1
|
Zhang Z, Zhang L, Wu P, Tian Y, Wen Y, Xu M, Xu P, Jiang Y, Ma N, Wang Q, Dai W. Study on the Chemical Composition and Anti-Tumor Mechanisms of Clausena lansium Fruit By-Products: Based on LC-MS, Network Pharmacology Analysis, and Protein Target Validation. Foods 2024; 13:3878. [PMID: 39682950 DOI: 10.3390/foods13233878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Clausena lansium (Lour.) Skeels, commonly known as Wampee, are valued for their edible and medicinal qualities, yet their pericarp and seeds are often discarded, resulting in wasted resources. This study investigates the anti-tumor potential of these by-products, focusing on their chemical composition and underlying mechanisms of action. A combination of metabolomics, network pharmacology, molecular docking, and experimental validation was employed in our study. Cytotoxicity screening demonstrated that the pericarp extract exhibited notable anti-tumor effects against MDA-MB-231 breast cancer cells, while the seed extract showed no similar activity. Chemical profiling identified 122 compounds in the pericarp and seeds, with only 26.23% overlap, suggesting that distinct compounds may drive the pericarp's anti-tumor activity. Network pharmacology and molecular docking analyses identified PTGER3, DRD2, and ADORA2A as key targets, with several alkaloids, flavonoids, coumarins, and sesquiterpenes exhibiting strong binding affinities to these proteins. Western blot analysis further validated that the pericarp extract upregulated DRD2 and downregulated ADORA2A, indicating a possible mechanism for its anticancer effects. These findings suggest that Wampee pericarp holds promise as a source of active compounds with therapeutic potential for breast cancer, with implications for its use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ziyue Zhang
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangqian Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Pengfei Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuan Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yao Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meina Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peihao Xu
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Comprehensive Experimental Teaching Center of Traditional Chinese Medicine, Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527500, China
| | - Ying Jiang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Comprehensive Experimental Teaching Center of Traditional Chinese Medicine, Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527500, China
| |
Collapse
|
2
|
Dong Y, Chen L, Wu HQ, Xie L, Yu JH, Yang F, Wang YT, Liu YR, Deng GW, Wang ZF. Pd/Ag-Cocatalyzed Merging Intramolecular Oxidative Coupling and Cascade [4 + 2] Cycloaddition: Synthesis and Photophysical Properties of Novel Polycyclic N-Heterocycles Fused Naphthoquinones. Molecules 2024; 29:5639. [PMID: 39683797 DOI: 10.3390/molecules29235639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
We report a step-economic strategy for the direct synthesis of novel polycyclic N-heterocycle-fused naphthoquinones by merging intramolecular oxidative coupling and cascade [4 + 2] cycloaddition. In the protocol, mechanistic investigations suggest that the cascade reaction involves the intermediate spiro polycyclic N-heterocycles and [4 + 2] cycloaddition processes. This protocol is featured with moderate to excellent yields, wide substrate scope, and divergent structures of products. In addition, the photophysical properties of the synthesized products were evaluated. These products exhibit interesting fluorescence properties, and surprisingly, the compounds have the ability to selectively recognize trifluoroacetic acid.
Collapse
Affiliation(s)
- Yu Dong
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Lin Chen
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Han-Qing Wu
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Li Xie
- Chengdu Institute for Drug Control, Chengdu 610061, China
| | - Jing-Hao Yu
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Fan Yang
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Yu-Ting Wang
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Yu-Rong Liu
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Guo-Wei Deng
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Zhi-Fan Wang
- Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| |
Collapse
|
3
|
Grooms AJ, Huttner RT, Stockwell M, Tadese L, Marcelo IM, Kass A, Badu-Tawiah AK. Programmable C-N Bond Formation through Radical-Mediated Chemistry in Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2024:e202413122. [PMID: 39453314 DOI: 10.1002/anie.202413122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Non-thermal plasma discharge produced in the wake of charged microdroplets is found to facilitate catalyst-free radical mediated hydrazine cross-coupling reactions without the use of external light source, heat, precious metal complex, or trapping agents. A plasma-microdroplet fusion platform is utilized for introduction of hydrazine reagent that undergoes homolytic cleavage forming radical intermediate species. The non-thermal plasma discharge that causes the cleavage originates from a chemically etched silica capillary. The coupling of the radical intermediates gives various products. Plasma-microdroplet fusion occurs online in a programmable reaction platform allowing direct process optimization and product validation via mass spectrometry. The platform is applied herein with a variety of hydrazine substrates, enabling i) self-coupling to form secondary amines with identical N-substitutions, ii) cross-coupling to afford secondary amine with different N-substituents, iii) cross-coupling followed by in situ dehydrogenation to give the corresponding aryl-aldimines with two unique N-substitutions, and iv) cascade heterocyclic carbazole derivatives formation. These unique reactions were made possible in the charged microdroplet environment through our ability to program conditions such as reagent concentration (i. e., flow rate), microdroplet reactivity (i. e., presence or absence of plasma), and reaction timescale (i. e., operational mode of the source). The selected program is implemented in a co-axial spray format, which is found to be advantageous over the conventional one-pot single emitter electrospray-based microdroplet reactions.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert T Huttner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Mackenzie Stockwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Leah Tadese
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Isabella M Marcelo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Anthony Kass
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Koremura S, Sugawara A, Morishita Y, Ozaki T, Asai T. Semi-synthesis of a DNA-Tagged Polyketide-Peptide Hybrid Macrocycle Using a Biosynthetically Prepared Fungal Macrolide as a Synthetic Component. Org Lett 2024; 26:9151-9156. [PMID: 39415106 PMCID: PMC11519919 DOI: 10.1021/acs.orglett.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Presented herein is a synthetic biological method using genome mining and heterologous expression systems that provides access to natural products with desirable structural features as building blocks. In this investigation, we synthesized polyketide-peptide hybrid macrocycles with DNA tags, which have the potential to access a DNA-encoded library containing over one million compounds. This study demonstrates that synthetic biology offers a tool for expanding the diversity of building blocks, facilitating the exploration of unexplored chemical space.
Collapse
Affiliation(s)
| | | | | | - Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Singh HR, Tiwari P, Deb PK, Rakshit G, Maity P, Mohanlall V, Gleiser RM, Venugopala KN, Chandrashekharappa S. Larvicidal activity, molecular docking, and molecular dynamics studies of 7-(trifluoromethyl)indolizine derivatives against Anopheles arabiensis. Mol Divers 2024:10.1007/s11030-024-10994-7. [PMID: 39377893 DOI: 10.1007/s11030-024-10994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
A novel series of 7-(trifluoromethyl)indolizine derivatives (4a-4n) was synthesized using a 1,3-Dipolar cycloaddition reaction. Structure elucidation of the synthesized compounds was done using various spectroscopic techniques. Compounds were assessed for their larvicidal activity against Anopheles arabiensis. Exposure of Anopheles arabiensis larvae to a series of 7-(trifluoromethyl)indolizine at 4 µg/mL for 24 and 48 h resulted in moderate to high larval mortality rates. Among them, compounds 4b, 4a, 4g, and 4m exhibited the most promising larvicidal activities, with mortality rates of 94.4%, 93.3%, 80.00%, and 85.6%, respectively, compared to controls, Acetone and Temephos. The structural activity relationship analysis of the evaluated compounds revealed that substitution with halogens or electron-withdrawing groups (CN, F, Cl, Br) at the para position of the benzoyl group is crucial for achieving promising larvicidal activity. Molecular docking studies were carried out involving six potential larvicidal target proteins to predict how the tested compounds might work. Compounds 4a and 4b showed strong binding to the Mosquito Juvenile Hormone-Binding Protein (5V13). Molecular dynamics (MD) simulations confirmed the stability of the protein-ligand complexes over the simulation period, reinforcing the reliability of the docking results. Compounds 4a and 4b also exhibited favourable ADMET profiles, showing high oral bioavailability, good permeability, moderate distribution, low plasma protein binding, sufficient metabolic stability, efficient renal clearance and low toxicity. Given the crucial role of Juvenile Hormone in regulating gene expression and developmental pathways through receptor interactions, compounds 4a and 4b show promise as inhibitors of this protein. Inhibiting this process could hinder larval growth and reproduction, presenting a promising approach for early-stage mosquito larvicidal activity. Therefore, compounds 4a and 4b represent lead candidates for further optimization and the development of new larvicidal agents.
