro-complexes. Cyclic voltammograms of the complexes exhibited one electron-transfer quasi-reversible process. Trends in the molecular docking data of Ru1-5/DNA were similar to those for DNA binding constants. Of the five, only Ru1, Ru3 and Ru5 showed some activity (moderate) against the MCF-7 breast cancer cells with IC50 values in the range of 59.2-39.9 for which Ru5 was the most active. However, the more difficult-to-treat cell line, MDA-MB 231 cell was recalcitrant to the treatment by these complexes.
Collapse
Affiliation(s)
- Amos K Kanyora
- Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya.
| | - Reinner O Omondi
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Peter Ongoma
- Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - Josiah O Omolo
- Department of Chemistry, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Science, Observatory, University of Cape Town, Cape Town, 7925, South Africa
| | - Joel Gichumbi
- Department of Physical Sciences, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
6
|
Křikavová R, Romanovová M, Jendželovská Z, Majerník M, Masaryk L, Zoufalý P, Milde D, Moncol J, Herchel R, Jendželovský R, Nemec I. Impact of the central atom and halido ligand on the structure, antiproliferative activity and selectivity of half-sandwich Ru(II) and Ir(III) complexes with a 1,3,4-thiadiazole-based ligand. Dalton Trans 2023; 52:12717-12732. [PMID: 37610172 DOI: 10.1039/d3dt01696j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Half-sandwich complexes [Ru(η6-pcym)(L1)X]PF6 (1, 3) and [Ir(η5-Cp*)(L1)X]PF6 (2, 4) featuring a thiadiazole-based ligand L1 (2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-thiadiazole) were synthesized and characterized by varied analytical methods, including single-crystal X-ray diffraction (X = Cl or I, pcym = p-cymene, Cp* = pentamethylcyclopentadienyl). The structures of the molecules were analysed and interpreted using computational methods such as Density Functional Theory (DFT) and Quantum Theory of Atoms in Molecules (QT-AIM). A 1H NMR spectroscopy study showed that complexes 1-3 exhibited hydrolytic stability while 4 underwent partial iodido/chlorido ligand exchange in phosphate-buffered saline. Moreover, 1-4 demonstrated the ability to oxidize NADH (reduced nicotinamide adenine dinucleotide) to NAD+ with Ir(III) complexes 2 and 4 displaying higher catalytic activity compared to their Ru(II) analogues. None of the complexes interacted with reduced glutathione (GSH). Additionally, 1-4 exhibited greater lipophilicity than cisplatin. In vitro biological analyses were performed in healthy cell lines (CCD-18Co colon and CCD-1072Sk foreskin fibroblasts) as well as in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines. The results indicated that Ir(III) complexes 2 and 4 had no effect on human fibroblasts, demonstrating their selectivity. In contrast, complexes 1 and 4 exhibited moderate inhibitory effects on the metabolic and proliferation activities of the cancer cells tested (selectivity index SI > 3.4 for 4 and 2.6 for cisplatin; SI = IC50(A2780)/IC50(CCD-18Co)), including the cisplatin-resistant cancer cell line. Based on these findings, it is possible to emphasize that mainly complex 4 could represent a further step in the development of selective and highly effective anticancer agents, particularly against resistant tumour types.
Collapse
Affiliation(s)
- Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Michaela Romanovová
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Zuzana Jendželovská
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Martin Majerník
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Pavel Zoufalý
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Jan Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | - Rastislav Jendželovský
- Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
7
|
Mallick Ganguly O, Moulik S. Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment. Dalton Trans 2023; 52:10639-10656. [PMID: 37475585 DOI: 10.1039/d3dt00659j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Manganese (Mn) is one of the most significant bio-metals that helps the body to form connective tissue, bones, blood clotting factors, and sex hormones. It is necessary for fat and carbohydrate metabolism, calcium absorption, blood sugar regulation, and normal brain and nerve functions. It accelerates the synthesis of proteins, vitamin C, and vitamin B. It is also involved in the catalysis of hematopoiesis, regulation of the endocrine level, and improvement of immune function. Again, Mn metalloenzymes like arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase, and Mn superoxide dismutase (MnSOD) contribute to the metabolism processes and reduce oxidative stress against free radicals. Recent investigations have revealed that synthetic Mn-complexes act as antibacterial and antifungal agents. As a result, chemists and biologists have been actively involved in developing Mn-based drugs for the treatment of various diseases including cancer. Therefore, any therapeutic drugs based on manganese complexes would be invaluable for the treatment of cancer/infectious diseases and could be a better substitute for cisplatin and other related platinum based chemotherapeutic drugs. From this perspective, attempts have been made to discuss the interactions and nuclease activities of Mn(II/III/IV) complexes with DNA through which one can evaluate their therapeutic applications.
Collapse
Affiliation(s)
- Oishi Mallick Ganguly
- St Xavier's College, 30, Park St, Mullick Bazar, Park Street area, Kolkata, West Bengal 700016, India
| | - Shuvojit Moulik
- Suraksha Diagnostics Pvt Ltd, Newtown 12/1, Premises No. 02-0327, DG Block(Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
8
|
Dorairaj DP, Haribabu J, Dharmasivam M, Malekshah RE, Mohamed Subarkhan MK, Echeverria C, Karvembu R. Ru(II)- p-Cymene Complexes of Furoylthiourea Ligands for Anticancer Applications against Breast Cancer Cells. Inorg Chem 2023; 62:11761-11774. [PMID: 37459067 DOI: 10.1021/acs.inorgchem.3c00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1-6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7--12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a "S" atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7-12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 μM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs.
Collapse
Affiliation(s)
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Mahendiran Dharmasivam
- Department of Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310018, P. R. China
| | - Cesar Echeverria
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
9
|
Odachowski M, Neven R, Perversi G, Romano D, Slabber CA, Hadiji M, Honing M, Zhao Y, Munro OQ, Blom B. Ionic mononuclear [Fe] and heterodinuclear [Fe,Ru] bis(diphenylphosphino)alkane complexes: Synthesis, spectroscopy, DFT structures, cytotoxicity, and biomolecular interactions. J Inorg Biochem 2023; 242:112156. [PMID: 36801621 DOI: 10.1016/j.jinorgbio.2023.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Iron(II) and Ru(II) half-sandwich compounds encompass some promising pre-clinical anticancer agents whose efficacy may be tuned by structural modification of the coordinated ligands. Here, we combine two such bioactive metal centres in cationic bis(diphenylphosphino)alkane-bridged heterodinuclear [Fe2+, Ru2+] complexes to delineate how ligand structural variations modulate compound cytotoxicity. Specifically, Fe(II) complexes of the type [(η5-C5H5)Fe(CO)2(κ1-PPh2(CH2)nPPh2)]{PF6} (n = 1-5), compounds 1-5, and heterodinuclear [Fe2+, Ru2+] complexes, [(η5-C5H5)Fe(CO)2(μ-PPh2(CH2)nPPh2))(η6-p-cymene)RuCl2]{PF6} (n = 2-5) (compounds 7-10), were synthesized and characterised. The mononuclear complexes were moderately cytotoxic against two ovarian cancer cell lines (A2780 and cisplatin resistant A2780cis) with IC50 values ranging from 2.3 ± 0.5 μM to 9.0 ± 1.4 μM. For 7-10, the cytotoxicity increased with increasing Fe⋅⋅⋅Ru distance, consistent with their DNA affinity. UV-visible spectroscopy suggested the chloride ligands in heterodinuclear 8-10 undergo stepwise substitution by water on the timescale of the DNA interaction experiments, probably affording the species [RuCl(OH2)(η6-p-cymene)(PRPh2)]2+ and [Ru(OH)(OH2)(η6-p-cymene)(PRPh2)]2+ (where PRPh2 has R = [-(CH2)5PPh2-Fe(C5H5)(CO)2]+). One interpretation of the combined DNA-interaction and kinetic data is that the mono(aqua) complex may interact with dsDNA through nucleobase coordination. Heterodinuclear 10 reacts with glutathione (GSH) to form stable mono- and bis(thiolate) adducts, 10-SG and 10-SG2, with no evidence of metal ion reduction (k1 = 1.07 ± 0.17 × 10-1 min-1 and k2 = 6.04 ± 0.59 × 10-3 min-1 at 37 °C). This work highlights the synergistic effect of the Fe2+/Ru2+ centres on both the cytotoxicity and biomolecular interactions of the present heterodinuclear complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Robin Neven
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Giuditta Perversi
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Dario Romano
- King Abdullah University of Science and Technology, Department of Chemical Sciences, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cathryn A Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050 Johannesburg, South Africa
| | - Mouna Hadiji
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Yuandi Zhao
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050 Johannesburg, South Africa.