Collapse
Affiliation(s)
- Harshada Rambaboo Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Near CRPF Base Camp, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, UP, 226002, India
| | - Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Near CRPF Base Camp, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, UP, 226002, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835215, India.
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835215, India
| | - Prasenjit Maity
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi, Jharkhand, 835215, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Raquel M Gleiser
- CREAN-IMBIV (UNC-CONICET), Universidad Nacional de Cordoba, Av. Valparaiso s.n., and FCEFyN, Av. V. Sarsfield 299, 5000, Cordoba, Argentina
| | - Katharigatta N Venugopala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Near CRPF Base Camp, Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, UP, 226002, India.
| |
Collapse
|
6
|
Zhang Y, Liu W, Li G, Wu C, Yan J, Feng D, Yuan S, Zhang R, Lou H, Peng X. Novel polyketide from Fusarium verticillioide G102 as NPC1L1 inhibitors. Nat Prod Res 2024; 38:2957-2963. [PMID: 37074061 DOI: 10.1080/14786419.2023.2201885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
One novel polyketide, fusaritide A (1), was isolated from a marine fish-derived halotolerant fungal strain Fusarium verticillioide G102. The structure was determined through extensive spectroscopic analysis and high-resolution electrospray ionization mass spectrometry. Fusaritide A (1) with unprecedented structure reduced cholesterol uptake by inhibiting Niemann-Pick C1-Like 1 (NPC1L1).
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Wenjing Liu
- Cancer Institute, Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Changzheng Wu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Jing Yan
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Dan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Shuangzhi Yuan
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Renshuai Zhang
- Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
- Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Tang Q, Lu Y, Song J, He Z, Xu JB, Tan J, Gao F, Li X. Light-promoted stereoselective late-stage difunctionalization and anti-tumor activity of oridonin. Fitoterapia 2024; 177:106131. [PMID: 39067489 DOI: 10.1016/j.fitote.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The late-stage difunctionalization of diterpene oridonin by light-promoted direct oxyamination with various O-benzoylhydroxylamines was carried out to afford C16α-N-C17-OBz-oridonin derivatives (1-25) for the first time. Though as a radical reaction, it features high stereoselectivity to only produce C16α-N-C17-OBz-oridonins. The in vitro antiproliferative activity of these C16α-N-C17-OBz-oridonins against the human breast cancer cell lines (MCF-7) was evaluated by MTT assay, showing that most of the synthesized compounds possessed moderate anticancer activity against MCF-7 cell lines superior or similar to the parent compound oridonin. The derivative 25 with a N-methyl-N-(naphthalen-1-ylmethyl) substitution showed better cytotoxicity against MCF-7 cells (IC50 value of 11.75 μM) than oridonin (IC50 value of 17.95 μM).
Collapse
Affiliation(s)
- Qianhui Tang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Yougan Lu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Junying Song
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Zhengyang He
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Jin-Bu Xu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Jiao Tan
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, No.82, University Town Central Road, Chongqing 401331, PR China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China
| | - Xiaohuan Li
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, Erhuan Rd, Chengdu 610031, PR China.
| |
Collapse
|
8
|
Li Y, Wang Z, Kong M, Yong Y, Yang X, Liu C. The role of GZMA as a target of cysteine and biomarker in Alzheimer's disease, pelvic organ prolapse, and tumor progression. Front Pharmacol 2024; 15:1447605. [PMID: 39228516 PMCID: PMC11368878 DOI: 10.3389/fphar.2024.1447605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Objective: This study aims to investigate how changes in peripheral blood metabolites in Alzheimer's Disease (AD) patients affect the development of Pelvic Organ Prolapse (POP) using a multi-omics approach. We specifically explore the interactions of signaling pathways, gene expression, and protein-metabolite interactions, with a focus on GZMA and cysteine in age-related diseases. Methods: This study utilized multi-omics analysis, including metabolomics and transcriptomics, to evaluate the perturbations in peripheral blood metabolites and their effect on POP in AD patients. Additionally, a comprehensive pan-cancer and immune infiltration analysis was performed on the core targets of AD combined with POP, exploring their potential roles in tumor progression and elucidating their pharmacological relevance to solid tumors. Results: We identified 47 differential metabolites linked to 9 significant signaling pathways, such as unsaturated fatty acid biosynthesis and amino acid metabolism. A thorough gene expression analysis revealed numerous differentially expressed genes (DEGs), with Gene Set Enrichment Analysis (GSEA) showing significant changes in gene profiles of AD and POP. Network topology analysis highlighted central nodes in the AD-POP co-expressed genes network. Functional analyses indicated involvement in critical biological processes and pathways. Molecular docking studies showed strong interactions between cysteine and proteins PTGS2 and GZMA, and molecular dynamics simulations confirmed the stability of these complexes. In vitro validation demonstrated that cysteine reduced ROS levels and protected cell viability. GZMA was widely expressed in various cancers, associated with immune cells, and correlated with patient survival prognosis. Conclusion: Multi-omics analysis revealed the role of peripheral blood metabolites in the molecular dynamics of AD and their interactions with POP. This study identified potential biomarkers and therapeutic targets, emphasizing the effectiveness of integrative approaches in treating AD and POP concurrently. The findings highlight the need for in-depth research on novel targets and biomarkers to advance therapeutic strategies.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhuo Wang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Min Kong
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yong
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Yang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Tang H, Wei W, Wu J, Cui X, Wang W, Qian T, Wo J, Ye BC. Engineering Streptomyces albus B4 for Enhanced Production of ( R)-Mellein: A High-Titer Heterologous Biosynthesis Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17499-17509. [PMID: 39045837 DOI: 10.1021/acs.jafc.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in β-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Li Z, Yu H, Hussain SA, Yang R. Anticancer activity of Araguspongine C via inducing apoptosis, and inhibition of oxidative stress, inflammation, and EGFR-TK in human lung cancer cells: An in vitro and in vivo study. J Biochem Mol Toxicol 2024; 38:e23763. [PMID: 38984790 DOI: 10.1002/jbt.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The advanced non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations has put a selective pressure on the discovery and development of newer EGFR inhibitors. Therefore, the present study intends to explore the pharmacological effect of Araguspongine C (Aragus-C) as anticancer agent against lung cancer. The effect of Aragus-C was evaluated on the viability of the A549 and H1975 cells. Further biochemical assays were performed to elaborate the effect of Aragus-C, on the apoptosis, cell-cycle analysis, and mitochondrial membrane potential in A549 cells. Western blot analysis was also conducted to determine the expression of EGFR in A549 cells. Tumor xenograft mice model from A549 cells was established to further elaborate the pharmacological activity of Aragus-C. Results suggest that Aragus C showed significant inhibitory activity against A549 cells as compared to H1975 cells. It has been found that Aragus-C causes the induction of apoptosis and promotes cell-cycle arrest at the G2/M phase of A549 cells. It also showed a reduction in the overexpression of EGFR in A549 cells. In tumor xenograft mice model, it showed a significant reduction of tumor volume in a dose-dependent manner, with maximum inhibitory activity was reported by the 8 mg/kg treated group. It also showed significant anti-inflammatory and antioxidant activity by reducing the level of TNF-α, IL-1β, IL-6, and MDA, with a simultaneous increase of superoxide dismutase and glutathione peroxidase. We have demonstrated the potent anti-lung cancer activity of Aragus-C, and it may be considered as a potential therapeutic choice for NSCLC treatment.