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands.
| |
Collapse
|
10
|
Kumarasamy K, Devendhiran T, Marthandam Asokan S, Ramaswamy M, Lin MC, Chien WJ, Kumar Ramasamy S, Huang CY. Synthesis and structural characterization of C,N-benzimidazole based ruthenium(II) complex with in vitro anticancer activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Acharya P, Kuila A, Pramanik U, Hathwar VR, Brandao P, Mukherjee S, Maity S, Maity T, Maity R, Chandra Samanta B. Combined theoretical and experimental insights on DNA and BSA binding interactions of Cu(ii) and Ni(ii) complexes along with the DPPH method of antioxidant assay and cytotoxicity studies. RSC Adv 2023; 13:7632-7644. [PMID: 36908538 PMCID: PMC9993069 DOI: 10.1039/d2ra08341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
This present study delineates the syntheses, detailed characterization and anti-proliferative potential against SiHa (cervical cancer cell) of two mononuclear complexes of Cu(ii) and Ni(ii) using a Schiff base ligand (L) derived from 2-hydroxybenzaldehyde and N-methyl-propane 1,3-diamine. The crystallographic results show the centro-symmetric space group of orthorhombic nature (Pccn) for Cu(ii) complex (1) where the central Cu(ii) has an inversion center symmetry with six co-ordinations resulting in a distorted octahedral geometry. Whereas, in complex (2), the two independent Ni(ii) atoms present in the special position within version symmetry and form a distorted geometry of octahedral nature with six coordinations. Absorption spectral titrations with Calf Thymus (CT) DNA and the extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes reveal the parallel trend in DNA binding affinities for both the complexes but with a small extent of binding capabilities. Bovine serum albumin (BSA) interaction studies demonstrate that complex 1 exhibits more promiscuous binding with BSA as compared to complex 2 from the spectroscopic and theoretical approaches. α,α-Diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method shows a little antioxidant or free radical scavenging activity for both the studied complexes. Cytotoxicity studies against SiHa expressed that the percentage of cell viability was reduced with time whereas in the same concentration and conditions, the viability percentage was higher for 3T3-L1 (several normal cell lines of mouse). The fluorescence imaging obtained from acridine orange (AO) and ethidium bromide (EtBr) demonstrates that the colour of the cancer cells has changed gradually dictating the cell apoptosis from day 1 to day 3.
Collapse
Affiliation(s)
- Prasun Acharya
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| | - Arun Kuila
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| | - Ushasi Pramanik
- Department of Chemistry, IISER Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Venkatesha R Hathwar
- School of Physical and Applied Sciences, Goa University Taleigao Plateau Goa 403 206 India
| | - Paula Brandao
- Departamento de Química, CICECO, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Saptarshi Mukherjee
- Department of Chemistry, IISER Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 Madhya Pradesh India
| | - Swapan Maity
- School of Materials Science and Technology (SMST), Indian Institute of Technology (IIT), BHU India
| | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College Purba Medinipur-721401 Contai West Bengal India
| | - Ribhu Maity
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| | - Bidhan Chandra Samanta
- Department of Chemistry Mugberia Gangadhar Mahavidyalaya Bhupatinagar Purba Medinipur-721425 West Bengal India +91-3220-270236
| |
Collapse
|
12
|
Nongpiur CGL, Verma AK, Ghate MM, Poluri KM, Kaminsky W, Kollipara MR. Synthesis, cytotoxicity and antibacterial activities of ruthenium, rhodium and iridium metal complexes containing diazafluorene functionalized ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules 2023; 28:molecules28041959. [PMID: 36838947 PMCID: PMC9965607 DOI: 10.3390/molecules28041959] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Since the accidental discovery of the anticancer properties of cisplatin more than half a century ago, significant efforts by the broad scientific community have been and are currently being invested into the search for metal complexes with antitumor activity. Coordination compounds of transition metals such as platinum (Pt), ruthenium (Ru) and gold (Au) have proven their effectiveness as diagnostic and/or antiproliferative agents. In recent years, experimental work on the potential applications of elements including lanthanum (La) and the post-transition metal gallium (Ga) in the field of oncology has been gaining traction. The authors of the present review article aim to help the reader "catch up" with some of the latest developments in the vast subject of coordination compounds in oncology. Herewith is offered a review of the published scientific literature on anticancer coordination compounds of Pt, Ru, Au, Ga and La that has been released over the past three years with the hope readers find the following article informative and helpful.
Collapse
|
14
|
DNA/protein binding and anticancer activity of ruthenium (II) arene complexes based on quinoline dipyrrin. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Utilization of Cancer Cell Line Screening to Elucidate the Anticancer Activity and Biological Pathways Related to the Ruthenium-Based Therapeutic BOLD-100. Cancers (Basel) 2022; 15:cancers15010028. [PMID: 36612025 PMCID: PMC9817855 DOI: 10.3390/cancers15010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BOLD-100 (sodium trans-[tetrachlorobis(1H indazole)ruthenate(III)]) is a ruthenium-based anticancer compound currently in clinical development. The identification of cancer types that show increased sensitivity towards BOLD-100 can lead to improved developmental strategies. Sensitivity profiling can also identify mechanisms of action that are pertinent for the bioactivity of complex therapeutics. Sensitivity to BOLD-100 was measured in a 319-cancer-cell line panel spanning 24 tissues. BOLD-100's sensitivity profile showed variation across the tissue lineages, including increased response in esophageal, bladder, and hematologic cancers. Multiple cancers, including esophageal, bile duct and colon cancer, had higher relative response to BOLD-100 than to cisplatin. Response to BOLD-100 showed only moderate correlation to anticancer compounds in the Genomics of Drug Sensitivity in Cancer (GDSC) database, as well as no clear theme in bioactivity of correlated hits, suggesting that BOLD-100 may have a differentiated therapeutic profile. The genomic modalities of cancer cell lines were modeled against the BOLD-100 sensitivity profile, which revealed that genes related to ribosomal processes were associated with sensitivity to BOLD-100. Machine learning modeling of the sensitivity profile to BOLD-100 and gene expression data provided moderative predictive value. These findings provide further mechanistic understanding around BOLD-100 and support its development for additional cancer types.
Collapse
|
16
|
Pradhan AK, Shyam A, Dutta A, Mondal P. Quantum Chemical Investigation on Hydrolysis of Orally Active Organometallic Ruthenium(II) and Osmium(II) Anticancer Drugs and Their Interaction with Histidine. J Phys Chem B 2022; 126:9516-9527. [PMID: 36378950 DOI: 10.1021/acs.jpcb.2c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Influence of the metal center on hydrolysis of organometallic anticancer complexes containing an N-phenyl-2-pyridinecarbothioamide (PCA) ligand, [M(η6-p-cymene)(N-phenyl-2-pyridinecarbothioamide)Cl]+ (M = RuII, 1A, and OsII, 2A), as well as their N-fluorophenyl derivatives [M(η6-p-cymene)(N-fluorophenyl-2-pyridinecarbothioamide)Cl]+ (M = RuII, 1B, and OsII, 2B) have been investigated using the DFT method in aqueous medium. The activation energy barriers for the hydrolysis of 1A (21.5 kcal/mol) and 1B (20.7 kcal/mol) are found to be significantly lower than those of their corresponding osmium analogs 2A (28.6 kcal/mol) and 2B (27.5 kcal/mol). DFT evaluated results reveal the inertness of Os(II)-PCA complex toward the hydrolysis that rationalizes the experimental observations. However, the incorporation of fluoride substituent slightly decreases the activation energy for the hydrolysis of Ru(II)- and Os(II)-PCA. In addition, the interaction of hydrolyzed Ru(II)-PCAs (1AH and 1BH) and Os(II)-PCAs (2AH and 2BH) complexes with the histidine (Hist) have also been investigated. The aquated 1BH and 2BH show an enhanced propensity toward the interaction with histidine, and their activation Gibbs free energies are calculated to be 15.9 and 18.9 kcal/mol, respectively. ONIOM (QM/MM) study of the resulting aquated complexes inside histone protein shows the maximum stability of the 2BH complex having a binding energy of -43.6 kcal/mol.
Collapse
Affiliation(s)
| | - Abhijit Shyam
- Department of Chemistry, Assam University, Silchar-788011, Assam, India.,Department of Chemistry, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Eraligool, Karimganj-788723, Assam, India
| | - Abhijit Dutta
- Department of Chemistry, Patharkandi College, Karimganj-788724, Assam, India
| | - Paritosh Mondal
- Department of Chemistry, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
17
|
Akhter S, Arjmand F, Pettinari C, Tabassum S. Ru(II)( ƞ6- p-cymene) Conjugates Loaded onto Graphene Oxide: An Effective pH-Responsive Anticancer Drug Delivery System. Molecules 2022; 27:7592. [PMID: 36364418 PMCID: PMC9655566 DOI: 10.3390/molecules27217592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/04/2023] Open
Abstract
Graphene oxide-based nanodrug delivery systems are considered one of the most promising platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(ƞ6-p-cymene) complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were carried out by employing various biophysical methods to investigate the binding interaction with the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and 10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell lines by SRB assay were also performed.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
18
|
Ramya P, Ramesh R, Kumaradhas P. Investigation on Anticancer Activity of New Ni(II) Cuminaldehyde based Benzhydrazone Complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Arunachalam A, Rengan R, Umapathy D, Arockiam AJV. Impact of Biphenyl Benzhydrazone-Incorporated Arene Ru(II) Complexes on Cytotoxicity and the Cancer Cell Death Mechanism. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abirami Arunachalam
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Devan Umapathy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
20
|
Chang CW, Lee CR, Lee GH, Lu KL. The straightforward synthesis of N-coordinated ruthenium 4-aryl-1,2,3-triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex with terminal phenylacetylenes and non-covalent aromatic interactions in structures. RSC Adv 2022; 12:24830-24838. [PMID: 36128372 PMCID: PMC9430631 DOI: 10.1039/d2ra04835c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The straightforward preparation of N-coordinated ruthenium triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex [Ru]-N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with a series of terminal phenylacetylenes is reported. The reaction products, N(2)-bound ruthenium 4-aryl-1,2,3-triazolato complexes such as [Ru]N3C2H(4-C6H4CN) (2), [Ru]N3C2H(4-C6H4CHO) (3), [Ru]N3C2H(4-C6H4F) (4), [Ru]N3C2H(Ph) (5) and [Ru]N3C2H(4-C6H4CH3) (6) were produced from 4-ethynylbenzonitrile, 4-ethynylbenzaldehyde, 1-ethynyl-4-fluorobenzene, phenylacetylene and 4-ethynyltoluene, respectively, at 80 °C or above under an atmosphere of air. To the best of our knowledge, this is the first example of the preparation of N-coordinated ruthenium aryl-substituted 1,2,3-triazolato complexes by the [3 + 2] cycloaddition of a metal-coordinated azido ligand and a terminal aryl acetylene, less electron-deficient terminal aryl alkynes. All of the compounds have been fully characterized and the structures of complexes 2, 3, 5 and 6 were confirmed by single-crystal X-ray diffraction analysis. Each compound participates in non-covalent aromatic interactions in the solid-state structure which can be favorable in the binding of DNA/biomolecular targets and has shown great potential in the development of biologically active anticancer drugs.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University Linkou New Taipei City 24449 Taiwan
| | - Chi-Rung Lee
- Department of Applied Materials Science and Technology, Minghsin University of Science and Technology Hsinchu 30401 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242 Taiwan
| |
Collapse
|
21
|
Geisler H, Harringer S, Wenisch D, Urban R, Jakupec MA, Kandioller W, Keppler BK. Systematic Study on the Cytotoxic Potency of Commonly Used Dimeric Metal Precursors in Human Cancer Cell Lines. ChemistryOpen 2022; 11:e202200019. [PMID: 35212190 PMCID: PMC9278098 DOI: 10.1002/open.202200019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
The cytotoxicities of seven dimeric metal species of the general formula [M(arene)Cl2 ]2 , commonly used as precursors for complex synthesis and deemed biologically inactive, are investigated in seven commonly employed human cancer cell lines. Four of these complexes featured a ruthenium(II) core, where p-cymene, toluene, benzene and indane were used as arenes. Furthermore, the osmium(II) p-cymene dimer, as well as the Cp* dimers of rhodium(III) and its heavier analogue iridium(III) were included in this work (Cp*=1,2,3,4,5-pentamethylcyclopentadienide). While the cytotoxic potencies of the ruthenium(II) and osmium(II) dimers are very low (or not even detectable at applicable concentrations), surprising activity, especially in cells from ovarian malignancies (with one or two-digit micromolar IC50 values), have been found for the rhodium(III) and iridium(III) representatives. This publication is aimed at all researchers using synthetic procedures based on functionalization of these dimeric starting materials to rationalize changes in biological properties, especially cytotoxicity in cancer cells.