Collapse
Affiliation(s)
- Zhe Li
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an, China
| | - Hongjiang Yu
- Department of Medical Oncology, Tongliao City Hospital, Tongliao, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rui Yang
- Department of Medical Oncology, Yan'an People's Hospital, Yan'an, China
| |
Collapse
|
11
|
Zeng Y, Chen Z, Yang Z, Yuan F, Nie L, Niu C. Discovery of a novel pyrido[1,2-a]thiazolo[5,4-d]pyrimidinone derivatives with excellent potency against acetylcholinesterase. Mol Divers 2024:10.1007/s11030-024-10920-x. [PMID: 38935303 DOI: 10.1007/s11030-024-10920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
As mimetic compounds of the natural alkaloid mackinazolinone, forty pyrido[1,2-a]thiazolo[5,4-d] pyrimidinone were designed and synthesized from a bioisosterism approach. The structure of these compounds was confirmed through analysis using 1H NMR, 13C NMR, and HRMS techniques. All the compounds were evaluated for their anticholinesterase activities and cytotoxicity on normal cells (293 T) by the Ellman method and methyl thiazolyl tetrazolium (MTT) method in vitro. and the structure-activity relationships (SARs) were summarized. The results showed that most of the compounds effectively inhibited acetylcholinesterase (AChE) in the micromolar range with weak cytotoxicity. Compound 7o exhibited the best inhibitory activity against AChE, displaying an IC50 values of 1.67 ± 0.09 µM and an inhibitory constant Ki of 11.31 µM as a competitive inhibitor to AChE. Molecular docking indicated that compound 7o may bind to AChE via hydrogen bond and π-π stacking. Further molecular dynamics (MD) simulations indicated a relatively low binding free energy (- 27.91 kJ·mol-1) of compound 7o with AChE. In summary, the collective findings suggested that 7o was promising as a potential novel drug candidate worthy of further investigation for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yan Zeng
- Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi, 830023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Chen
- Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Zhiyong Yang
- Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Fangxue Yuan
- Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi, 830023, China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Kim KE, Comber JR, Pursel AJ, Hobby GC, McCormick CJ, Fisher MF, Marasa K, Perry B. Modular and divergent synthesis of 2, N3-disubstituted 4-quinazolinones facilitated by regioselective N-alkylation. Org Biomol Chem 2024; 22:4940-4949. [PMID: 38809109 DOI: 10.1039/d4ob00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The synthesis of a biologically relevant 2-amino-N3-alkylamido 4-quinazolinone has been accomplished in four steps from commercially available materials using design principles from both modular and divergent synthesis. N3-Alkylation of 2-chloro-4(3H)-quinazolinone using methyl bromoacetate, followed by C2-amination produced a suitable scaffold for introducing molecular diversity. Optimization of alkylation conditions afforded full regioselectivity, enabling exclusive access to the N-alkylated isomer. Subsequent C2-amination using piperidine, pyrrolidine, or diethylamine, followed by amide bond formation using variously substituted phenethylamines, generated fifteen unique 4-quinazolinones bearing C2-amino and N3-alkylamido substituents. These efforts highlight the reciprocal influence of C2 and N3 substitution on functionalization at either position, establish an effective synthetic pathway toward 2,N3-disubstituted 4-quinazolinones, and enable preliminary bioactivity studies while providing an experiential learning opportunity for undergraduate student researchers.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Jason R Comber
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Alexander J Pursel
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Grant C Hobby
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Matthew F Fisher
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Kyle Marasa
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA.
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative, Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
13
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
14
|
Dong Y, Lan MF, Lin YQ, Chen L, Wu CM, Wang ZF, Shi ZC, Deng GW, He B. Synthesis of Spiro Polycyclic N-Heterocycles and Indolecarbazoles via Merging Oxidative Coupling and Cascade Palladium-Catalyzed Intramolecular Oxidative Cyclization. J Org Chem 2024; 89:6474-6488. [PMID: 38607334 DOI: 10.1021/acs.joc.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We report a step-economic strategy for the direct synthesis of spiro polycyclic N-heterocycles and indolecarbazole-fused naphthoquinones by merging oxidative coupling and cascade palladium-catalyzed intramolecular oxidative cyclization. In the protocol, bi-indolylnaphthoquinones were first synthesized by oxidative coupling of indoles and naphthoquinones. Subsequent cascade palladium-catalyzed intramolecular oxidative cyclization of bi-indolylnaphthoquinones gave spiro polycyclic N-heterocycles and indolecarbazoles. The intramolecular oxidative cyclization approach could also be realized by the presence or absence of iron catalysts under standard conditions. This protocol is featured with moderate to excellent yields, a wide substrate scope, and divergent structures of products.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Mei-Feng Lan
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Yue-Qin Lin
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Lin Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Chun-Mei Wu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Zhi-Fan Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Guo-Wei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, P. R. China
| |
Collapse
|
15
|
Li R, Su Z, Sun C, Wu S. Antibacterial insights into alternariol and its derivative alternariol monomethyl ether produced by a marine fungus. Appl Environ Microbiol 2024; 90:e0005824. [PMID: 38470179 PMCID: PMC11022538 DOI: 10.1128/aem.00058-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Alternaria alternata FB1 is a marine fungus identified as a candidate for plastic degradation in our previous study. This fungus has been recently shown to produce secondary metabolites with significant antimicrobial activity against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and the notorious aquaculture pathogen Vibrio anguillarum. The antibacterial compounds were purified and identified as alternariol (AOH) and its derivative, alternariol monomethyl ether (AME). We found that AOH and AME primarily inhibited pathogenic bacteria (MRSA or V. anguillarum) by disordering cell division and some other key physiological and biochemical processes. We further demonstrated that AOH could effectively inhibit the unwinding activity of MRSA topoisomerases, which are closely related to cell division and are the potential action target of AOH. The antibacterial activities of AOH and AME were verified by using zebrafish as the in vivo model. Notably, AOH and AME did not significantly affect the viability of normal human liver cells at concentrations that effectively inhibited MRSA or V. anguillarum. Finally, we developed the genetic operation system of A. alternata FB1 and blocked the biosynthesis of AME by knocking out omtI (encoding an O-methyl transferase), which facilitated A. alternata FB1 to only produce AOH. The development of this system in the marine fungus will accelerate the discovery of novel natural products and further bioactivity study.IMPORTANCEMore and more scientific reports indicate that alternariol (AOH) and its derivative alternariol monomethyl ether (AME) exhibit antibacterial activities. However, limited exploration of their detailed antibacterial mechanisms has been performed. In the present study, the antibacterial mechanisms of AOH and AME produced by the marine fungus Alternaria alternata FB1 were disclosed in vitro and in vivo. Given their low toxicity on the normal human liver cell line under the concentrations exhibiting significant antibacterial activity against different pathogens, AOH and AME are proposed to be good candidates for developing promising antibiotics against methicillin-resistant Staphylococcus aureus and Vibrio anguillarum. We also succeeded in blocking the biosynthesis of AME, which facilitated us to easily obtain pure AOH. Moreover, based on our previous results, A. alternata FB1 was shown to enable polyethylene degradation.
Collapse
Affiliation(s)
- Rongmei Li
- College of Life Sciences, Qingdao University, Qingdao, China
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhenjie Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
17
|
Vinogradov AA, Zhang Y, Hamada K, Kobayashi S, Ogata K, Sengoku T, Goto Y, Suga H. A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides. J Am Chem Soc 2024; 146:8058-8070. [PMID: 38491946 PMCID: PMC10979747 DOI: 10.1021/jacs.3c12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 μM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Lu N, Wu J, Tian M, Zhang S, Li Z, Shi L. Comprehensive review on the elaboration of payloads derived from natural products for antibody-drug conjugates. Eur J Med Chem 2024; 268:116233. [PMID: 38408390 DOI: 10.1016/j.ejmech.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Antibody-drug conjugates (ADCs) have arisen as a promising class of biotherapeutics for targeted cancer treatment, combining the specificity of monoclonal antibodies with the cytotoxicity of small-molecule drugs. The choice of an appropriate payload is crucial for the success development of ADCs, as it determines the therapeutic efficacy and safety profile. This review focuses on payloads derived from natural products, including cytotoxic agents, DNA-damaging agents, and immunomodulators. These offer several advantages such as diverse chemical structures, unique mechanism of actions, and potential for improved therapeutic index. Challenges and opportunities associated with their development were highlighted. This review underscores the significance of natural product payloads in the elaboration of ADCs, which serves as a valuable resource for researchers involved in developing and optimizing next-generation ADCs for cancer treatment.