Collapse
Affiliation(s)
- Heiko Geisler
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
| | - Sophia Harringer
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
| | - Dominik Wenisch
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
| | - Richard Urban
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
| | - Michael A. Jakupec
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Waehringer Str. 421090ViennaAustria
| | - Wolfgang Kandioller
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Waehringer Str. 421090ViennaAustria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Waehringer Str. 421090ViennaAustria
| |
Collapse
|
22
|
Balakrishanan N, Haribabu J, Dharmasivam M, Swaminathan S, Karvembu R. Impact of denticity of chromone/chromene thiosemicarbazones in the ruthenium (II)‐DMSO complexes on their cytotoxicity against breast cancer cells. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nithya Balakrishanan
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Jebiti Haribabu
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
- Facultad de Medicina, Universidad de Atacama Copiapo Chile
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery Griffith University Brisbane Queensland Australia
| | - Srividya Swaminathan
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli Tamil Nadu India
| |
Collapse
|
23
|
Shahzad K, Asad M, Asiri AM, Irfan M, Iqbal MA. In-vitro anticancer profile of recent ruthenium complexes against liver cancer. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ruthenium complexes are considered as the most favorable alternatives to traditional platinum-based cancer drugs owing to their acceptable toxicity level, selectivity, variant oxidation states and ability to treat platinum-resistant cancer cells. They have similar ligand exchange kinetics as platinum drugs but can be tailored according to our desire by ligands influence. In the current study, we illustrate the in-vitro anticancer profile of some ruthenium complexes (2016–2021) against human hepatocellular carcinoma (HepG2). The anticancer activity of ruthenium complexes is determined by comparing their IC50 values with one another and positive controls. Fortunately, some ruthenium complexes including 3, 4, 6, 14, 15, 20, 42, and 48 exhibit surpassed in-vitro anticancer profile than that of positive controls promising as potential candidates against liver cancer. We also explored the structure-activity relationship (SAR) which is a key factor in the rational designing and synthesis of new ruthenium drugs. It covers the factors affecting anticancer activity including lipophilicity, planarity, area and bulkiness, the steric influence of different ligands, and electronic effects induced by ligands, stability, aqueous solubility and bioavailability to the target sites. The data reported here will provide strong support in the plausible design and synthesis of ruthenium anticancer drugs in the upcoming days.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
24
|
Matveevskaya VV, Pavlov DI, Samsonenko DG, Bonfili L, Cuccioloni M, Benassi E, Pettinari R, Potapov AS. Arene-ruthenium(II) complexes with tetracyclic oxime derivatives: synthesis, structure and antiproliferative activity against human breast cancer cells. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Banerjee S, Banerjee S. Metal-Based Complexes as Potential Anti-cancer Agents. Anticancer Agents Med Chem 2022; 22:2684-2707. [PMID: 35362388 DOI: 10.2174/1871520622666220331085144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Metal based therapy is no new in biomedical research. In early days the biggest limitation was the inequality among therapeutical and toxicological dosages. Ever since, Barnett Rosenberg discovered cisplatin, a new era has begun to treat cancer with metal complexes. Platinum complexes such as oxaliplatin, cisplatin, and carboplatin, seem to be the foundation of metal/s-based components to challenge malignancies. With an advancement in the biomolemoecular mechanism, researchers have started developing non-classical platinum-based complexes, where a different mechanistic approach of the complexes is observed towards the biomolecular target. Till date, larger number of metal/s-based complexes was synthesized by overhauling the present structures chemically by substituting the ligand or preparing the whole novel component with improved cytotoxic and safety profiles. Howsoever, due to elevated accentuation upon the therapeutic importance of metal/s-based components, a couple of those agents are at present on clinical trials and several other are in anticipating regulatory endorsement to enter the trial. This literature highlights the detailed heterometallic multinuclear components, primarily focusing on platinum, ruthenium, gold and remarks on possible stability, synergism, mechanistic studies and structure activity relationships.
Collapse
Affiliation(s)
- Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| |
Collapse
|
27
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
28
|
Zeng L, Yuan C, Shu J, Qian J, Wu Q, Chen Y, Wu R, Ouyang X, Li Y, Mei W. Arene Ru(II) Complexes with Difluorinated Ligands Act as Potential Inducers of S-Phase Arrest via the Stabilization of c-myc G-Quadruplex DNA. Molecules 2022; 27:molecules27061897. [PMID: 35335261 PMCID: PMC8954944 DOI: 10.3390/molecules27061897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Here, a series of half-sandwich arene Ru(II) complexes with difluorinated ligands [Ru(η6-arene)(L)Cl] (L1 = 2-(2,3-difluorophenyl)imidazole[4,5f][1,10]-phenanthroline; L2 = 2-(2,4-difluorophenyl)imidazole[4,5f][1,10]-phenanthroline; arene = benzene, toluene, and p-cymene) were synthesized and characterized. Molecular docking analysis showed that these complexes bind to c-myc G-quadruplex DNA through either groove binding or π–π stacking, and the relative difluorinated site in the main ligand plays a role in regulating the binding mode. The binding behavior of these complexes with c-myc G-quadruplex DNA was evaluated using ultraviolet–visible spectroscopy, fluorescence intercalator displacement assay, fluorescence resonance energy transfer melting assay, and polymerase chain reaction. The comprehensive analysis indicated that complex 1 exhibited a better affinity and stability in relation to c-myc G-quadruplex DNA with a DC50 of 6.6 μM and ΔTm values of 13.09 °C, than other molecules. Further activity evaluation results displayed that this class of complexes can also inhibit the growth of various tumor cells, especially complexes 3 and 6, which exhibited a better inhibitory effect against human U87 glioblastoma cells (51.61 and 23.75 μM) than other complexes, even superior to cisplatin (32.59 μM). Owing to a befitting lipophilicity associated with the high intake of drugs by tumor cells, complexes 3 and 6 had favorable lipid-water partition coefficients of −0.6615 and −0.8077, respectively. Moreover, it was found that complex 6 suppressed the proliferation of U87 cells mainly through an induced obvious S phase arrest and slight apoptosis, which may have resulted from the stabilization of c-myc G-quadruplex DNA to block the transcription and expression of c-myc. In brief, these types of arene Ru(II) complexes with difluorinated ligands can be developed as potential inducers of S-phase arrest and apoptosis through the binding and stabilization of c-myc G-quadruplex DNA, and could be used in clinical applications in the future.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (L.Z.); (Y.L.)
| | - Chanling Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.Y.); (J.S.); (J.Q.); (Y.C.); (R.W.)
| | - Jing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.Y.); (J.S.); (J.Q.); (Y.C.); (R.W.)
| | - Jiayi Qian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.Y.); (J.S.); (J.Q.); (Y.C.); (R.W.)
| | - Qiong Wu
- Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou 510006, China;
| | - Yanhua Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.Y.); (J.S.); (J.Q.); (Y.C.); (R.W.)
| | - Ruzhen Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.Y.); (J.S.); (J.Q.); (Y.C.); (R.W.)
| | - Xiaoming Ouyang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Correspondence: (X.O.); (W.M.)
| | - Yuan Li
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China; (L.Z.); (Y.L.)
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.Y.); (J.S.); (J.Q.); (Y.C.); (R.W.)
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Correspondence: (X.O.); (W.M.)
| |
Collapse
|
29
|
Starke I, Fürstenberg S. Investigation of the binding site of ruthenium complexes to short single-stranded oligodeoxynucleotides using electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9231. [PMID: 34866265 DOI: 10.1002/rcm.9231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE In order to elucidate the nature of the interaction between metal complexes and DNA, use was made of short telomere single-stranded oligodeoxynucleotide (ODN) strand 5'-T1 T2 A3 G4 G5 G6 -3' (1) and strands 5'-T1 C2 A3 G4 G5 G6 -3' (2), 5'-T1 T2 A3 C4 G5 G6 -3' (3) and 5'-T1 C2 C3 C4 C5 G6 -3' (4) for the verification of the binding site with four different ruthenium complexes as possible anticancer drug candidates. METHODS The ability to form adducts between ruthenium complexes with short single-stranded 6-mers was investigated through the use of electrospray ionization mass spectrometry (ESI-MS). Full scan ESI mass spectra and collision-induced dissociation (CID) mass spectra were recorded on a high-resolution quadrupole time-of-flight mass spectrometer. The elemental compositions of the adducts and the most important product ions were calculated by exact mass measurements. RESULTS ESI-MS measurements showed that the mono-ruthenated ODNs were the main products produced under the conditions for the four ruthenium complexes and each of the ODNs. The CID results revealed that thymine and guanine are the preferred binding sites depending on the different compositions in the ODNs. However, for the ODN of the type: 5'-T1 C2 C3 C4 C5 G6 -3' the coordination site on cytosine was observed as well. The different ruthenium complexes interacted in the same way. CONCLUSIONS This study showed that the characterization of new ruthenium complexes with short single-stranded telomeric DNA (TTAGGG) and further different ODNs is possible with positive ESI-MS/MS measurement. The identification of thymine and cytosine besides guanine as possible binding sites suggests that the interaction site is highly affected by the ODN's structure.
Collapse
Affiliation(s)
- Ines Starke
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
30
|
Nel J, Siniscalco D, Hognon C, Bouché M, Touche N, Brunner É, Gros PC, Monari A, Grandemange S, Francius G. Structural and morphological changes of breast cancer cells induced by iron(II) complexes. NANOSCALE 2022; 14:2735-2749. [PMID: 35112689 DOI: 10.1039/d1nr08301e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-based complexes are well-established cancer chemotherapeutic drug candidates. Although our knowledge regarding their exact activity vs. toxicity profile is incomplete, changes in cell membrane biophysical properties and cytoskeletal structures have been implicated as part of the mechanism of action. Thus, in this work, we characterised the effects of iron(II)-based complexes on the structural and morphological properties of epithelial non-tumorigenic (MCF 10A) and tumorigenic (MDA-MB-231) breast cell lines using atomic force microscopy (AFM), flow cytometry and immunofluorescence microscopy. At 24 h of exposure, both the MCF 10A and MDA-MB-231 cells experienced a cell softening, and an increase in size followed by a re-stiffening at 96 h. In addition, the triple negative breast cancer cell line, MDA-MB-231, sustained a notable cytoskeletal and mitochondrial reorganization with increased actin stress fibers and cell-to-cell communication structures. An extensive all-atom molecular dynamic simulation suggests a possible direct and unassisted internalization of the metallodrug candidate, and confirmed that the cellular effects could not be ascribed to the simple physical interaction of the iron-based complexes with the biological membrane. These observations provide an insight into a link between the mechanisms of action of such iron-based complexes as anti-cancer treatment and cytoskeletal architecture.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | - David Siniscalco
- Université de Lorraine and CNRS, LPCME UMR 7564, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
| | - Mathilde Bouché
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000, Nancy, France
| | - Nadége Touche
- Université de Lorraine and CNRS, CRAN UMR 7039, F-54000 Nancy, France.
| | - Émilie Brunner
- Université de Lorraine and CNRS, CRAN UMR 7039, F-54000 Nancy, France.
| | - Philippe C Gros
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000, Nancy, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
- Université de Paris, ITODYS, CNRS, F-75006, Paris, France
| | | | - Grégory Francius
- Université de Lorraine and CNRS, LPCME UMR 7564, F-54000 Nancy, France.
| |
Collapse
|
31
|
Sangeetha S, Murali M. Cytotoxic Ruthenium(II) Complexes Containing a Dangling Pyridine: Selectivity for Diseased Cells Mediated by pH-Dependent DNA Binding. Inorg Chem 2022; 61:2864-2882. [PMID: 35099196 DOI: 10.1021/acs.inorgchem.1c03399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium(II) complexes of the type [Ru(bpy)2(L1/L2/L3)]PF6 [where bpy = 2,2'-bipyridine, H(L1) = N-(pyrid-2-yl)salicylaldimine (1), H(L2) = N-(6-methylpyrid-2-yl)salicylaldimine (2), and H(L3) = N-(4,6-dimethylpyrid-2-yl)salicylaldimine (3)] have been isolated. The X-ray structures of 1-3 reveal distorted octahedral coordination geometry with a planar ruthenium phenolate moiety. They exhibit interpair dimeric association in their solid state such as (a) π-π-stacking interactions (1-3) and (b) C-H···π interactions (2). The 1H NMR spectral data shed light on the characteristics of metal-ligand bonding and chelate ring conformations. The complexes exhibit strong metal-to-ligand charge-transfer transitions in the visible region. The complexes also undergo two successive metal-based oxidative processes corresponding to the RuII/RuIII and RuIII/RuIV couples. Resonance Raman studies strongly suggest that the lowest unoccupied molecular orbital of 1-3 is localized at the bpy ligand. Absorption, emission, and circular dichroic spectral measurements for 1-3 with calf-thymus DNA reveal a groove binding mode of interaction. Interestingly, all of the complexes exhibit pH-dependent DNA damage, and the pH at which the damage is highest corresponds to the pH conditions of the cancer cells. The DNA damage is in the order of 3 > 2 > 1, in which a hydrolytic mechanism dominates. The protein binding properties of the complexes examined by the tryptophan quenching measurements suggest a static mechanism. The positive ΔH and ΔS values indicate that the force acting between the complexes and bovine serum albumin (BSA) is mainly a hydrophobic interaction, and thus BSA may act as a targeted drug-delivery vehicle for ruthenium(II) complexes (K ∼ 105). It is noteworthy that 3 exhibits selectivity with high cytotoxicity against breast cancer cells (EVSA-T and MCF-7), and its potency is comparable to that of cisplatin.