Collapse
Affiliation(s)
- Nan Lu
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Jiaqi Wu
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Mengwei Tian
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Shanshan Zhang
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| | - Zhiguo Li
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| | - Liming Shi
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| |
Collapse
|
19
|
Guan X, Li WJ, Shuai MS, Zhang M, Zhou CC, Fu XZ, Yang YY, Zhou M, He B, Zhao YL. Rh(III)-Catalyzed C7-Alkylation of Isatogens with Malonic Acid Diazoesters. J Org Chem 2024; 89:2984-2995. [PMID: 38334453 DOI: 10.1021/acs.joc.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.
Collapse
Affiliation(s)
- Xiang Guan
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wen-Jie Li
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Ming-Shan Shuai
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Mao Zhang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Chao-Chao Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Zhong Fu
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yuan-Yong Yang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Meng Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Bin He
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yong-Long Zhao
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
20
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
21
|
Bhondwe P, Sengar N, Bodiwala HS, Singh IP, Panda D. An adamantyl-caffeoyl-anilide exhibits broad-spectrum antibacterial activity by inhibiting FtsZ assembly and Z-ring formation. Int J Biol Macromol 2024; 259:129255. [PMID: 38199552 DOI: 10.1016/j.ijbiomac.2024.129255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several harmful bacteria have evolved resistance to conventional antibiotics due to their extensive usage. FtsZ, a principal bacterial cell division protein, is considered as an important drug target to combat resistance. We identified a caffeoyl anilide derivative, (E)-N-(4-(3-(3,4-dihydroxyphenyl)acryloyl)phenyl)-1-adamantylamide (compound 11) as a new antimicrobial agent targeting FtsZ. Compound 11 caused cell elongation in Mycobacterium smegmatis, Bacillus subtilis, and Escherichia coli cells, indicating that it inhibits cell partitioning. Compound 11 inhibited the assembly of Mycobacterium smegmatis FtsZ (MsFtsZ), forming short and thin filaments in vitro. Interestingly, the compound increased the rate of GTP hydrolysis of MsFtsZ. Compound 11 also impeded the assembly of Mycobacterium tuberculosis FtsZ. Fluorescence and absorption spectroscopic analysis suggested that compound 11 binds to MsFtsZ and produces conformational changes in FtsZ. The docking analysis indicated that the compound binds at the interdomain cleft of MsFtsZ. Further, it caused delocalization of the Z-ring in Mycobacterium smegmatis and Bacillus subtilis without affecting DNA segregation. Notably, compound 11 did not inhibit tubulin polymerization, the eukaryotic homolog of FtsZ, suggesting its specificity on bacteria. The evidence indicated that compound 11 exerts its antibacterial effect by impeding FtsZ assembly and has the potential to be developed as a broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Prajakta Bhondwe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Sengar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Hardik S Bodiwala
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
22
|
Zheng X, Zhang J, Liu S, Yu Y, Peng Q, Peng Y, Yao X, Peng X, Zhou J. Biosynthesis and Anticancer Activity of Genistein Glycoside Derivatives. Anticancer Agents Med Chem 2024; 24:961-968. [PMID: 38639281 DOI: 10.2174/0118715206299272240409043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
As a beneficial natural flavonoid, genistein has demonstrated a wide range of biological functions via regulating a number of targets and signaling pathways, such as anti-cancer, antioxidant, antibacterial, antiinflammatory, antifungal, antiviral, iron chelation, anti-obesity, anti-diabetes, and anti-hypertension. Pub- Med/Medline and Web of Science were searched using appropriate keywords until the end of December 2023. Despite its many potential benefits, genistein's clinical application is limited by low hydrophilicity, poor solubility, and suboptimal bioavailability due to its structure. These challenges can be addressed through the conversion of genistein into glycosides. Glycosylation of active small molecules may enhance their solubility, stability, and biological activity. In recent years, extensive research has been conducted on the synthesis, properties, and anticancer activity of glycoconjugates. Previous reviews were devoted to discussing the biological activities of genistin, with a little summary of the biosynthesis and the structure-activity relationship for their anticancer activity of genistein glycoside derivatives. Therefore, we summarized recent advances in the biosynthesis of genistein glycosylation and discussed the antitumor activities of genistein glycoside derivatives in a structure-activity relationship, which may provide important information for further development of genistein derivatives.
Collapse
Affiliation(s)
- Xing Zheng
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan, 410004, China
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan, 410004, China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingzi Yu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaling Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xingxing Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
23
|
Kamal M, Mukherjee S, Joshi B, Sindhu ZUD, Wangchuk P, Haider S, Ahmed N, Talukder MH, Geary TG, Yadav AK. Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions. Mol Biochem Parasitol 2023; 256:111594. [PMID: 37730126 DOI: 10.1016/j.molbiopara.2023.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Suprabhat Mukherjee
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Pakistan
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD 4878, Australia
| | | | - Nurnabi Ahmed
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Timothy G Geary
- Institute of Parasitology, McGill University, Montreal, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, NI, UK
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
24
|
Li Z, Chen R, Qin C, Lu P, Lin J, Zheng W, Xiong Y, Li C. Assessment of the Binding of Pseudallecin A to Human Serum Albumin with Multi-Spectroscopic Analysis, Molecular Docking and Molecular Dynamic Simulation. Chem Biodivers 2023; 20:e202301217. [PMID: 37870539 DOI: 10.1002/cbdv.202301217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
The binding of pseudallecin A (PA), a potential antibiotic with strong inhibitory activities against Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus, to human serum albumin (HSA) was explored. The interaction between them was assessed by multi-spectroscopic analysis, binding site competitive analysis, molecular docking and molecular dynamic simulation, showing the results as follows: PA effectively quenched the innate fluorescence of HSA by a static quenching process, formed a complex at a molar ratio of approximately 1 : 1 and performed an effective non-radiative energy transfer; the binding of PA to HSA was a spontaneous exothermic reaction driven by enthalpy with strong affinity and had a slight effect on the conformation of HSA; PA bound at site III of HSA and hydrogen bonds were the major binding forces to maintain the stability of the PA-HSA complex. Molecular dynamic simulation was performed to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radius of gyration (Rg) for this complex and effectively supported the spectroscopic outcome. These results meant that the delivery and distribution of PA as a water-insoluble molecule can be efficiently accomplished via HSA in human blood and, it has a good potential for future drug application and pharmacological development.
Collapse
Affiliation(s)
- Ziyang Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Ruolan Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Chan Qin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Peijun Lu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Jiaru Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Yahong Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Chunyuan Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| |
Collapse
|
25
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
26
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
27
|
Koutova D, Maafi N, Muthna D, Kralovec K, Kroustkova J, Pidany F, Timbilla AA, Cermakova E, Cahlikova L, Rezacova M, Havelek R. Antiproliferative activity and apoptosis-inducing mechanism of Amaryllidaceae alkaloid montanine on A549 and MOLT-4 human cancer cells. Biomed Pharmacother 2023; 166:115295. [PMID: 37595426 DOI: 10.1016/j.biopha.2023.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
The isoquinoline alkaloids found in Amaryllidaceae are attracting attention due to attributes that can be harnessed for the development of new drugs. The possible molecular mechanisms by which montanine exerts its inhibitory effects against cancer cells have not been documented. In the present study, montanine, manthine and a series of 15 semisynthetic montanine analogues originating from the parent alkaloid montanine were screened at a single test dose of 10 μM to explore their cytotoxic activities against a panel of eight cancer cell lines and one non-cancer cell line. Among montanine and its analogues, montanine and its derivatives 12 and 14 showed the highest cytostatic activity in the initial single-dose screening. However, the native montanine exhibited the greatest antiproliferative activity against cancer cells, with a lower mean IC50 value of 1.39 µM, compared to the displayed mean IC50 values of 2.08 µM for 12 and 3.57 µM for 14. Montanine exhibited the most potent antiproliferative activity with IC50 values of 1.04 µM and 1.09 µM against Jurkat and A549 cell lines, respectively. We also evaluated montanine's cytotoxicity and cell death mechanisms. Our results revealed that montanine triggered apoptosis of MOLT-4 cells via caspase activation, mitochondrial depolarisation and Annexin V/PI double staining. The Western blot results of MOLT-4 cells showed that the protein levels of phosphorylated Chk1 Ser345 were upregulated with increased montanine concentrations. Our findings provide new insights into the mechanisms underlying the cytostatic, cytotoxic and pro-apoptotic activities of montanine alkaloids in lung adenocarcinoma A549 and leukemic MOLT-4 cancer cell types.
Collapse
Affiliation(s)
- Darja Koutova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Negar Maafi
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Karel Kralovec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Jana Kroustkova
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Filip Pidany
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Abdul Aziz Timbilla
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Eva Cermakova
- Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Lucie Cahlikova
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
28
|
Sofi FA, Tabassum N. Natural product inspired leads in the discovery of anticancer agents: an update. J Biomol Struct Dyn 2023; 41:8605-8628. [PMID: 36255181 DOI: 10.1080/07391102.2022.2134212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Natural products have emerged as major leads for the discovery and development of new anti-cancer drugs. The plant-derived anti-cancer drugs account for approximately 60% and the quest for new anti-cancer agents is in progress. Anti-cancer leads have been isolated from plants, animals, marine organisms, and microorganisms from time immemorial. The process of semisynthetic modifications of the parent lead has led to the generation of new anti-cancer agents with improved therapeutic efficacy and minimal side effects. The various chemo-informatics tools, bioinformatics, high-throughput screening, and combinatorial synthesis are able to deliver the new natural product lead molecules. Plant-derived anticancer agents in either late preclinical development or early clinical trials include taxol, vincristine, vinblastine, topotecan, irinotecan, etoposide, paclitaxel, and docetaxel. Similarly, anti-cancer agents from microbial sources include dactinomycin, bleomycin, mitomycin C, and doxorubicin. In this review, we highlighted the importance of natural products leads in the discovery and development of novel anti-cancer agents. The semisynthetic modifications of the parent lead to the new anti-cancer agent are also presented. Further, the leads in the preclinical settings with the potential to become effective anticancer agents are also reviewed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
29
|
Grooms AJ, Nordmann AN, Badu-Tawiah AK. Dual Tunability for Uncatalyzed N-Alkylation of Primary Amines Enabled by Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2023:e202311100. [PMID: 37770409 DOI: 10.1002/anie.202311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O2 ⋅- ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Anna N Nordmann
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA
| |
Collapse
|
30
|
Suwattanasophon C, Mistlberger-Reiner A, Alberdi-Cedeño J, Pignitter M, Somoza V, König J, Lamtha T, Wanaragthai P, Kiriwan D, Choowongkomon K. Identification of the Brucea javanica Constituent Brusatol as a EGFR-Tyrosine Kinase Inhibitor in a Cell-Free Assay. ACS OMEGA 2023; 8:28543-28552. [PMID: 37576644 PMCID: PMC10413460 DOI: 10.1021/acsomega.3c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Inhibitors of the tyrosine kinase (TK) activity of the epidermal growth factor receptor (EGFR) are routinely used in cancer therapy. However, there is a need to discover a new TK inhibitor. This study evaluated extracts from Brucea javanica and its components for their potential as novel EGFR-TK inhibitors. The cytotoxic effect of a g aqueous extract and its fractions was assessed by MTT assays with A549 lung cancer cells. The two fractions with the highest cytotoxicity were analyzed by LC/MS and 1H NMR. Brusatol was identified as the main constituent of these fractions, and its cytotoxic and pro-apoptotic activities were confirmed in A549 cells. To elucidate the inhibitory activity of brusatol against EGFR-TK, a specific ADP-GloTM kinase assay was used. In this assay, the IC50 value for EGFR-TK inhibition was 333.1 nM. Molecular dynamic simulations and docking experiments were performed to identify the binding pocket of brusatol to be located in the intracellular TK-domain of EGFR. This study demonstrates that brusatol inhibits EGFR-TK and therefore harbors a potential as a new therapeutic drug for the therapy of EGFR-depending cancers.
Collapse
Affiliation(s)
- Chonticha Suwattanasophon
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 10900 Bangkok, Thailand
| | - Agnes Mistlberger-Reiner
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food
Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), Paseo de la Universidad no 7, 01006 Vitoria-Gasteiz, Spain
| | - Marc Pignitter
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Veronika Somoza
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Nutritional
Systems Biology, Technical University of
Munich, 85354 Freising, Germany
| | - Jürgen König
- Department
of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Thomanai Lamtha
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 10900 Bangkok, Thailand
| | - Panatda Wanaragthai
- Interdisciplinary
Program of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, 10900 Bangkok, Thailand
| | - Duangnapa Kiriwan
- Interdisciplinary
Program of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, 10900 Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 10900 Bangkok, Thailand
| |
Collapse
|
31
|
Zhao WS, Chen KF, Liu M, Jia XL, Huang YQ, Hao BB, Hu H, Shen XY, Yu Q, Tan MJ. Investigation of targets and anticancer mechanisms of covalently acting natural products by functional proteomics. Acta Pharmacol Sin 2023; 44:1701-1711. [PMID: 36932232 PMCID: PMC10374574 DOI: 10.1038/s41401-023-01072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Eriocalyxin B (EB), 17-hydroxy-jolkinolide B (HJB), parthenolide (PN), xanthatin (XT) and andrographolide (AG) are terpenoid natural products with a variety of promising antitumor activities, which commonly bear electrophilic groups (α,β-unsaturated carbonyl groups and/or epoxides) capable of covalently modifying protein cysteine residues. However, their direct targets and underlying molecular mechanisms are still largely unclear, which limits the development of these compounds. In this study, we integrated activity-based protein profiling (ABPP) and quantitative proteomics approach to systematically characterize the covalent targets of these natural products and their involved cellular pathways. We first demonstrated the anti-proliferation activities of these five compounds in triple-negative breast cancer cell MDA-MB-231. Tandem mass tag (TMT)-based quantitative proteomics showed all five compounds commonly affected the ubiquitin mediated proteolysis pathways. ABPP platform identified the preferentially modified targets of EB and PN, two natural products with high anti-proliferation activity. Biochemical experiments showed that PN inhibited the cell proliferation through targeting ubiquitin carboxyl-terminal hydrolase 10 (USP10). Together, this study uncovered the covalently modified targets of these natural products and potential molecular mechanisms of their antitumor activities.