Collapse
Affiliation(s)
- Somasundaram Sangeetha
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India
| | - Mariappan Murali
- Coordination and Bioinorganic Chemistry Research Laboratory, Department of Chemistry, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India
| |
Collapse
|
32
|
Kordestani N, Abas E, Grasa L, Alguacil A, Scalambra F, Romerosa A. The Significant Influence of a Second Metal on the Antiproliferative Properties of the Complex [Ru(η 6 -C 10 H 14 )(Cl 2 )(dmoPTA)]. Chemistry 2022; 28:e202103048. [PMID: 34806242 PMCID: PMC9299940 DOI: 10.1002/chem.202103048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Complexes [Ru(η6 -C10 H14 )(Cl2 )(HdmoPTA)](OSO2 CF3 ) (1), [Ru(η6 -C10 H14 )(Cl2 )(dmoPTA)] (2) and [Ru(η6 -C10 H14 )(Cl2 )-μ-dmoPTA-1κP:2κ2 N,N'-MCl2 ] (M=Zn (3), Co (4), Ni (5), dmoPTA=3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) have been synthesized and characterized by elemental analysis and spectroscopic techniques. The crystal structures of 1, 3 and 5 were obtained by single-crystal X-ray diffraction. The antiproliferative activity of the complexes was evaluated against colon cancer cell line Caco-2/TC7 by using the MTT protocol. The monometallic ruthenium complexes 1 and 2 were found to be inactive, but the bimetallic complexes 3, 4 and 5 display an increased activity (IC50 3: 9.07±0.27, 4: 5.40±0.19, 5: 7.15±0.30 μM) compared to cisplatin (IC50 =45.6±8.08 μM). Importantly, no reduction in normal cell viability was observed in the presence of the complexes. Experiments targeted to obtain information on the possible action mechanism of the complexes, such as cell cycle, ROS and gene expression studies, were performed. The results showed that the complexes display different properties and action mechanism depending on the nature of metal, M, bonded to the CH3 NdmoPTA atoms.
Collapse
Affiliation(s)
- Nazanin Kordestani
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| | - Elisa Abas
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense Facultad de VeterinariaUniversidad de ZaragozaMiguel Servet, 17750013ZaragozaSpain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense Facultad de VeterinariaUniversidad de ZaragozaMiguel Servet, 17750013ZaragozaSpain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)San Juan Bosco, 1350009ZaragozaSpain
- Instituto Agroalimentario de Aragón -IA2-Universidad de Zaragoza–CITA)Miguel Servet, 17750013ZaragozaSpain
| | - Andres Alguacil
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL Facultad de CienciasUniversidad de AlmeríaCarr. Sacramento, s/n04120La Cañada, AlmeríaSpain
| |
Collapse
|
33
|
Dubey SK, Khatkar S, Trivedi M, Gulati S, Batra SK, Rath N, Kumar S, Lakia R, Raghav N, Kaur S. Syntheses, Structural and Serum Protein Protecting Activity of Ruthenium(II)-DMSO Complexes Containing Mercapto Ligand. NEW J CHEM 2022. [DOI: 10.1039/d2nj01363k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new ruthenium(II) complexes [Ru(mpt)2(DMSO)2] (1), [Ru(mpt)2(bpy)] (2), [Ru(mpt)2(phen)] (3) and [Ru(mpt)2(tptz)] (4) have been synthesized and characterized by elemental analyses, IR, 1H and 13C NMR, and electronic absorption spectroscopy....
Collapse
|
34
|
Ravichandran S, Radhakrishnan J, Nandhiraman V, Mariappan M. Ruthenium complex infused polycaprolactone (PCL-Ru) nanofibers and their in vitro anticancer activity against human tested cancer cell lines. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Mensah S, Rosenthal JD, Dagar M, Brown T, Mills JJ, Hamaker CG, Ferrence GM, Webb MI. A Ru( ii)-arene-ferrocene complex with promising antibacterial activity. Dalton Trans 2022; 51:17609-17619. [DOI: 10.1039/d2dt02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolution of high virulence bacterial strains has necessitated the development of novel therapeutic agents to treat resistant infections.
Collapse
Affiliation(s)
- Stephen Mensah
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | - Mamta Dagar
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Tyson Brown
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Jonathan J. Mills
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | | | - Michael I. Webb
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
- Department of Chemistry, SUNY Geneseo, Geneseo, NY, 14454, USA
| |
Collapse
|
36
|
Synthesis and antiproliferative activity of novel organometallic cobalt(III) complex encapsulated in polydiacetylene-phospholipid nanoformulation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Khan RA, BinSharfan II, Alterary SS, Alsaeedi H, Qais FA, AlFawaz A, Hadi AD, Alsalme A. Organometallic (η
6
‐
p
‐cymene)ruthenium(II) complexes with thiazolyl‐based organic twigs: En route towards targeted delivery via human serum albumin of the potential anticancer agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Ibtisam I. BinSharfan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Seham S. Alterary
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Huda Alsaeedi
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences Aligarh Muslim University Aligarh India
| | - Amal AlFawaz
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Arman D. Hadi
- Department of Chemistry University of Texas at San Antonio San Antonio TX USA
| | - Ali Alsalme
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
38
|
Gupta S, Vandevord JM, Loftus LM, Toupin N, Al-Afyouni MH, Rohrabaugh TN, Turro C, Kodanko JJ. Ru(II)-Based Acetylacetonate Complexes Induce Apoptosis Selectively in Cancer Cells. Inorg Chem 2021; 60:18964-18974. [PMID: 34846875 DOI: 10.1021/acs.inorgchem.1c02796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis, chemical and biological characterization of seven Ru(II) polypyridyl complexes containing acetylacetonate (acac) ligands are reported. Electronic absorption spectra were determined and electrochemical potentials consistent with Ru(III/II) couples ranging from +0.60 to +0.73 V vs Ag/AgCl were measured. A series of complexes were screened against MDA-MB-231, DU-145, and MCF-10A cell lines to evaluate their cytotoxicities in cancer and normal cell lines. Although most complexes were either nontoxic or equipotent in cancer cells and normal cell lines, compound 1, [Ru(dpqy)(acac)(py)](PF6), where dqpy is 2,6-di(quinolin-2-yl)pyridine, showed up to 2.5:1.0 selectivity for cancer as compared to normal cells, along with nanomolar EC50 values in MDA-MB-231 cells. Lipophilicity, determined as the octanol/water partition coefficient, log Po/w, ranged from -0.33 (0.06) to 1.15 (0.10) for the complexes. Although cytotoxicity was not correlated with electrochemical potentials, a moderate linear correlation between lipophilicity and toxicities was observed. Cell death mechanism studies indicated that several of the Ru-acac compounds, including 1, induce apoptosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sayak Gupta
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica M Vandevord
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
39
|