Collapse
Affiliation(s)
- Wen-Si Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Man Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Long Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Qi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiang Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
32
|
Li Y, Liu X, Zheng Y, Zhang Y, Li Z, Cui Z, Jiang H, Zhu S, Wu S. Ultrasmall Cortex Moutan Nanoclusters for the Therapy of Pneumonia and Colitis. Adv Healthc Mater 2023; 12:e2300402. [PMID: 36898770 DOI: 10.1002/adhm.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Infectious pneumonia and colitis are hard to be treated due to tissue infection, mucosal immune disorders, and dysbacteriosis. Although conventional nanomaterials can eliminate infection, they also damage normal tissues and intestinal flora. Herein, this work reports bactericidal nanoclusters formed through self-assembly for efficient treatment of infectious pneumonia and enteritis. The ultrasmall (about 2.3 nm) cortex moutan nanoclusters (CMNCs) has excellent antibacterial, antiviral, and immune regulation activity. The formation of nanoclusters is analyzed from the molecular dynamics mainly through the binding between polyphenol structures through hydrogen bonding and ππ stacking interaction. CMNCs have enhanced tissue and mucus permeability ability compared with natural CM. CMNCs precisely targeted bacteria due to polyphenol-rich surface structure and inhibited broad spectrum of bacteria. Besides, they killed H1N1 virus mainly through the inhibition of the neuraminidase. These CMNCs are effective in treating infectious pneumonia and enteritis relative to natural CM. In addition, they can be used for adjuvant colitis treatment by protecting colonic epithelium and altering the composition of gut microbiota. Therefore, CMNCs showed excellent application and clinical translation prospects in the treatment of immune and infectious diseases.
Collapse
Affiliation(s)
- Yuan Li
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
33
|
Wei C, Du J, Shen Y, Wang Z, Lin Q, Chen J, Zhang F, Lin W, Wang Z, Yang Z, Ma W. Anticancer effect of involucrasin A on colorectal cancer cells by modulating the Akt/MDM2/p53 pathway. Oncol Lett 2023; 25:218. [PMID: 37153032 PMCID: PMC10157355 DOI: 10.3892/ol.2023.13804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/27/2023] [Indexed: 05/09/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide; however, there is still a lack of effective clinical anti-CRC agents. Naturally-occurring compounds have been considered a potentially valuable source of new antitumorigenic agents. Involucrasin A, a novel natural molecule, was isolated from Shuteria involucrata (Wall.) Wight & Arn by our team. In the present study, the anticancer activity of involucrasin A in HCT-116 CRC cells was evaluated. Firstly, the anti-proliferative effect of involucrasin A on HCT-116 cells was analyzed by sulforhodamine B and colony formation assays. The results revealed that involucrasin A exhibited a potent inhibitory effect on HCT-116 CRC cell proliferation in vitro. Subsequently, flow cytometry and western blotting indicated that involucrasin A induced apoptosis and upregulated the expression levels of apoptosis-related proteins, such as cleaved-caspase 6 and cleaved-caspase 9, in a dose-dependent manner. Mechanistically, involucrasin A significantly inhibited the phosphorylation of Akt and murine double minute 2 homologue (MDM2), which resulted in increased intracellular levels of p53. This was reversed by exogenous expression of the constitutively active form of Akt. Similarly, either knocking out p53 or knocking down Bax abrogated involucrasin A-induced proliferation inhibition and apoptosis. Together, the present study indicated that involucrasin A exerts antitumorigenic activities via modulating the Akt/MDM2/p53 pathway in HCT-116 CRC cells, and it is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Chengming Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Qianyu Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Junhe Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, Guangdong 518000, P.R. China
| | - Zhuya Yang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Correspondence to: Professor Zhuya Yang, School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan 650500, P.R. China, E-mail:
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China
- Professor Wenzhe Ma, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Block H701, Macau, SAR 999078, P.R. China, E-mail:
| |
Collapse
|
34
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Asghar M, Saleem B, Farooq MA, Khan DH, Peltonen L. Novel phytoniosomes formulation of Tradescantia pallida leaves attenuates diabetes more effectively than pure extract. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
35
|
Schepetkin IA, Nurmaganbetov ZS, Fazylov SD, Nurkenov OA, Khlebnikov AI, Seilkhanov TM, Kishkentaeva AS, Shults EE, Quinn MT. Inhibition of Acetylcholinesterase by Novel Lupinine Derivatives. Molecules 2023; 28:3357. [PMID: 37110594 PMCID: PMC10146204 DOI: 10.3390/molecules28083357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment due in part to a severe loss of cholinergic neurons in specific brain areas. AD is the most common type of dementia in the aging population. Although several acetylcholinesterase (AChE) inhibitors are currently available, their performance sometimes yields unexpected results. Thus, research is ongoing to find potentially therapeutic AChE inhibitory agents, both from natural and synthetic sources. Here, we synthesized 13 new lupinine triazole derivatives and evaluated them, along with 50 commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. The triazole derivative 15 [1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)octahydro-2H-quinolizine)] exhibited the most potent AChE inhibitory activity among all 63 lupinine derivatives, and kinetic analysis demonstrated that compound 15 was a mixed-type AChE inhibitor. Molecular docking studies were performed to visualize interaction between this triazole derivative and AChE. In addition, a structure-activity relationship (SAR) model developed using linear discriminant analysis (LDA) of 11 SwissADME descriptors from the 50 lupinine esters revealed 5 key physicochemical features that allowed us to distinguish active versus non-active compounds. Thus, this SAR model could be applied for design of more potent lupinine ester-based AChE inhibitors.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Zhangeldy S. Nurmaganbetov
- Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan; (Z.S.N.); (S.D.F.); (O.A.N.); (A.S.K.)
- School of Pharmacy, Medical University of Karaganda, Karaganda 100012, Kazakhstan
| | - Serik D. Fazylov
- Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan; (Z.S.N.); (S.D.F.); (O.A.N.); (A.S.K.)
| | - Oralgazy A. Nurkenov
- Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan; (Z.S.N.); (S.D.F.); (O.A.N.); (A.S.K.)
| | | | - Tulegen M. Seilkhanov
- Laboratory of Engineering Profile NMR Spectroscopy, Sh. Ualikhanov Kokshetau University, Kokshetau 020000, Kazakhstan;
| | - Anarkul S. Kishkentaeva
- Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan; (Z.S.N.); (S.D.F.); (O.A.N.); (A.S.K.)
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
36
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Rathore HA. Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. FASEB J 2023; 37:e22818. [PMID: 36856606 DOI: 10.1096/fj.202201395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
37
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
38
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D, Xiang H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv 2023; 13:7798-7817. [PMID: 36909750 PMCID: PMC9994607 DOI: 10.1039/d3ra00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
39
|
Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? J Xenobiot 2023; 13:75-89. [PMID: 36810432 PMCID: PMC9945131 DOI: 10.3390/jox13010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The use of herbs to treat illnesses was common in all historical eras. Our aim was to describe the phytotherapeutic substances that cancer patients use most commonly, and to determine whether their use can increase side effects. METHODS This was a retrospective and descriptive study conducted among older adults actively undergoing chemotherapy, admitted at the Oncology DH Unit (COES) of the Molinette Hospital AOU Città della Salute e della Scienza in Turin (Italy). Data collection was conducted through the distribution of self-compiled and closed-ended questionnaires during chemotherapy treatment. RESULTS A total of 281 patients were enrolled. Evaluating retching and sage consumption was statistically significant in multivariate analysis. The only risk factor for dysgeusia was chamomile consumption. Ginger, pomegranate, and vinegar use were retained as mucositis predictors. CONCLUSIONS Phytotherapeutic use needs more attention in order to decrease the risks of side effects, toxicity, and ineffective treatment. The conscious administration of these substances should be promoted for safe use and to provide the reported benefits.
Collapse
|
40
|
Krishna RB, Moncy SH, Mohan C. Arynes as synthetic linchpins towards the construction of diversely functionalized natural product skeletons. Org Biomol Chem 2023; 21:479-488. [PMID: 36514934 DOI: 10.1039/d2ob01975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arynes are a privileged class of reactive intermediates in synthetic organic chemistry, and their unusual reactivities have been the subject of engrossing research interest. Recently, there are many reports on novel aryne-based synthetic innovations as a linchpin approach to accomplish the total synthesis of structurally diverse natural products or their derivatives in a racemic and enantiopure fashion. This review provides an overview of the literature on synthetic strategies, employing arynes as crucial intermediates to construct architecturally intriguing bioactive natural products/derivatives in a period of 2019 to 2022. This study highlights the need to investigate the effective synthesis and search for new biological uses of highly functionalized natural product skeletons.