Mukherjee A, Koley TS, Chakraborty A, Purkait K, Mukherjee A. Synthesis, Structure and Cytotoxicity of N,N and N,O-Coordinated Ru II Complexes of 3-Aminobenzoate Schiff Bases against Triple-negative Breast Cancer. Chem Asian J 2021; 16:3729-3742. [PMID: 34549886 DOI: 10.1002/asia.202100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Half-sandwich RuII complexes, [(YZ)RuII (η6 -arene)(X)]+, (YZ=chelating bidentate ligand, X=halide), with N,N and N,O coordination (1-9) show significant antiproliferative activity against the metastatic triple-negative breast carcinoma (MDA-MB-231). 3-aminobenzoic acid or its methyl ester is used in all the ligands while varying the aldehyde for N,N and N,O coordination. In the N,N coordinated complex the coordinated halide(X) is varied for enhancing stability in solution (X=Cl, I). Rapid aquation and halide exchange of the pyridine analogues, 2 and 3, in solution are a major bane towards their antiproliferative activity. Presence of free -COOH group (1 and 4) make complexes hydrophilic and reduces toxicity. The imidazolyl 3-aminobenzoate based N,N coordinated 5 and 6 display better solution stability and efficient antiproliferative activity (IC50 ca. 2.3-2.5 μM) compared to the pyridine based 2 and 3 (IC50 >100 μM) or the N,O coordinated complexes (7-9) (IC50 ca. 7-10 μM). The iodido coordinated, 6, is resistant towards aquation and halide exchange. The N,O coordinated 7-9 underwent instantaneous aquation at pH 7.4 generating monoaquated complexes stable for at least 6 h. Complexes 5 and 6, bind to 9-ethylguanine (9-EtG) showing propensity to interact with DNA bases. The complexes may kill via apoptosis as displayed from the study of 8. The change in coordination mode and the aldehyde affected the solution stability, antiproliferative activity and mechanistic pathways. The N,N coordinated (5 and 6) exhibit arrest in the G2/M phase while the N,O coordinated 8 showed arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tuhin Subhra Koley
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ayan Chakraborty
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Kallol Purkait
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
40
|
Nematollahzadeh A, Mirzaei-Kalar Z, Abolhasani H, Babapoor A. Synthesize and multi-spectroscopic studies of zinc-naproxen nanodrug as DNA intercalator agent. Anal Biochem 2021; 642:114454. [PMID: 34774837 DOI: 10.1016/j.ab.2021.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
The zinc-naproxen complex as a nano-drug (NanoD) was synthesized successfully via fast and effective ultrasound-assisted processes. The chemicophysical properties of the NanoD were determined using FT-IR, XRD, SEM, and EDX mapping analyses. The results confirmed the formation of the 55 nm NanoD laminates. The interaction of the obtained NanoD with calf thymus deoxyribonucleic acid (CT-DNA) was studied as well. Structural and topography changes of DNA in interaction with the NanoD were investigated by atomic force microscopy (AFM). The results of electronic absorption spectroscopy, the DNA-viscosity studies, and competition fluorescence spectroscopy showed that CT-DNA binds to the NanoD through the intercalative binding mode. The data of AFM analysis indicated swollen CT-DNA upon interaction with the NanoD. The in vitro investigation of cytotoxicity of the NanoD on HT-29 and Hep G2 cancer cells demonstrated high cytotoxicity activity of the NanoD than that of cisplatin in HT-29 cell line, especially at lower concentrations.
Collapse
Affiliation(s)
- Ali Nematollahzadeh
- Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| | - Zeinab Mirzaei-Kalar
- Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center and Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
41
|
Prabaharan R, Rengan R, Umapathy D, Arockiam AJV, Małecki JG. Assessment of antiproliferative activity of new half‐sandwich arene Ru (II) furylbenzhydrazone complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ramya Prabaharan
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli India
| | - Devan Umapathy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences Bharathidasan University Tiruchirappalli India
| | | | - Jan Grzegorz Małecki
- Department of Crystallography Institute of Chemistry, University of Silesia Katowice Poland
| |
Collapse
|
42
|
Bjelosevic A, Sakoff J, Gilbert J, Zhang Y, McGhie B, Gordon C, Aldrich-Wright JR. Synthesis, characterisation and biological activity of the ruthenium(II) complexes of the N 4-tetradentate (N 4-T L), 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz 2). J Inorg Biochem 2021; 226:111629. [PMID: 34740037 DOI: 10.1016/j.jinorgbio.2021.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
A series of complexes of the type rac-cis-β-[Ru(N4-TL)(N2-bidentates)]2+ (where N4-TL = 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz2, N4-TL-2) and N2-bidentates = 1,10-phenanthroline (phen, Ru-2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, Ru-3), 7,8-dimethyl-dipyrido[3,2-a:2',3'-c] phenazine (dppzMe2,Ru-4), 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBz, Ru-5), 2-(p-tolyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzMe, Ru-6), 2-(4-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzNO2,Ru-7), were synthesised and characterised and X-ray crystallography of Ru-5 obtained. The in vitro cytotoxicity assays revealed that Ru-6 was 5, 2 and 19-fold more potent than oxaliplatin, cisplatin, and carboplatin, respectively displaying an average GI50 value of ≈ 0.76 μM against a panel of 11 cancer cell lines.
Collapse
Affiliation(s)
- Aleksandra Bjelosevic
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Jennette Sakoff
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Brondwyn McGhie
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Christopher Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia.
| |
Collapse
|
43
|
Kavitha N, Thamilarasan V, Sengottuvelan N. Diketonato based ferrocene appended cyclometalated iridium(III) complexes: Anti-microbial and anti-cancer studies. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Andrezálová L, Országhová Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. J Inorg Biochem 2021; 225:111624. [PMID: 34653826 DOI: 10.1016/j.jinorgbio.2021.111624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Deoxyribonucleic acid plays a central role in crucial cellular processes, and many drugs exert their effects through binding to DNA. Since the discovery of cisplatin and its derivatives considerable attention of researchers has been focused on the development of novel anticancer metal-based drugs. Transition metal complexes, due to their great diversity in size and structure, have a big potential to modify DNA through diverse types of interactions, making them the prominent class of compounds for DNA targeted therapy. In this review we describe various binding modes of metal complexes to duplex DNA based on covalent and noncovalent interactions or combination of both. Specific examples of each binding mode as well as possible cytotoxic effects of metal complexes in tumor cells are presented.
Collapse
Affiliation(s)
- Lucia Andrezálová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Zuzana Országhová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia
| |
Collapse
|
45
|
Trobec T, Sepčić K, Žužek MC, Kladnik J, Podjed N, Cardoso Páscoa C, Turel I, Frangež R. Fine Tuning of Cholinesterase and Glutathione-S-Transferase Activities by Organoruthenium(II) Complexes. Biomedicines 2021; 9:biomedicines9091243. [PMID: 34572429 PMCID: PMC8467340 DOI: 10.3390/biomedicines9091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022] Open
Abstract
Cholinesterases (ChEs) show increased activities in patients with Alzheimer’s disease, and remain one of the main therapeutic targets for treatment of this neurodegenerative disorder. A library of organoruthenium(II) complexes was prepared to investigate the influence of their structural elements on inhibition of ChEs, and on another pharmacologically important group of enzymes, glutathione S-transferases (GSTs). Two groups of organoruthenium(II) compounds were considered: (i) organoruthenium(II) complexes with p-cymene as an arene ligand, and (ii) organoruthenium(II) carbonyl complexes as CO-releasing molecules. Eight organoruthenium complexes were screened for inhibitory activities against ChEs and GSTs of human and animal origins. Some compounds inhibited all of these enzymes at low micromolar concentrations, while others selectively inhibited either ChEs or GSTs. This study demonstrates the importance of the different structural elements of organoruthenium complexes for their inhibitory activities against ChEs and GSTs, and also proposes some interesting compounds for further preclinical testing as ChE or GST inhibitory drugs.