Collapse
Affiliation(s)
- R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Shirin Hanna Moncy
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India.
| |
Collapse
|
41
|
Jin S, Hui M, Lu Y, Zhao Y. An overview on the two-component systems of Streptomyces coelicolor. World J Microbiol Biotechnol 2023; 39:78. [PMID: 36645528 DOI: 10.1007/s11274-023-03522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The two-component system (TCS) found in various organisms is a regulatory system, which is involved in the response by the organism to stimuli, thereby regulating the internal behavior of the cell. It is commonly found in prokaryotes and is an important signaling system in bacteria. TCSs are involved in the regulation of physiological and morphological differentiation of the industrially important microbes from the genus Streptomyces, which produce a vast array of bioactive secondary metabolites (SMs). Genetic engineering of TCSs can substantially increase the yield of target SMs, which is valuable for industrial-scale production. Research on TCS has mainly been completed in the model strain Streptomyces coelicolor. In this review, we summarize the recent advances in the functional identification and elucidation of the regulatory mechanisms of various TCSs in S. coelicolor, with a focus on their roles in the biosynthesis of important SMs.
Collapse
Affiliation(s)
- Shangping Jin
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China
| | - Ming Hui
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai, China.
| | - Yawei Zhao
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China.
| |
Collapse
|
42
|
Selvaraj B, Lee SH, Sang NQN, Lee H, Lee JW. Synthesis and evaluation of cardamonin derivatives as antiproliferative agents to human cancer cells. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Baskar Selvaraj
- Natural Product Research Center Korea Institute of Science and Technology Gangneung Gangwon‐do Republic of Korea
| | - Sang Hyuk Lee
- Natural Product Research Center Korea Institute of Science and Technology Gangneung Gangwon‐do Republic of Korea
- Department of Chemistry Gangneung Wonju National University Gangneung Republic of Korea
| | - Nguyen Qui Ngoc Sang
- Natural Product Research Center Korea Institute of Science and Technology Gangneung Gangwon‐do Republic of Korea
- Department of Oral Anatomy, College of Dentistry Gangneung Wonju National University Gangenung Republic of Korea
| | - Heesu Lee
- Department of Oral Anatomy, College of Dentistry Gangneung Wonju National University Gangenung Republic of Korea
| | - Jae Wook Lee
- Natural Product Research Center Korea Institute of Science and Technology Gangneung Gangwon‐do Republic of Korea
| |
Collapse
|
43
|
Chrysophanol-Induced Autophagy Disrupts Apoptosis via the PI3K/Akt/mTOR Pathway in Oral Squamous Cell Carcinoma Cells. Medicina (B Aires) 2022; 59:medicina59010042. [PMID: 36676666 PMCID: PMC9864245 DOI: 10.3390/medicina59010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives: Natural products are necessary sources for drug discovery and have contributed to cancer chemotherapy over the past few decades. Furthermore, substances derived from plants have fewer side effects. Chrysophanol is an anthraquinone derivative that is isolated from rhubarb. Although the anticancer effect of chrysophanol on several cancer cells has been reported, studies on the antitumor effect of chrysophanol on oral squamous-cell carcinoma (OSCC) cells have yet to be elucidated. Therefore, in this study, we investigated the anticancer effect of chrysophanol on OSCC cells (CAL-27 and Ca9-22) via apoptosis and autophagy, among the cell death pathways. Results: It was found that chrysophanol inhibited the growth and viability of CAL-27 and Ca9-22 and induced apoptosis through the intrinsic pathway. It was also found that chrysophanol activates autophagy-related factors (ATG5, beclin-1, and P62/SQSTM1) and LC3B conversion. That is, chrysophanol activated both apoptosis and autophagy. Here, we focused on the roles of chrysophanol-induced apoptosis and the autophagy pathway. When the autophagy inhibitor 3-MA and PI3K/Akt inhibitor were used to inhibit the autophagy induced by chrysophanol, it was confirmed that the rate of apoptosis significantly increased. Therefore, we confirmed that chrysophanol induces apoptosis and autophagy at the same time, and the induced autophagy plays a role in interfering with apoptosis processes. Conclusions: Therefore, the potential of chrysophanol as an excellent anticancer agent in OSCC was confirmed via this study. Furthermore, the combined treatment of drugs that can inhibit chrysophanol-induced autophagy is expected to have a tremendous synergistic effect in overcoming oral cancer.
Collapse
|
44
|
Tan CH, Sim DSY, Lim SH, Mohd Mohidin TB, Mohan G, Low YY, Kam TS, Sim KS. Antiproliferative and Microtubule-stabilizing Activities of Two Iboga-vobasine Bisindoles Alkaloids from Tabernaemontana corymbosa in Colorectal Adenocarcinoma HT-29 Cells. PLANTA MEDICA 2022; 88:1325-1340. [PMID: 35100653 DOI: 10.1055/a-1755-5605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.
Collapse
Affiliation(s)
- Chun Hoe Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Dawn Su Yin Sim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Taznim Begam Mohd Mohidin
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Gokula Mohan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yun Yee Low
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Toh Seok Kam
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Ambati GG, Yadav K, Maurya R, Kondepudi KK, Bishnoi M, Jachak SM. Evaluation of the in vitro and in vivo anti-inflammatory activity of Gymnosporia montana (Roth). Benth leaves. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115539. [PMID: 35843412 DOI: 10.1016/j.jep.2022.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Gymnosporia montana (Roth) Benth an herbaceous shrub used in Indian traditional medicine their leaves decoction was used as mouthwash to get relieve from toothache, hence it is also known as Dantakashta in Sanskrit language which means the plant used for tooth problems. Traditionally the leaves juice used to alleviate inflammation and in some parts of India like Saurashtra in Gujarat, leaves were chewed as a folklore cure for Jaundice and in Bhandra region Karnataka, leaves extract mixed with cow milk used for jaundice. Hepatoprotective activity for G. montana leaves was well reported however, its use for inflammation and toothache are still not studied to investigate active phytoconstituents responsible for anti-inflammatory activity. AIM OF THE STUDY The present study aimed at bioactivity guided isolation of G. montana leaves extracts using inhibition of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF-α), and interleukins (IL-1β and IL-6) in RAW 264.7 cells in vitro assay to yield bioactive phytoconstituents. MATERIALS AND METHODS The n-hexane, ethyl acetate and methanol extracts prepared from G. montana leaves were evaluated for cell viability using MTT assay. The effect of extracts to inhibit the pro-inflammatory mediators like NO, TNF-α, IL-1β and IL-6 in RAW 264.7 macrophages was measured by enzyme-linked immunosorbent assay (ELISA). The quantitative analysis of the isolated phytoconstituents was performed using quantitative Nuclear Magnetic Resonance (qNMR). RESULTS The n-hexane, ethyl acetate, and methanol extracts of G. montana leaves exhibited cell viability in the range of 97.43-84.88% at 50 μg/mL concentration in RAW 264.7 macrophages. In-vitro evaluation of extracts showed that n-hexane extract was most effective in inhibiting NO, TNF-α, IL-1β and IL-6 inflammatory mediators at 50 μg/mL in lipopolysaccharides (LPS) stimulated RAW 264.7 cells. Further n-hexane extract, its fraction GMHA3 and β-amyrin exhibited significant anti-inflammatory activity at 100, 50 and 30 mg/kg per oral, respectively in carrageenan-induced rat paw edema. The quantitative analysis by qNMR revealed β-amyrin as a major compound in the n-hexane extract. CONCLUSIONS In vitro and in vivo bioassay results suggested that G. montana n-hexane extract, its fraction GMHA3 and β-amyrin exhibits significant anti-inflammatory activity proves the traditional uses of G. montana leaves. The reported activity of β-amyrin for periodontitis provides evidence of profound the use of G. montana leaves for toothache and anti-inflammatory activity.
Collapse
Affiliation(s)
- Goutami G Ambati
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, 160062, Punjab, India
| | - Kamalender Yadav
- Department of Food Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sector-81, S.A.S. Nagar, Punjab, India
| | - Ruchika Maurya
- Department of Food Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sector-81, S.A.S. Nagar, Punjab, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - K K Kondepudi
- Department of Food Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sector-81, S.A.S. Nagar, Punjab, India
| | - Mahendra Bishnoi
- Department of Food Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Sector-81, S.A.S. Nagar, Punjab, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, 160062, Punjab, India.
| |
Collapse
|
46
|
Crosstalk of TetR-like regulator SACE_4839 and a nitrogen regulator for erythromycin biosynthesis. Appl Microbiol Biotechnol 2022; 106:6551-6566. [PMID: 36075984 DOI: 10.1007/s00253-022-12153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
TetR family transcriptional regulators (TFRs) are widespread in actinomycetes, which exhibit diverse regulatory modes in antibiotic biosynthesis. Nitrogen regulators play vital roles in modulation of primary and secondary metabolism. However, crosstalk between TFR and nitrogen regulator has rarely been reported in actinomycetes. Herein, we demonstrated that a novel TFR, SACE_4839, was negatively correlated with erythromycin yield in Saccharopolyspora erythraea A226. SACE_4839 indirectly suppressed erythromycin synthetic gene eryAI and resistance gene ermE and directly inhibited its adjacent gene SACE_4838 encoding a homologue of nitrogen metabolite repression (NMR) regulator NmrA (herein named NmrR). The SACE_4839-binding sites within SACE_4839-nmrR intergenic region were identified. NmrR positively controlled erythromycin biosynthesis by indirectly stimulating eryAI and ermE and directly repressing SACE_4839. NmrR was found to affect growth viability under the nitrogen source supply. Furthermore, NmrR directly repressed glutamine and glutamate utilization-related genes SACE_1623, SACE_5070 and SACE_5979 but activated nitrate utilization-associated genes SACE_1163, SACE_4070 and SACE_4912 as well as nitrite utilization-associated genes SACE_1476 and SACE_4514. This is the first reported NmrA homolog for modulating antibiotic biosynthesis and nitrogen metabolism in actinomycetes. Moreover, combinatorial engineering of SACE_4839 and nmrR in the high-yield S. erythraea WB resulted in a 68.8% increase in erythromycin A production. This investigation deepens the understanding of complicated regulatory network for erythromycin biosynthesis. KEY POINTS: • SACE_4839 and NmrR had opposite contributions to erythromycin biosynthesis. • NmrR was first identified as a homolog of another nitrogen regulator NmrA. • Cross regulation between SACE_4839 and NmrR was revealed.
Collapse
|
47
|
Addressing artifacts of colorimetric anticancer assays for plant-based drug development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.
Collapse
|
48
|
Elumalai V, Trobec T, Grundner M, Labriere C, Frangež R, Sepčić K, Hansen JH, Svenson J. Development of potent cholinesterase inhibitors based on a marine pharmacophore. Org Biomol Chem 2022; 20:5589-5601. [PMID: 35796650 DOI: 10.1039/d2ob01064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The management of neurological disorders such as dementia associated with Alzheimer's or Parkinson's disease includes the use of cholinesterase inhibitors. These compounds can slow down the progression of these diseases and can also be used in the treatment of glaucoma and myasthenia gravis. The majority of the cholinesterase inhibitors used in the clinic are derived from natural products and our current paper describes the use of a small marine pharmacophore to develop potent and selective cholinesterase inhibitors. Fourteen small inhibitors were designed based on recent discoveries about the inhibitory potential of a range of related marine secondary metabolites. The compounds were evaluated, in kinetic enzymatic assays, for their ability to inhibit three different cholinesterase enzymes and it was shown that compounds with a high inhibitory activity towards electric eel and human recombinant acetylcholinesterase (IC50 between 20-70 μM) could be prepared. It was also shown that this compound class was particularly active against horse serum butyrylcholinesterase, with IC50 values between 0.8-16 μM, which is an order of magnitude more potent than the clinically used positive control neostigmine. The compounds were further tested for off-target toxicity against both human umbilical vein endothelial cells and bovine and human erythrocytes and were shown to display a low mammalian cellular toxicity. Overall, the study illustrates how the brominated dipeptide marine pharmacophore can be used as a versatile natural scaffold for the design of potent, and selective cholinesterase inhibitors.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christophe Labriere
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jørn H Hansen
- Department of Chemistry, Chemical Synthesis and Analysis Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
49
|
Krajnović T, Pantelić NĐ, Wolf K, Eichhorn T, Maksimović-Ivanić D, Mijatović S, Wessjohann LA, Kaluđerović GN. Anticancer Potential of Xanthohumol and Isoxanthohumol Loaded into SBA-15 Mesoporous Silica Particles against B16F10 Melanoma Cells. MATERIALS 2022; 15:ma15145028. [PMID: 35888494 PMCID: PMC9320346 DOI: 10.3390/ma15145028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Xanthohumol (XN) and isoxanthohumol (IXN), prenylated flavonoids from Humulus lupulus, have been shown to possess antitumor/cancerprotective, antioxidant, antiinflammatory, and antiangiogenic properties. In this study, mesoporous silica (SBA-15) was loaded with different amounts of xanthohumol and isoxanthohumol and characterized by standard analytical methods. The anticancer potential of XN and IXN loaded into SBA-15 has been evaluated against malignant mouse melanoma B16F10 cells. When these cells were treated with SBA-15 containing xanthohumol, an increase of the activity correlated with a higher immobilization rate of XN was observed. Considering the amount of XN loaded into SBA-15 (calculated from TGA), an improved antitumor potential of XN was observed (IC50 = 10.8 ± 0.4 and 11.8 ± 0.5 µM for SBA-15|XN2 and SBA-15|XN3, respectively; vs. IC50 = 18.5 ± 1.5 µM for free XN). The main mechanism against tumor cells of immobilized XN includes inhibition of proliferation and autophagic cell death. The MC50 values for SBA-15 loaded with isoxanthohumol were over 300 µg/mL in all cases investigated.
Collapse
Affiliation(s)
- Tamara Krajnović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.K.); (D.M.-I.); (S.M.)
| | - Nebojša Đ. Pantelić
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; (N.Đ.P.); (T.E.)
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Katharina Wolf
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (K.W.); (L.A.W.)
| | - Thomas Eichhorn
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; (N.Đ.P.); (T.E.)
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.K.); (D.M.-I.); (S.M.)
| | - Sanja Mijatović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.K.); (D.M.-I.); (S.M.)
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (K.W.); (L.A.W.)
| | - Goran N. Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; (N.Đ.P.); (T.E.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; (K.W.); (L.A.W.)
- Correspondence: ; Tel.: +49-3461-46-2012
| |
Collapse
|
50
|
Yang X, Kemmink J, Rijkers DTS, Liskamp RMJ. Synthesis of a tricyclic hexapeptide -via two consecutive ruthenium-catalyzed macrocyclization steps- with a constrained topology to mimic vancomycin's binding properties toward D-Ala-D-Ala dipeptide. Bioorg Med Chem Lett 2022; 73:128887. [PMID: 35835378 DOI: 10.1016/j.bmcl.2022.128887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
A ring-closing metathesis (RCM) - peptide coupling - ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) strategy was developed to synthesize a tricyclic hexapeptide in which the side chain to side chain connectivity pattern resulted in a mimic with a topology that effectively mimics the bioactivity of vancomycin as a potent binder of the bacterial cell wall D-Ala-D-Ala dipeptide sequence and more importantly being an effective inhibitor of bacterial growth.
Collapse
Affiliation(s)
- Xin Yang
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johan Kemmink
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Dirk T S Rijkers
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Rob M J Liskamp
- Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands; School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom; Maastricht University, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|