Collapse
Affiliation(s)
- Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Monika Cecilija Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
| | - Jerneja Kladnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Nina Podjed
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
| | - Catarina Cardoso Páscoa
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (N.P.); (C.C.P.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.T.); (M.C.Ž.)
- Correspondence: (K.S.); (I.T.); (R.F.); Tel.: +386-1-3203419 (K.S.); +386-1-4798525 (I.T.); +386-1-4779131 (R.F.)
| |
Collapse
|
46
|
Sullivan MP, Cziferszky M, Tolbatov I, Truong D, Mercadante D, Re N, Gust R, Goldstone DC, Hartinger CG. Probing the Paradigm of Promiscuity for N-Heterocyclic Carbene Complexes and their Protein Adduct Formation. Angew Chem Int Ed Engl 2021; 60:19928-19932. [PMID: 34196088 DOI: 10.1002/anie.202106906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Metal complexes can be considered a "paradigm of promiscuity" when it comes to their interactions with proteins. They often form adducts with a variety of donor atoms in an unselective manner. We have characterized the adducts formed between a series of isostructural N-heterocyclic carbene (NHC) complexes with Ru, Os, Rh, and Ir centers and the model protein hen egg white lysozyme by X-ray crystallography and mass spectrometry. Distinctive behavior for the metal compounds was observed with the more labile Ru and Rh complexes targeting mainly a surface l-histidine moiety through cleavage of p-cymene or NHC co-ligands, respectively. In contrast, the more inert Os and Ir derivatives were detected abundantly in an electronegative binding pocket after undergoing ligand exchange of a chlorido ligand for an amino acid side chain. Computational studies supported the binding profiles and hinted at the role of the protein microenvironment for metal complexes eliciting selectivity for specific binding sites on the protein.
Collapse
Affiliation(s)
- Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Monika Cziferszky
- Department of Chemistry and Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Iogann Tolbatov
- Institut de Chimie Moleculaire (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, Dijon, France
| | - Dianna Truong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Davide Mercadante
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Nazzareno Re
- Dipartimento di Farmacia, Università "G d'Annunzio" di Chieti-Pescara, Via dei Vestini 31, Chieti, Italy
| | - Ronald Gust
- Department of Chemistry and Pharmacy, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
47
|
Half-sandwich platinum group metal complexes containing coumarin-N-acylhydrazone hybrid ligands: Synthesis and biological evaluation studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Sullivan MP, Cziferszky M, Tolbatov I, Truong D, Mercadante D, Re N, Gust R, Goldstone DC, Hartinger CG. Probing the Paradigm of Promiscuity for N‐Heterocyclic Carbene Complexes and their Protein Adduct Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew P. Sullivan
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- School of Biological Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Monika Cziferszky
- Department of Chemistry and Pharmacy University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Iogann Tolbatov
- Institut de Chimie Moleculaire (ICMUB) Université de Bourgogne Franche-Comté (UBFC) Avenue Alain Savary 9 Dijon France
| | - Dianna Truong
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Davide Mercadante
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Nazzareno Re
- Dipartimento di Farmacia Università “G d'Annunzio” di Chieti—Pescara Via dei Vestini 31 Chieti Italy
| | - Ronald Gust
- Department of Chemistry and Pharmacy University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - David C. Goldstone
- School of Biological Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
49
|
Han T, Wu Y, Han W, Yan K, Zhao J, Sun Y. Antitumor Effect of Organometallic Half-Sandwich Ru(II)-Arene Complexes Bearing a Glutathione S-Transferase Inhibitor. Inorg Chem 2021; 60:13051-13061. [PMID: 34369147 DOI: 10.1021/acs.inorgchem.1c01482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facile modification of the ligands in organometallic Ru(II)-arene complexes offers more opportunities to optimize their pharmacological profiles. Herein, three Ru(II)-arene complexes containing a glutathione S-transferase (GST) inhibitor (NBDHEX) in chelate ligand have been designed and synthesized in this study. In vitro results indicated that the ligation with NBDHEX significantly increased the activities and selectivities of the organometallic Ru(II)-arene complexes against tumor cells, especially complex 3, which was the most active compound among the tested compounds. DFT calculations and hydrolysis results demonstrated that complex 3 with more alkyl groups in the arene ligand has increased electron density at the Ru(II) center as compared with complexes 1 and 2, thus resulting in the improved hydrolysis rate, which may be responsible for its higher anticancer activity. Further studies showed that complexes 1-3 can cause the loss of the mitochondrial membrane potential and upregulate the expression of Bcl-2 and Bax in A549 cells, suggesting that complexes 1-3-induced cell death may be mediated via the mitochondrial apoptotic pathway. Thus, these findings suggested that simultaneous modification of the chelate ligands and arene rings in the organometallic Ru(II)-arene complexes is an effective way to improve their pharmacological properties.
Collapse
Affiliation(s)
- Tianyu Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuying Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Weinan Han
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kaiwen Yan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
50
|
Harringer S, Wernitznig D, Gajic N, Diridl A, Wenisch D, Hejl M, Jakupec MA, Theiner S, Koellensperger G, Kandioller W, Keppler BK. Introducing N-, P-, and S-donor leaving groups: an investigation of the chemical and biological properties of ruthenium, rhodium and iridium thiopyridone piano stool complexes. Dalton Trans 2021; 49:15693-15711. [PMID: 33135027 DOI: 10.1039/d0dt03165h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of 15 piano-stool complexes featuring either a RuII, RhIII or IrIII metal center, a bidentate thiopyridone ligand, and different leaving groups was synthesized. The leaving groups were selected in order to cover a broad range of different donor atoms. Thus, 1-methylimidazole served as a N-donor, 1,3,5-triaza-7-phosphaadamantane (pta) as a P-donor, and thiourea as a S-donor. Additionally, three complexes featuring different halido leaving groups (Cl, Br, I) were added. Leaving group alterations were carried out with respect to a possible influence on pharmacokinetic and pharmacodynamic parameters, as well as the cytotoxicity of the respective compounds. The complexes were characterized via NMR spectroscopy, X-ray diffraction (where possible), mass spectrometry, and elemental analysis. Cytotoxicity was assessed in 2D cultures of human cancer cell lines by microculture and clonogenic assays as well as in multicellular tumor spheroids. Furthermore, cellular accumulation studies, flow-cytometric apoptosis and ROS assays, DNA plasmid assays, and laser ablation ICP-MS studies for analyzing the distribution in sections of multicellular tumor spheroids were conducted. This work demonstrates the importance of investigating each piano-stool complexes' properties, as the most promising candidates showed advantages over each other in certain tests/assays. Thus, it was not possible to single out one lead compound, but rather a group of complexes with enhanced cytotoxicity and activity.
Collapse
Affiliation(s)
- Sophia Harringer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Natalie Gajic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Andreas Diridl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Dominik Wenisch
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", Waehringer Strasse 42, 1090 Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|